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Abstract
At high pressure, the typical behavior of elements dictated by the periodic table—including oxidation numbers, stoichio-
metries in compounds, and reactivity, to name but a few—is altered dramatically. As pressure is applied, the energetic order-
ing of atomic orbitals shifts, allowing core orbitals to become chemically active, atypical electron configurations to occur, and 
in some cases, non-atom-centered orbitals to form in the interstices of solid structures. Strange stoichiometries, structures, 
and bonding motifs result. Crystal structure prediction tools, not burdened by preconceived notions about structural chemistry 
learned at atmospheric pressure, have been applied to great success to explore phase diagrams at high pressure, identifying 
novel structures in diverse chemical systems. Several of these phases have been subsequently synthesized. Experimentally, 
access to high-pressure regimes has been bolstered by advances in diamond anvil cell and dynamic compression techniques. 
The joint efforts of experiment and theory have led to startling successes stories in the realm of high-temperature super-
conductivity, identifying many novel phases—some of which have been synthesized—whose superconducting transition 
approaches room temperature.

Keywords  Pressure · Crystal structure prediction · Superconductivity · Electronic structure

1  Introduction

Our chemical knowledge and intuition, which has accumu-
lated from our first chemistry classes and experience liv-
ing at atmospheric conditions, can be completely knocked 
askew when the pressure variable is taken into considera-
tion. The range of pressures in our universe is wide, from 
10−32 atm in the vast spaces between galaxies all the way up 
to 10+32 atm in the core of a neutron star. In the core of our 
own planet, Earth, pressures can reach up to ∼3.5×106 atm 
(350 GPa), while many giant planets have core pressures 
in the TPa regime. Understanding how chemistry changes 
under pressure is key to uncovering how materials behave 
in these environments. Experimental techniques based on 
diamond anvil cells (DACs) can access static compression 

in the multi-megabar regime [1–5], while even higher pres-
sures are accessible via dynamic compression using shock 
wave or ramp techniques [6–8].

However, producing these high-pressure environments 
and analyzing the resulting data is difficult [9]. Light ele-
ments tend to diffuse into the diamonds of the DAC cell, 
weakening and breaking the apparatus, which is finan-
cially expensive and wastes research time. Unintended side 
reactions within the DAC can result in decompositions, 
unwanted product formation, and a mixture of byproducts 
alongside the actual synthetic target. Even following a suc-
cessful synthesis, characterization is complex, since the 
capabilities of X-ray diffraction (XRD) are limited for light 
elements. The pressure limit of neutron diffraction is not 
high enough for many experiments, causing the indirect-
probe techniques of Raman and IR spectroscopy to step into 
the gap. These difficulties have led to the development of 
a symbiotic relationship between theoreticians and experi-
mentalists, in which theoretical calculations into promising 
novel compounds provide plausible synthetic targets, and 
aid in structural characterization and analysis of properties 
once experimental phases are observed. H 3 S and LaH10 , two 
high-pressure phases with record-breaking superconducting 
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critical temperatures, Tc , have both been investigated in such 
a symbiotic partnership [10–19].

As is evident from the strange elemental ratios in the 
aforementioned iconic superconducting hydrides, pressure 
can have a profound effect on the compositions, structures, 
properties, and stabilities of solid phases [9, 20–32]. Experi-
mentally observed compounds often could not have been 
predicted using the rules and bonding schemes that stem 
from our ambient-pressure-taught intuition. For these rea-
sons, methods based on data mining [33] and chemical intui-
tion [34] tend to break down when predicting solid phases 
under pressure. Therefore, theoreticians have made use of 
crystal structure prediction (CSP) techniques, which aim to 
pinpoint the global minimum as well as interesting local 
minimum phases on the potential energy surface (PES) at 
a chosen pressure and temperature. Once the unit cells and 
atomic configurations—often quite alien to those seen at 
ambient pressure—are identified, theoreticians can calcu-
late the structural and electronic properties of the resulting 
phases, either to compare with or to guide experimentalists. 
Theoretical calculations can also probe pressures beyond 
those which are currently accessible experimentally.

Herein, we first give an overview of several commonly 
used CSP algorithms, followed by a survey of the unique 
behavior of matter compressed under extreme pressures. 
We start by outlining the changes in electronic structure 
that are induced by pressure, tracking how they manifest 
in strange stoichiometries, structures, and bonding patterns 
in the phases that result. Finally, we discuss the exciting 
superconducting phases that have emerged in high-pressure 
experiments.

2 � Crystal structure prediction

The problem tackled by CSP is one of global optimization. 
Within this framework, the unit cell parameters and atomic 
positions—in other words, the geometric coordinates of the 
crystalline structures—are the parameters that are varied 
towards achieving the goal of minimizing the free energy 
[35–46]. These parameters include three unit cell vectors, 
three unit cell angles, and 3 N− 3 degrees of freedom in 
atomic positions, resulting in a total of 3 N+ 3 parameters 
that need to be determined to identify a global minimum 
structure in a PES for a phase with N atoms in the unit cell. 
The resulting problem is very difficult, for several reasons. 
For one, it has been shown that the number of local min-
ima in the PES increase exponentially with the number of 
atoms in the unit cell [47]. Second, the computational cost 
of optimizing structures to the nearest local minimum can 
be quite expensive, especially for the (typically) thousands 
of structures that need to be considered in a single run. For 
this reason, early CSP studies employed empirical potentials 

for small solid systems such as Li3RuO4 [48] and molecules 
including fullerene clusters [49]. Therefore, CSP is an NP-
hard (nondeterministic polynomial time hard) problem, since 
locating the global minimum of homogeneous and heteroge-
neous systems both [50, 51] has no algorithm that scales as 
a polynomial in the possible degrees of freedom.

Taking all of this into account, common meta-heuristic 
algorithms have been designed to search for good (low-
energy, stable) structures, but they are not guaranteed to 
pinpoint the global minimum due to the sheer complex-
ity of the problem. However, it can be fruitful to analyze 
even the local minima that are identified from such searches 
because they may possess promising properties, and many 
are synthetically accessible. Various CSP methods have been 
designed to sample the PES in different ways based on the 
situation at hand.

Some CSP methods, including random structure searches 
[40, 52], evolutionary (EA) and genetic algorithms (GA) 
[53–60], and particle swarm optimization (PSO) [39, 61], 
search throughout the entire PES. If minimal to no infor-
mation is known regarding the target structure(s), this type 
of method is preferred, because they start by sampling the 
entire PES to identify promising regions and only then nar-
row their focus. Other methods, such as metadynamics [62], 
simulated annealing [63], basin hopping [64], and minima 
hopping [65], thoroughly explore only a particular, selected 
region of the PES by overcoming energy barriers for a given 
starting structure, and therefore multiple runs with various 
starting phases might be necessary. Hybrid methods combin-
ing the aforementioned techniques also exist [66, 67]. Since 
interatomic potential parameters are often unreliable for 
squeezed crystalline structures, a common practice for high 
pressure research is to couple CSP with density functional 
theory (DFT) for local optimizations that relax the crystal 
structures to the nearby minima. Some methods tackle this 
problem by concurrently fitting DFT results produced during 
the search to update parameters on-the-fly [68–72].

To acquaint the reader with various CSP techniques, we 
will next describe the details of several popular methods that 
were mainly developed for small inorganic crystals where 
each atom is treated independently. Although the methods 
can be modified to include constraints on inter-molecular 
interactions [73], that would necessitate taking into con-
sideration flexibility in conformation, nearly iso-energetic 
polymorphs of molecular crystals, and large unit cells [74], 
rendering it beyond the scope of the review. Other CSP algo-
rithms not included in the discussion herein are the ones 
for large systems at ambient conditions involving empirical 
information, data mining or machine learning [33, 75–77].
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2.1 � Potential energy surfaces

Potential energy surfaces or landscapes are highly dimen-
sional, describing how the energy of a system varies as a 
function of the 3 N+ 3 degrees of freedom. PESs are deco-
rated with numerous local minima corresponding to poten-
tial configurations of the N atoms within some unit cell. 
The local minima manifest as “valley”-like shapes in the 
PES, and they are separated by energy barriers. Each struc-
ture defined or generated by a CSP algorithm typically 
undergoes a process termed local optimization, where its 
energy is minimized to reach the nearest local minimum. 
The PES may contain various features, illustrated in Fig. 1: 
(1) basins, within which all structures will optimize to a 
single local minimum, (2) super basins, the domains in the 
potential energy surface with multiple basins located next to 
each other, and (3) funnels, super basins with multiple local 
minima that are separated by small barriers.

Locating the global minimum of large and complex sys-
tems can be very difficult. The “no free lunch” theorems 
conjecture that the success rates of all algorithms will be 
the same when averaged over all PESs [79], meaning that 
varying the method employed will not necessarily help to 
improve the search for a particular system. However, cer-
tain features of the PES can be leveraged to the advantage 
of the researcher, even for a structure with many atoms in a 
complex unit cell.

For example, there is no need to sample the entire PES, 
since the chemically desired (physically reasonable) struc-
tures are typically located only in certain areas, while the 
rest of the surface involves configurations with high energy 
structures where atomic distances are too close or too far 
for them to be energetically competitive. Removing these 

undesired regions from the searches greatly accelerates the 
CSP run. Another property of the PES is that low energy 
configurations occupy the largest amount of “hyperspace” 
in a PES [80], so that randomly generated structures tend 
to fall into low energy basins rather than regions with high 
energy. Finally, previous studies suggested that low-energy 
basins are more likely to be located close to each other, 
with the energy barriers between them being small [81, 82]. 
Thus, a configuration falling in a random place in a funnel 
can be lightly perturbed, allowing it to overcome the ener-
getic barriers and continually move to lower energy until it 
reaches the global minimum within the funnel. Overviews 
of the commonly used CSP techniques that have been used 
to predict the structures of high pressure materials are given 
below.

2.2 � Following imaginary phonons

If the target compound resembles a known structure—a dis-
tortion of a highly symmetric parent phase as in, for exam-
ple, families of perovskites, one way to carry out CSP is 
simply to follow imaginary phonon modes. Following local 
optimization of a given starting configuration and calcula-
tions of its phonon band structure, the presence of imagi-
nary phonon modes indicates that a lower-energy phase in 
the PES could be accessed by displacing atoms along the 
eigenvectors of the soft phonon modes. The structure is 
modified with the displaced atoms—typically resulting in a 
lower-symmetry structure—and a subsequent local optimi-
zation is performed. The process needs to be repeated until 
the final structure is located at a local minimum, with no 
imaginary phonon modes. One special case that can occur 
is when the softest mode is located at the Γ point, in other 
words, the center of the Brillouin zone. In this case, the 
perturbed structure would have the same unit cell as the 
original but with the atoms moved along the displacement 
vectors. Following these sorts of structural pathways allows 
us to enrich our chemical knowledge, by getting a better of 
understanding of the relationships between various structure 
types, and how symmetry breakings affect electronic proper-
ties and energies.

Extensive predictions of complex systems have been 
done by following imaginary phonon modes, and many of 
them show interesting properties. For example, distortions 
along soft phonon modes from a rock-salt lattice in late 
transition metal oxides lead to complex crystal structures 
[83] in which the distortions are coupled either to mag-
netic ordering or Jahn–Teller effects. Several structures 
explored for their promise as high-temperature supercon-
ductors were identified by following soft phonon modes, 
including silane [84–86] and a derivative of H 3 S inter-
calated with methane [87]. Distorted perovskite phases 
based on concerted tilting or rotations of octahedra are 
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Fig. 1   Two-dimensional schematic of a potential energy surface, with 
red dots indicating single structures at various locations. One dot sits 
at the global minimum, the lowest energy point across the entire PES, 
while another sits at a local minimum in the PES. A third sits atop a 
peak in the PES representing a transition state between two funnels 
that each contain many local minima. A fourth will, upon local opti-
mization represented by a dotted line, go to the local minimum of the 
basin in which it lies. Adapted with permission from [78]. Copyright 
2021 American Chemical Society
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frequently demonstrated to arise from atom displacements 
along imaginary phonon modes in a high-symmetry cubic 
structure [88–91]. High-pressure conversions between zir-
con, scheelite, and fergusonite structures in MXO4 phases 
including CaMoO4 [92] and YVO4 [93] can also be under-
stood through this lens.

Although this method draws a clear route from initial 
structure to final answer, there are limitations: the original 
structure should be close to the target in the PES, in other 
words, they should have similar configurations. Reorient-
ing octahedra in a perovskite lattice requires little in terms 
of atomic rearrangement; other high-pressure structures 
may be far more alien. Another disadvantage is that the 
actual practice can be computationally expensive even 
within DFT, since phonon calculations must be performed 
across the entire Brillouin zone.

The method of following soft phonon modes can be 
combined with several of the CSP techniques described 
below, however, using their output to define the initial 
starting guess. Because CSP techniques are typically lim-
ited to small unit cell sizes, the most stable phases they 
find may show soft modes away from the Zone center, 
which serve as a guide to a related, dynamically stable 
compound.

2.3 � Simulated annealing

Another technique that probes local regions of the PES is 
simulated annealing, which was inspired by the heating and 
quenching process of metallurgy that recrystallizes materi-
als [63]. To start, a random configuration of atoms is gen-
erated and its energy assessed. From this starting point, a 
new structure is produced by some combination of perturba-
tion, random atomic displacement, and atom permutation of 
the initial structure. The probability P of the new structure 
being accepted is based on the Metropolis Monte Carlo algo-
rithm, where P = −ΔE∕kBT ( ΔE being the energy difference 
between the initial and new structures and kB is the Boltz-
mann constant). The variable T is the “simulation tempera-
ture”, distinct from physical temperature, that is employed 
in the mathematical expression controlling the acceptance 
rate of new structures. After a period of “heating”, where 
values of T are large, a random number � (0 < 𝜖 < 1) is used 
as a cutoff value so that new structures will be accepted only 
if � is smaller than P. As the process iterates the T variable 
is continually decreased—analogous to the slow cooling of 
a solid material from the melt to form crystals—to tighten 
the criteria of structure acceptance, as illustrated schemati-
cally in Fig. 2a. Once T is reduced to 0, the process will only 

Fig. 2   Schematic illustration of the ways in which CSP techniques 
traverse a three-dimensional PES, including: a simulated annealing, 
b minima hopping, c metadynamics, d random searches, e particle 

swarm optimization, and f genetic algorithms. Adapted with permis-
sion from [78]. Copyright 2021 American Chemical Society
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accept structures with lower energies than the parent phase, 
locating the neighboring local minima.

The success of this method relies significantly on choos-
ing a good starting structure. In addition, it is assumed that 
the high-temperature PES has a similar landscape to the 
low-temperature PES, so that the local minima before and 
after cooling are the same, but this does not always hold 
true. More complicated search schemes, which can involve 
multiple heating/cooling cycles and random mutations, have 
been proposed as techniques that explore broader regions of 
the PES. However, random mutations in simulated annealing 
have to be carefully handled for two reasons: (1) mutations 
that are too large can cause a run to sample a large portion of 
the PES, effectively the same as a random structure search, 
and (2) too-small mutations can fail to effectively perturb 
the system. Molecular dynamics can also be used to perturb 
the structures.

The application of the simulated annealing method has 
been fruitful, coupled in many cases to Hartree–Fock and 
DFT methods [37, 94]. Many inorganic crystal structures, 
including in the Pb–S systems [95], Ca–C systems [96], 
metal–N systems [97], B–N systems [98], and Ge–F systems 
[99], have been identified using this method.

2.4 � Basin and minima hopping

Similar to simulated annealing, the basin and minima hop-
ping methods rely on a judicious choice of starting struc-
ture. Basin hopping, developed mainly for finite cluster sys-
tems [64, 100–103], relies on the Monte Carlo algorithm to 
evaluate the fitness of proposed structures to be accepted or 
rejected based on a carefully selected “temperature” cutoff. 
In this method, all structures in a basin undergo relaxation 
to the same local minimum, so that the PES is transformed 
into a series of connected step functions that are each related 
to a local minimum. No penalty is imposed for sampling a 
region of the PES that has already been searched.

Although the minima hopping method is very similar in 
design to basin hopping, it uses molecular dynamics rather 
than Monte Carlo to traverse the PES. As such, a tempera-
ture variable is not required. Instead, after relaxing a struc-
ture into a nearby local minimum, the cutoff energy differ-
ence between the original and optimized structures, labeled 
Ediff in Fig. 2b, is set so that half of the new structures are 
accepted. Using soft phonon modes to define inital trajec-
tories for the molecular dynamics step can increase the effi-
ciency of the method, in-line with the Bell–Evans–Polanyi 
principle regarding relative energies of local minima and the 
energetic barriers surrounding them [104, 105]. The algo-
rithm can also selectively favor exploring new regions of the 
PES by artificially raising the kinetic energy employed in the 
molecular dynamics step. This mechanism is invoked when 
already explored regions of the PES are revisited.

High pressure phases investigated by minima hopping 
include various polymorphs of elemental carbon [106, 107], 
as well as superconducting hydrides of phosphorus [108], 
sulfur, selenium [109], silicon [110] and ternary S xSe1−x
H3 hydrides [111], as well as to identify new high-pressure 
structures of SrTiO3[112]. Several binary systems that are 
known to be immiscible at ambient pressures have been 
investigated with the minima hopping method, including 
the intermetallic Fe–Bi [113, 114], Cu–Bi [114–116], and 
Ni–Bi [114, 117] systems. Using a linear approximation to 
the enthalpy to predict the stabilities of compounds found 
in 1 atm databases, the minima hopping method identified 
stable phases in the immiscible-at-ambient-pressure systems 
As–Pb, Al–Si, Sn–Bi, Fe–In, Hg–In, Hg–Sn, Re–Sn, Re–Br, 
and Re–Ga [114].

2.5 � Metadynamics

The metadynamics method is based on molecular dynamics 
simulations. Exploration of the full PES is encouraged by 
filling already-visited areas with Gaussian functions, repre-
sented by the dotted lines in Fig. 2c, to overcome barriers 
between known and unknown regions [62]. This so-called 
“basin-flooding” is typically performed in a space defined 
by a particular collection of variables, fewer than the 3 N+ 3 
needed to represent the full crystalline lattice. Metadynam-
ics has been frequently applied to studying phase transitions 
[118, 119], structural changes in solutions, and chemical 
reactions [62], but has also been employed to predict several 
high pressure structures, including phases of Ge [120], Ca 
[121], N [122], and carbon dioxide [123]. One shortcoming 
of the metadynamics method is that it may flood a transition 
basin separating multiple minima, thereby making it impos-
sible to find the global minimum. Thus, unless a good start-
ing structure is known, it is important to perform multiple 
searches to ensure adequate exploration of the PES.

2.6 � Random (sensible) structure searches

The previously discussed CSP algorithms—following soft 
phonons, simulated annealing, basin hopping, and meta-
dynamics—all excel in the fine exploration of particular 
regions of the PES and to some extent rely on a reason-
able structural guess as a starting point. The following three 
metaheuristics, starting with random searches and proceed-
ing to particle swarm optimization methods and genetic/
evolutionary algorithms specialize instead in surveying a 
full PES to eventually narrow in on a final region.

Of these, the random search method is rooted in the most 
straightforward idea: to generate crystal structures with ran-
domized unit cell parameters and atomic coordinates, and 
then to relax these structures to the closest local minima, as 
illustrated in Fig. 2d. This ensures wide coverage of the full 
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PES, not biased to any particular region. However, since ran-
domly generated structures might contain unrealistic intera-
tomic distances, falling into unhelpfully high energy regions 
of the PES, constraints can be applied to avoid atoms occu-
pying positions that are too near or too far from one another. 
If experimental observations or chemical intuition confer 
knowledge regarding lattice parameters, types, or space 
groups, such constraints can also be applied. For structures 
containing molecules, quasi-molecules, or clusters, connec-
tivity constraints can further assist the procedure. Therefore, 
random structure search methods can also be described as 
“sensible structure searches” [40].

The simplest random structure searches generate com-
pletely independent structures, and therefore do not learn 
from their history. One algorithm that can, in principle, 
learn during the course of its trajectory is the ab initio ran-
dom structure searching method (AIRSS) [40, 52]. AIRSS 
allows users to apply various constraints as outlined above. 
Users may also invoke a “shaking” feature, which randomly 
mutates previously identified stable structures through 
atomic displacement and unit cell deformation, thereby 
enabling the search to overcome barriers between phases.

Random searches have been successfully used to predict 
many structures, including elemental phases of hydrogen 
[124, 125], lithium [121, 126], nitrogen [127, 128], and ger-
manium [129]. Additionally, high pressure phases of tita-
nium dioxide [130], silane [131], xenon oxides [132], MoBi2 
[133], as well as several high-temperature superconducting 
hydrides [134] have been explored through random search-
ing methods.

2.7 � Particle swarm optimization

Inspired by the behavior of swarms of animal groups (i.e., 
flocks of birds, schools of fish) [135], the particle swarm 
optimization algorithm [61], implemented within the Crys-
tal Structure AnaLYsis by Particle Swarm Optimization 
(CALYPSO) code [39], incorporates the positions and PES 
trajectories of the collected group of putative structures to 
determine the path a particular structure will take to traverse 
the PES.

The first applications of the particle swarm method 
focused on predicting cluster structures [136]. By now, the 
CALYPSO code is one of the most popular methods for 
high-pressure CSP, and has been employed to successfully 
predict many novel materials, including multiple supercon-
ductors with high critical temperatures [12, 18, 137–142], 
structures of elemental Li [143], superhard B–N binary 
phases [144, 145], Ce–F compounds [146], and hydrides 
of Cl [147].

In the PSO algorithm, a set of random structures are cre-
ated with constraints on interatomic distances, volumes, and 
symmetry. These undergo local relaxation to the nearest 

local minima. Each individual’s path through the PES is 
defined both by its previous route and the traveling history of 
the other individuals, expressed as a position plus a velocity. 
The velocity, �(t + 1) , is given as

where � , whose range is between 0.4 and 0.9, is an inertia 
term that is varied on-the-fly ; c1 and c2 are parameters com-
paring the current position of the individual to the global 
minimum; r1 and r2 are random numbers falling between 0 
and 1; x(t) is the current position of the individual; lbest is 
the current local minimum that the individual is relaxed into; 
and gbest is the best position, or current global minimum, 
of the swarm. An example of this trajectory calculation is 
shown in Fig. 2e.

The PSO approach has the dual benefit of continually 
learning from the search history, while at the same time 
exploring the most promising regions of the PES. To ensure 
the search does not become too narrow, new random struc-
tures are continuously injected, thereby broadly sampling 
the rest of the PES.

2.8 � Evolutionary algorithms

In the past two decades, a plethora of CSP codes have been 
developed based on evolutionary (or genetic) algorithms 
(EAs/GAs), including XtalOpt [53, 78, 148–152], GASP 
[153], USPEX [55, 154, 155], MAISE [56], EVO [57], and 
other codes developed by Trimarchi et al [58, 156], Abra-
ham et al [59], Fadda et al [60], Woodley and Catlow [157], 
Hammer et al [158], and the “adaptive-GA” of Wentzco-
vitch et al [68]. These codes are coupled with periodic first-
principle simulation packages or interatomic potentials for 
local optimizations. The evolutionary algorithm draws inspi-
ration from the concepts of evolutionary biology, wherein 
selection, mutation, and reproduction operations cooperate 
to produce fit organisms—in the case of CSP, global minima 
on a PES. The terms EA and GA are often used interchange-
ably, even though technically the two differ in the way that 
offspring are created. In EAs the operators act on the struc-
tures in real space, whereas in GAs the structural variables 
are first mapped onto a string, akin to a chromosome, and 
the heredity operations are performed on these.

The first step in an EA search is to generate a set of ran-
dom structures that can be optionally constrained by a series 
of parameters including interatomic distances, unit cell vol-
umes and lattice parameters, space groups, and molecular 
units. If they are known, a search can be seeded by candi-
date structures. Following local optimization into the nearest 
local minimum, the fitness of each structure is evaluated 
based on a thermodynamic variable such as enthalpy or 

(1)
�(t + 1) =��(t) + c1r1(lbest(t) − x(t))

+ c2r2(gbest(t) − x(t)),
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energy, which can in certain cases be weighted alongside 
another variable, such as Vickers hardness [150]. The fittest 
structures serve as parents for the following generation, pass-
ing down whichever structural features promote stability.

Offspring can be constructed via “breeding”, or crossover, 
operations in which the unit cells of two parent structures are 
combined, or “mutation” operations in which a single parent 
unit cell is perturbed in some way, as illustrated in Fig. 2f. 
The crossover operation, originally implemented for the pre-
diction of clusters [49], involves rotating parent structures 
into a random orientation, then cutting both and splicing 
them back into a single child. Mutation operations range 
from permutation and exchange operators, which switch 
atomic positions of different elements, to ripple operators 
which displace atoms according to a periodic function, to 
strain operators which alter the unit cell parameters entirely. 
They can also be combined with one another—for exam-
ple, the “stripple” operation implemented in XtalOpt [152] 
involves both strain and ripple processes.

The success of EA methods is demonstrated in the 
large number of high-pressure crystal structures they have 
identified. These include hydrogen-rich phases with “non-
classical” stoichiometries [159–171], elemental phases of 
boron [172, 173] and sodium [174], binary systems ranging 
from Xe–O [175] to Sc–N [176] to Li–B [177, 178] and 
Be–B [179, 180], (and the Li–Be–B ternary system [181]) 
alongside other ternary systems including Li–F–H [182] and 
La–B–H [183].

3 � Chemistry under pressure

The application of external pressure has drastic conse-
quences for materials behavior. To a first approximation, 
an increase in pressure corresponds with a decrease in the 
volume of condensed matter, driving up the importance of 
the PV contribution to system enthalpy in the expression 
H = U + PV  . In such a framework, structures that mini-
mize the total volume, with high coordination numbers and 
simple, highly symmetric atomic arrangements, should be 
the natural endpoint of matter under extreme compression. 
These trends have been encapsulated by various “rules” for 
materials at high pressure proposed by Prewitt and Downs 
[184], Grochala et al [22] and Zhang et al [185]. Since our 
chemical intuition, trained at 1 atm, is hard-pressed to gener-
ate meaningful insights at high pressures, these rules have 
been developed from swathes of experimental data. Nev-
ertheless, strange chemistry is afoot, as supposedly simple 
metals such as Na and Li adopt open framework structures 
[174, 186] and bizarre stoichiometries and structural motifs 
crop up.

In addition to mechanical consequences, applied pressure 
influences the electronic structure of compressed matter, 

altering the relative energies of atomic or molecular orbitals. 
As a result, unfamiliar oxidation states, reactive core elec-
trons, and non-atom centered orbitals emerge in compressed 
matter, manifesting in strange stoichiometries, structures, 
and bonding arrangements. Elements that are immiscible or 
inert at ambient pressure can form compounds. The result-
ing properties are diverse, ranging from superconductors to 
topological materials.

In the following sections, we provide an overview of the 
many fascinating results from the high pressure research 
community that demonstrate the fabulous chemical and 
physical properties emerging under pressure. The sections 
are organized according to different phenomena that arise at 
high pressure—but as many stem from the common root of 
reordered orbital energies, they are strongly coupled. Novel 
electronic structures result in strange stoichiometries, which 
also involve bizarre bonding schemes. As such, some exam-
ples will appear in multiple places, emphasizing different 
facets of their novelty.

3.1 � Electronic structures

Pressure can have a profound impact on the electronic struc-
ture of matter. Almost a century ago, Bernal proposed that 
all matter will become metallic upon sufficient compres-
sion—including hydrogen. Around ten years later, Wigner 
and Huntington further developed this idea, proffering 
25 GPa as an estimate of the pressure above which hydrogen 
would transform to a monoatomic metallic solid phase [187]. 
At ambient pressure, hydrogen exists as a diatomic mol-
ecule with a large energy gap between its highest occupied 
and lowest unoccupied molecular orbitals. Under applied 
pressure, hydrogen molecules are forced closer together, and 
bands are formed via orbital overlap. The increased orbital 
overlap induced by applied pressure raises the energy of 
the valence and lowers the energy of the conduction bands, 
eventually closing the gap between them. Concurrently, the 
inter- and intra-molecular H–H distances equilibrate to pro-
duce an equally spaced chain of hydrogen atoms – a state 
for which the top of the valence band and the bottom of the 
conduction band are degenerate in energy.

Experimental forays into metallizing hydrogen rapidly 
ascertained that the original suggested applied pressure of 
25 GPa was a gross underestimate [188–192]. At the same 
time theoretical studies sought to ascertain the high-pressure 
structural transitions of elemental hydrogen [28, 124, 125, 
193–195], uncovering complex crystal chemistry. Structures 
ranging from those that are layered, to ordered arrays of H 2 
molecules to monatomic arrangements (Fig. 3a) have been 
identified by computations. The search for metallic hydrogen 
has become something of a “holy grail” for the high-pressure 
research community, driving both theoretical and experi-
mental advances.
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The metallization of hydrogen is one example of how 
pressure affects electronic structure, and other remarkable 
consequences have been predicted or observed. For instance, 
contrary to the expectation that under pressure all materials 
should assume simple close-packed structures and become 
metallic, several elements go rogue. Around 200  GPa, 
sodium transforms into an insulating and transparent phase 
with a band gap of 1.3 eV [174, 198]. Theoretical predic-
tions, later corroborated by experimental work, found a loss 
of metallicity in Li above 70 GPa [199, 200]. What, then, 
has happened here?

As pressure increases, the electrons associated with an 
atom or ion occupy a smaller and smaller space, therefore 
their quantized energy levels increase in energy. An electron 
associated with a void or interstitial region in a crystalline 
lattice would experience the same rise in energy—except 
that such an electron, unlike a valence electron of an atom, 
would not have to maintain orthogonality to core electrons. 
The atom-centered electron then has less space in which it 
could move, resulting in a higher kinetic energy. At some 
point, it would be energetically preferable for an electron to 
occupy the interstitial spaces rather than the valence atom-
centered orbitals. This produces an interstitial quasiatom 
(ISQ), which possesses quantized energy levels for electrons 
[201–203], and just like atom-centered electrons the ISQ can 

participate in bonding and chemistry [203, 204]. The ISQ-
containing materials are electrides, which are well-explored 
under ambient conditions [205]. In the case of Na, under suf-
ficient pressure its 2p core orbitals start to overlap, squeez-
ing its valence 3s electrons into the interstitial sites (Fig. 3b) 
and rendering the phase insulating [174, 198], while in the 
case of Li it is the 2s electrons that are localized into inter-
stitial sites, with an array of structures predicted [121, 126, 
143, 186, 199].

A systematic investigation into the propensity towards 
ISQ formation used a helium “compression chamber” com-
prised of a supercell fcc lattice of He atoms whose unit cell 
parameters could be varied to simulate pressure. In this 
model the central atom was either left empty (to model an 
ISQ) or replaced with another element.[202] The orbital 
energies of the ISQ model could then be compared with 
those of the lone, compressed atom. Li and Na were found 
to favor the formation of an ISQ at the lowest pressure of 
any element, followed by Al and then Mg at much higher 
pressures. This study found that ISQ formation is favored 
for elements with lower ionization potentials (reflecting the 
potential facile loss of an electron to an interstitial region), 
with relatively incompressible core electrons. Moreover, 
because the energies of vacant d orbitals do not increase as 
rapidly as occupied s orbitals, ISQ formation was stymied 
via s → d electronic transfer in elements such as Cs [202].

This different rates of energy increase with pressure for 
atomic orbitals has consequences beyond favoring or disfa-
voring electride formation. Under pressure, s → p , s → d , 
s → f  , and d → f  electronic transitions drive strange behav-
ior across the periodic table.[206] For example, cesium 
becomes a d 1 metal by 15 GPa [207, 208]. With continuing 
pressure increases, the energetic reordering of Cs atomic 
orbitals causes a sequence of phase transitions until reaching 
Cs IV, a non-close-packed tetragonal structure, stable from 
4.3 to 12 GPa [209]. Similar to what we saw for Li and Na, 
Cs IV is categorized as an electride, with the maxima in the 
valence charge density found in the interstitial sites. Above 
70 GPa, a close-packed structure resurfaces with hybridized 
5p (semi-core) and 6d orbitals near the Fermi level [210].

The pressure-induced orbital reordering can also result 
in unusual oxidation states. Typically at ambient pressure, 
the oxidation states assumed by each element are dictated 
by their position on the periodic table relative to the noble 
gases—gaining or losing only so many electrons as needed 
to obtain a closed-shell configuration (or a half-filled d 
shell). Under pressure, though, the oxidation states of mer-
cury are predicted to diverge from the typical + 2 to + 3 
and + 4 in the mercury fluoride phases of HgF3 and HgF4 
(Fig. 3c) at 40 and 75 GPa, respectively [196]. In HgF4 , two 
Hg 5d electrons are used in forming bonds with four neigh-
boring F atoms along with the usual 6s valence electrons. 
Other predicted examples are the Li1−5 Cs phases, in which 

Fig. 3   High pressure alters the electronic structure of atoms in 
materials. Some of the fascinating compounds that have been pre-
dicted include: a I4

1
∕amd phase of metallic hydrogen, predicted ca. 

500 GPa with monatomic H (lines do not denote bonds, but serve as 
a guide to the eye) [125], b electride hP4 structure of Na, with ISQs 
present in void spaces [174], c HgF

4
 where Hg assumes a + 4 oxida-

tion state [196], and d Li
3
Cs, where anionic Cs takes on a charge that 

is less than −1 [197]
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the Cs atoms assume an oxidation state beyond −1 due to 
electron transfer from Li 2s to the Cs 5d orbitals [197]. 
The most negative charge on Cs is seen in Li3 Cs (Fig. 3d). 
Moreover, a series of CsFn compounds wherein the Cs 5p 
orbitals bond with the F 2p orbitals, allowing Cs to access 
charges larger than +1 have been studied [146]. The atypical 
electronic configurations available under pressure result in 
curious stoichiometries and structural motifs in these com-
pressed phases.

3.2 � Novel stoichiometries

At atmospheric pressure, one can usually deduce the stoichi-
ometry of a binary compound using typical oxidation states 
to deduce their relative ratios, e.g., Na+ and Cl− will form 
NaCl. However, under pressure the stoichiometry of com-
pounds can become very different from what is observed at 
ambient conditions, and some elements that are immiscible 
or nearly so at 1 atm might undergo compound formation.

For example, pressure opens to binary combinations of 
sodium and chlorine a range of stoichiometries beyond the 
simple 1:1: Na3Cl, Na2Cl, Na3Cl2 , NaCl3 , and NaCl7 have 
all been predicted to form under pressure, and Na3 Cl and 
NaCl3 have been synthesized [211]. As described in the pre-
vious section, cesium is a component of multiple compounds 
with atypical stoichiometries. At atmospheric pressure, CsF 
forms in the rock salt structure, with formal charges of + 1 
for Cs and −1 for F. Under pressure, computations have 
shown that the Cs 5d orbitals become higher in energy than 
the F 2p, allowing Cs to attain oxidation states up to + 3 in 
CsF3 and + 5 in CsF5.[146, 212] CsF2 and CsF4 stoichio-
metries with Cs in + 2 and + 4 oxidation states have also been 
predicted [213]. With Li, Cs has been computed to form 
Li1−5 Cs phases, with Cs taking on the anionic role—in line 
with predicted changes in the relative electronegativities of 
the alkali metals under pressure [197, 206].

A wide array of metal–hydrogen systems have been 
predicted to take on stoichiometries under pressure that at 
first may sound absurd. In the Li–H system, the LiH stoi-
chiometry, which is the only one stable at 1 atm, is joined 
by LiH2−8 [159] and Li4−9 H [167] phases under pressure. 
On the Li-rich side, two nearly isoenthalpic Li5 H structures 
with Cmc21 and Abm2 symmetry were predicted to be most 
enthalpically favorable [167]. Both are built of Li8 H build-
ing blocks that can be viewed as distorted bicapped trigonal 
antiprisms with Li atoms on the vertices and H atoms at 
the center (Fig. 4a). The Li8 H block can be thought of as a 
superalkali atom with one more electron than a closed-shell 
number of eight, similar to building blocks in suboxide com-
pounds such as Rb9O2 and Cs11O3 [214]. Since the electron-
egativity difference between Li and H is so large, electron 
transfer occurs from Li to H atoms, resulting in Li+ cations 
and hydridic hydrogen, with the extra electrons donated by 

Li treated as anions to balance the charge. The interactions 
within the Li8 H cluster are treated as ionic, with metallic 
bonding on the outside.

On the the hydrogen-rich side of the Li–H system, sev-
eral phases were found to be stable against decomposition 
into LiH and hydrogen, with LiH2 and LiH6 lying on the 
binary convex hull between 150 and 300 GPa [52, 159]. LiH2 
is semimetallic, with a lattice of Li+ cations and hydridic 
hydrogens combined with 1D chains of H 2 molecules. In 
LiH6 , electron transfer occurs from Li to H 2 units, such that 
each H 2 molecule carries 1/3 of a negative charge. This 
partially fills the H 2 �∗ antibonding bands, lengthening the 
intramolecular H-H distances. Motivated by theoretical 
predictions of the propensity of LiH6 to become supercon-
ducting [218], experimentalists successfully synthesized a 
lithium polyhydride compound above 130 GPa in a DAC 
[219]. It was suggested that Li diffuses into the the DAC 
during compression producing a layer of LiH6 between the 
diamond and the sample, and another layer of LiH2 between 
LiH6 and LiH. The predicted metallicity was not detected 
in experiments up to 215 GPa—however, later calculations 
using a van der Waals including density functional suggested 
that LiH2 , LiH7 and LiH9 may be candidate structures for the 
synthesized phases [220].

Many other metal hydrides with unusual stoichiometries 
have been predicted within DFT for MHn phases, with M 
= alkali metal and n ≥ 2 or M = alkaline or rare earth 

Fig. 4   Examples of strange stoichiometries that arise in compressed 
materials: a predicted Li

5
 H (Abm2) built from Li

8
 H subunits that 

behave as superalkali atoms [167], b synthesized MoBi
2
 in the CuAl

2
 

type, with square antiprisms of Bi containing Mo atoms [133], c syn-
thesized Pm3̄m phase of XeFe

3
 [215, 216], and d synthesized Fm3̄m 

Na
2
He, an insulating electride phase [217].
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metal and n > 2 [17, 18, 52, 134, 137, 139, 141, 160–166, 
221–225]. A major motivation for these studies was the 
suggestion that “chemical precompression”, achieved by 
doping hydrogen with other elements, would lower hydro-
gen’s metallization pressure and the subsequent onset of 
superconductivity [84, 226].

As with polyhydrides of Li, polyhydrides of Na were 
successfully synthesized in a DAC above 40 GPa and 
2000 K [227]. Experimental XRD patterns and Raman 
spectral peaks matched well with those predicted for NaH3 
and NaH7 phases, which possessed H −

3
 units [160, 227]. 

Several alkaline metal hexahydrides (for example, MgH6 
at 300 GPa [228], CaH6 at 150 GPa [137], SrH6 at 250 GPa 
[166, 222], ScH6 at 285, 300 and 350 GPa [17, 223, 224], 
YH6 at 120 GPa [17, 139, 229], ZrH6 at 295 GPa [225], 
and LaH6 at 100 GPa [17]) have been predicted to be 
good metals with almost free electron like DOS at the 
Fermi level. Therefore, it is not surprising that they were 
predicted to be superconducting with relatively high esti-
mated Tc values. Even higher Tc s have been predicted (and 
some have been observed) for the decahydrides YH10 [17, 
18] and LaH10,[14–18] as well as in CeH9 [134] and YH9

.[230]
Several elemental systems that are immiscible at 1 atm 

can form alloys under pressure. Li–Be is one of these, with 
no known binary alloys at ambient pressure. However, theo-
retical studies have predicted that between 20 and 200 GPa, 
several binary Li–Be phases including Li3Be, LiBe, LiBe2 , 
and LiBe4 become thermodynamically stable [231]. Their 
stabilization is proposed to occur through a Hume–Roth-
ery mechanism of Fermi sphere–Brillouin zone intersec-
tion.[232] A detailed analysis on the P21∕m LiBe phase 
reveals a unique structure comprised of alternating layers 
of puckered Li square nets and Be triangular nets. The two-
dimensionality of the Be layers—unexpected in a bimetallic 
alloy—is seen in a sharp, step-like peak in the electronic 
DOS at 82 GPa. The 2s electrons of Li join the Be layers 
as the Li 1s cores start to overlap, but the Be 1s cores, due 
to their smaller size, do not. It was proposed that the LiBe 
alloy, therefore, may be viewed as a manifestation of a Zintl-
type compound [233].

Bismuth is a component of several widely studied topo-
logical materials [234, 235] and superconductors [236, 237], 
but is immiscible at ambient pressure with many transition 
metals—to the point that bismuth has been used as a flux in 
ambient-pressure syntheses [238]. Under pressure, the situ-
ation changes substantially and binary phases of Bi with Fe 
[113, 239], Co [240], Cu [115, 116, 241], Mo [133], and Sn 
[114] have all been predicted and in some cases synthesized. 
MoBi2,[133] FeBi2 [113, 239], MnBi2 [242], and NiBi2 [114] 
(the Mn–Bi and Ni–Bi systems display some ambient-pres-
sure miscibility) all crystallize in the CuAl2 structure type 
shown in Fig. 4b that is adopted by several transition metal 

pnictides. Several of these phases are predicted [113, 115] 
or measured [240, 241] to be superconducting.

A number of phases containing noble gases, which are 
highly unreactive at 1 atm, can be stabilized under pressure. 
This may be key to understanding why the abundance of 
xenon on earth is much lower than would be expected based 
on its abundance in interstellar space, otherwise known as 
the “missing xenon paradox” [243]. Many studies have been 
carried out to solve this paradox [244]; some hypothesiz-
ing that the“missing xenon” could react with other elements 
under pressure.

Theoretical studies have predicted that Fe, Ni and O can 
form thermodynamically stable structures with Xe under 
pressure [175, 215, 245]. Both Xe–Fe and Xe–Ni phases 
were predicted to be stable above 200 and 250 GPa, respec-
tively, with their high-temperature stabilities validated under 
the quasiharmonic approximation [215]. Later experimental 
studies detected both XeFe3 (Fig. 3c) and XeNi3 alloys, as 
well as a mixed iron-nickel xenon compound [216, 246].

Additionally, a plethora of Xe–O phases including Xe2 O, 
Xe1,3,7O2 , and XeO3 were computed to be stable against 
decomposition into the component elements above 75 GPa 
[175, 245]. These studies suggest that the “missing Xe” 
might be trapped by the minerals containing oxygen that 
exist in the Earth’s lower mantle [245]. A recent theoretical 
study found that Xe can react with the newly discovered iron 
peroxide compound (FeO2 ) to form ternary compounds of 
xenon, iron, and oxygen with stoichiometries of Xe2FeO2 
and XeFe3O6 predicted at lower mantle conditions [247]. 
Xe–O interactions were found to be strong in these ternary 
compounds. No other noble gas elements were reactive 
with iron peroxide, suggesting that it might specifically be 
“blamed” for the missing xenon. Several other elements have 
been predicted to form compounds with xenon under pres-
sure, including magnesium [248], nitrogen [249], cesium 
[250], and yttrium [251], while compound formation has 
been experimentally observed when xenon is combined with 
water [252] and hydrogen [253].

Other noble gases are known to become reactive under 
pressure—compounds have been predicted for Ar with Ni 
[254], Li [255], and Mg [248]. Particularly exciting is a syn-
thesized Na2 He phase stable above 113 GPa in the fluorite 
structure (Fig. 3d) [217]. Subsequent theoretical studies 
uncovered compounds of Fe and He [256], He and ammo-
nia [257], and a ternary FeO2 He compound [258]. One study 
investigated the stability of alkali metal oxides or sulfides 
intercalated with He and Ne [259]. It has been proposed 
that helium can serve as something of an inert “spacer” in 
ionic compounds with unequal numbers of cations and ani-
ons [260]. Repulsions between the majority ions can prevent 
the formation of close-packed structures—in which case an 
added He atom provides relief in the PV energetic term—and 
the added He keeps the majority ions separated from one 
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another. Through this lens, the Na2 He phase, an electride, 
can be treated as a compound of (Na+)2 ⋅2e− with He.

3.3 � Structure and bonding

Increased densification promotes electron density overlap 
between neighboring atoms, which may react by adopt-
ing electron rich or electron poor multi-centered bonding 
schemes [22]. In his seminal work on chemical bonding, 
Pauling predicted that sufficiently large pressure would 
shorten the intermolecular hydrogen bonds in water mol-
ecules and elongate the intramolecular H–O bonds [261]. 
At some point, those two types of H–O bonds would then 
become equivalent, using the lone pairs on an oxygen atom 
to form bonds with the neighboring hydrogen atoms that 
are hydrogen-bound to oxygen at ambient pressure. This 
phenomenon has been observed in experiments for the ice 
X phase above 60 GPa, whose intra and intermolecular 
O–H bonds are symmetrized and form three dimensional 
networks resembling the diamond structure, leaving oxygen 
atoms four-coordinated [262, 263]. Several other hydrogen 
bond-containing systems have been found both experimen-
tally and theoretically to show similar bond symmetrizing 
behavior under pressure, including HF, HCl, HBr [264], and 
the metastable phase of Li–F–H [182].

Interesting structural motifs where multicentered bonds 
are formed are present in several predicted high pressure 
hydride phases [147, 161, 162, 165, 182, 265]. For example, 
the trihydrogen cation (H+

3
 ), a dominant interstellar mol-

ecule, maximizes the overlap of hydrogen bonding orbitals 
to form three-center two-electron bonds taking the shape 
of an equilateral triangle. The symmetric H +

3
 cluster occurs 

in the H 5 Cl phase that has been theoretically predicted to 
be stable from 60 to 300 GPa [147, 265]. Another ternary 
hydride phase that is metastable at 300 GPa, LiF4H4 , con-
tains a distorted version of this motif [182].

With two more electrons than the trihydrogen cation, the 
trihydrogen anion (H−

3
 ) has a linear geometry with three-

center four-electron bonds. The ground state configuration 
of the trihydrogen anion, based on ab initio calculations, 
shows a large difference between the two H–H bonds: 2.84 Å 
versus 0.75 Å [266]. The PES of this cluster has two wells 
containing two equivalent configurations, with the transi-
tion state at the peak of the energy barrier corresponding to 
the bond-symmetrized arrangement where both H–H dis-
tances are 1.06 Å. Hydrides of heavy group I (i.e., K [162], 
Rb [161], and Cs [163]) or group II (i.e., Ba [165]) met-
als display symmetric H −

3
 ions. For example, several nearly 

isoenthalpic CsH3 structures, all of which are built from Cs+ 
and H −

3
 , become the lowest enthalpy points on the convex 

hulls above 30 GPa [163]. Computational experiments have 
shown that the softness of the cation is related to the forma-
tion of symmetric H −

3
 anions under pressure [162].

The high pressure structures of metal hydrides present 
numerous curious bonding arrangements for hydrogen 
atoms. In the pressure-stabilized alkaline earth or rare metal 
tetrahydride MH4 phases [17, 18, 134, 137, 166, 222–224, 
267, 268], pressure can also induce elongation or even dis-
sociation of bonds [269]. These tetrahydrides assume the 
same I4/mmm structure (ThCr2Si2-type) that occurs in over 
700 AB2X2 compounds and consists of three parts: metal 
cations, hydridic hydrogen, and quasi-molecular hydrogen 
units (Fig. 5a). Charge transfer from trivalent or tetravalent 
metal atoms to the H 2 �u∗ bands can elongate or break the 
H–H bonds in the quasi-molecular units. Any still existing 
H–H bonds are further weakened by a Kubas-like interaction 
of electron transfer from the H 2 �g to the metal d orbitals, 
and metal d orbitals to the H 2 �u∗ states. This means that the 
H–H distance—which is related to the phases’ propensity 
towards superconductivity—within the quasi-molecular 
orbitals can be tuned by the choice of metal atoms and the 
applied pressure [269].

Other wild and wonderful hydrogenic motifs are plentiful 
among the metal hydrides; among the most iconic are the 
“clathrate-like” cages appearing in superconducting phases 
such as CaH6 [137]. Isostructural to YH6 [17, 18, 139], 
MgH6 [228], ScH6 [223, 224], and more, the body-centered 

Fig. 5   Structural motifs in materials at high pressures: a predicted 
and synthesized MH

4
 I4/mmm phases adopted by several alkaline 

earth and rare earth hydrides comprised of hydridic H (gray) and 
quasimolecular H 

2
 (yellow) units [269]; b predicted CsF

5
 (Fdd2) 

phase with lightly distorted planar pentagonal coordination environ-
ment of Cs reminiscent of the XeF

5
 molecule [146]; c predicted and 

synthesized BaGe
3
 (I4/mmm) phase adopted by several polar inter-

metallic compounds with polyhedra built up of tetrel dumbbells [270, 
271]
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lattice of CaH6 features Ca atoms at the centers of an H 24 
sodalite-like framework of six square and eight hexagonal 
faces. Electron donation from the Ca atom to the hydro-
gen sublattice has been postulated to populate a half-filled 
degenerate nonbonding state for an H 4 square unit, preclud-
ing condensation into H 2 molecular units but maintaining 
weak bonding character [137]. Similar weakly bound clath-
rate cages appear in MH9 phases such as CeH9 [134] and 
MH10 compounds including LaH10 [18]. The Sc–H family 
of high-pressure phases displays another strange structural 
motif: H 5 pentagons [223, 272]. These curious units appear 
joined together in strips in the ScH9 and ScH12 structures, 
where plots of the Electron Localization Function (ELF) 
confirm the presence of localized bonding [223]. In ScH10 
at ∼200 GPa two nearly isoenthalpic phases with Cmcm 
and P63∕mmc symmetry feature H 5 pentagons fused to one 
another in sets of three in a “pentagraphene-like” motif [223, 
272]. As with many other metal superhydride phases, the 
electrons donated from the metal atom (investigated for a 
hafnium analogue HfH10 ) go into antibonding orbitals of 
the hydrogen framework, weakening the H–H bonding and 
reducing H 2 molecular character.

Pressure-induced changes in the energy ordering of 
atomic orbitals can cause orbitals that would not normally 
participate in bonding to do so. One good example is CsH3 , 
where the Cs adopts a Cs+ configuration and the energy of 
the Cs 5p orbitals increases under pressure so they interact 
with the hydrogen s electrons [163]. In the CsF2−6 phases 
found above 10 GPa that are stable against decomposition 
into CsF and F 2 , the geometries and structural motifs mir-
ror the isoelectronic XeFn molecules [146]. For example, 
the building blocks of CsF5 (Fig. 5b) are pentagonal planar 
with Cs as the center atoms coordinated by five F atoms, as 
seen in XeF5 molecules [146]. At 100 GPa and high fluo-
rine content (F:Cs ratio ≥ 2), the oxidation state of Cs can 
increase almost linearly past +1 with increasing F content, 
according to Bader analyses. In CsF2 and CsF3 , covalent 
bonding was indicated between the Cs semicore 5p and F 
2p orbitals based on a crystal orbital Hamiltonian popula-
tion (COHP) analysis [273]. Thus, the pressure-reordering 
of orbital energies has serious consequences on the possible 
bonding interactions between cesium and fluorine atoms, 
allowing inner-shell electrons to actively participate.

A series of polar intermetallic compounds MA3 , where M 
is an alkaline earth or rare earth metal and A is a group 14 
tetrel element, adopt an I4/mmm structure that only becomes 
stable under high pressure. In this structure, found in CaGe3 
[274], CaS3 , YSi3 , and LuSi3 [275], and predicted prior to 
its synthesis for BaGe3 [270, 271], the tetrel atoms form a 
condensed lattice of A–A dumbbells, which is layered with 
the metal atoms (Fig. 5c). Investigations using the electron 
localizability indicator or the COHP show covalent bond-
ing within the tetrel dumbbells and multicenter interactions 

between the metal atom and the tetrel sublattice [271, 274, 
275]. Several of the phases were predicted to become Bar-
deen–Cooper–Schrieffer (BCS) conventional superconduc-
tors below 10 K according to first-principles calculations 
[271, 274, 275]. Furthermore, some of the phases could be 
recovered at ambient conditions. The strong bonding net-
works formed under pressure protect against decomposition 
as the pressure is released, since large amounts of energy 
would be required to break the bonds. In this way, high-
pressure high-temperature techniques can be successfully 
used to synthesize compounds with increased coordination 
components that do not align with electron-precise counting 
schemes such as the Zintl concept [233].

3.4 � Superconductivity

The propensity for superconductivity is one of the proper-
ties that is significantly affected by the pressure variable. 
At least 23 elements undergo superconducting transitions 
under pressure [276], and the Tc itself depends greatly on 
pressure for superconducting elements and compounds alike. 
The material with the highest 1 atm Tc , HgBa2Ca2Cu3O8 , is 
an unconventional superconductor whose Tc of 133 K can 
be increased further to 164 K at 31 GPa [277]. For over 
20 years, this compound had the highest critical tempera-
ture known, until a record-breaking 203 K was measured at 
150 GPa in the sulfur–hydrogen system [278].

Hydrogen-rich compounds have become a target for pur-
suing high temperature superconductivity under pressure 
as a proxy for metallic hydrogen itself. The reason for this 
stems from Ashcroft’s proposal that the addition of another 
element to hydrogen could reduce the required pressure for 
transitioning into the superconducting state through “chemi-
cal pre-compression” [84, 193, 279]. Herein, we overview 
several recent examples of high pressure hydrides with 
remarkable Tc values, and also illustrate how the successful 
synergy between theoretical predictions and experimental 
synthesis led to their discovery.

Previous theoretical studies [12] that estimated the super-
conducting properties of compounds with the H 2 S stoichi-
ometry at high pressure using the Allen-Dynes-modified 
McMillan equation [280] identified a phase with an esti-
mated Tc of 80 K at 160 GPa. Motivated by this predic-
tion, experimental work proceeded, resulting in a phase 
with measured Tc below 100 K in good agreement with the 
expected values [278]. However, when the sample was pre-
pared at higher temperatures above 300 K, a material with a 
record-breaking Tc value of 203 K at 150 GPa was synthe-
sized instead [278].

In a parallel set of studies, another group of research-
ers had previously synthesized an (H2S)2H2 phase above 
3.5 GPa [10]. This work inspired a follow-up theoretical 
investigation that identified a series of structures with the 
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H 3 S stoichiometry at higher pressures, including an R3m 
phase with a Tc of 155-166 K at 130 GPa [11]. At even 
higher pressures, this structure was predicted to transform 
to a related Im3m phase (Fig. 6a) whose Tc was estimated 
as 191–204 K at 200 GPa—in line with the experimental 
results of Ref [278]. Subsequent XRD analysis suggested 
that the superconducting sample contained a mixture of the 
two predicted phases along with the �-polonium phase of 
sulfur [281]. The high Tc was later confirmed by the Meiss-
ner effect [282], and an optical reflectivity experiment cat-
egorized the hydrogen sulfide material as a conventional 
BCS superconductor whose superconductivity arises from 
electron–phonon coupling [283].

The exciting work on H 3 S prompted a slew of investi-
gations into the compositions and structures of the super-
conducting phases, the factors that contribute to Tc , the iso-
tope effect, the importance of anharmonicity, and the role 
of hydrogen’s quantum nature [109, 111, 284–302]. For 
example, one theoretical investigation concluded that the 
decomposition of the Im3m phase into (SH−)(H3S+ ) perovs-
kites is favorable [303]. First-principles molecular dynamics 
(MD) simulations at 200 GPa and 200 K suggested that this 
perovskite phase can be further separated into tetragonal 
and cubic regions, and the resulting MD structure produces 

an XRD pattern in good agreement with the experimental 
observations [304].

The high Tc of H 3 S phases also inspired multiple stud-
ies on ternary systems based on adding a third element to 
the S–H system. The electronic structure of H 3 S features a 
maximum in the electronic DOS near the Fermi level due to 
the presence of a pair of van Hove singularities on either side 
[292, 296]. Tuning the electronic structure via doping with 
another element could shift the Fermi level to lie directly on 
the maximum, strengthening the electron-phonon coupling 
and raising the Tc of the system.

In one study, currently in the spotlight, a carbonaceous 
sulfur hydride with a measured Tc of 288 K at 267 GPa was 
reported [305]. More recent XRD analysis suggests that this 
phase is a derivative of the Al2 Cu type [306, 307]. Before the 
experimental discovery of the carbonaceous sulfur hydride, 
structure predictions had actually been carried out on various 
carbon-doped sulfur hydride stoichiometries: C 1−2S1−2H1−8 
up to 300 GPa [87], and C 1−4S1−4H1−36 at 100 GPa [308]. A 
stoichiometry of CSH7 emerged as particularly interesting 
in the calculations. A number of metastable phases arising 
from the intercalation of methane molecules into the H 3 S 
framework (Fig. 6b) were found. The estimated Tc s for the 
predicted CSH7 structures fell well below that measured 
for the carbonaceous sulfur hydride (194 K at 150 GPa and 
181 K at 100 GPa), and their calculated equations of state 
also did not match the experimental C–S–H data. A first-
principles investigation using the virtual crystal approxima-
tion (VCA), which employs pseudoatoms based on weighted 
potentials of different elements to model doping, found that 
a small amount of carbon incorporation into the H 3 S lattice 
was sufficient to increase the estimated Tc to 288 K [309]. 
However, the VCA method disregards local chemical struc-
ture and bonding. Therefore, a more recent theoretical study 
was carried out on supercells of H 3 S doped with 1.85–25% 
carbon (interpreted as SH3 → CH3 , producing six- or four-
coordinate C, or SH3 → CH4 , producing four-coordinate C) 
[310]. Contrary to results obtained with the VCA, it was 
found that the doping lowers the DOS at the Fermi level, 
but increases the logarithmic average phonon frequency. 
The most promising phase for which Tc could be explicitly 
computed, CS3H13 , was predicted to possess essentially the 
same Tc as R3m H 3 S at 270 GPa. It was postulated that the 
most promising stoichiometries for high-Tc were CS15H49 or 
CS53H163 , but explicit calculations could not be performed 
due to the system size.

Besides sulfur, hydrides of another p-block element 
have inspired interest. After loading phosphine into a DAC, 
researchers observed the onset of superconductivity at 30 
and 103 K at 83 and 207 GPa, respectively [311]. Follow-
up theoretical studies appeared quickly, since the structural 
and electronic properties of the superconducting phospho-
rus compounds were not fully characterized [108, 168, 

Fig. 6   Selected high-temperature superconducting hydrides that 
have been calculated to be stable or metastable at high pressures: a 
Im3̄m H 

3
 S, the first high-temperature superconducting hydride that 

was synthesized [11, 278], b R3m CSH
7
 , one example of a predicted 

ternary superconducting hydride  [87], c LaH
10

 , the clathrate-like 
hydride with the highest experimentally measured T

c
 [15, 16], and d 

Li
2
MgH

16
 , a predicted ternary superhydride with an immensely high 

predicted T
c
 of 473 K [140]
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312–314]. Predictions suggested that compression caused 
phosphine to decompose, with the measured superconduc-
tivity arising from some combination of PH, PH2 , PH3 , and 
other metastable phosphorus hydrides [108, 168, 313, 314]. 
In one example, an I4/mmm PH2 phase had an estimated Tc 
of 70 K at 200 GPa [168], increasing to 78 K at 220 GPa 
[108]. At lower pressures, PH2 phases were found to be 
metastable, with enthalpies of formation and Tc values in 
line with the experimental observation at 83 GPa [314]. A 
unique structure comprised of cubic-like phosphorus lay-
ers capped by hydrogen atoms at the top and bottom layers 
and further separated by layers of molecular hydrogen was 
observed. Interestingly, the superconductivity was mainly 
derived from the P-H layers, while the neutral and mobile 
H 2 layers served to stabilize the structure by separating the 
negatively charged H atoms.

Meanwhile, prior to the discovery of the carbonaceous 
sulfur hydride, the high Tc record of H 3 S was broken by 
another class of high pressure hydrides: binary combina-
tions of hydrogen with alkaline and rare earth metals with 
the hydrogen atoms arranged in clathrate-like cages, as 
described in the previous section [15, 16]. Experimental 
measurements on Fm3̄m LaH10 detected Tc values as high as 
250 K [15] and 260–280 K [16].

Theoretical investigations had previously predicted the 
stability of this phase (Fig. 6c) with La atoms occupying 
fcc positions on a cubic lattice surrounded by an H 32 clath-
rate-like cage [17, 18]. An isotypic yttrium analogue has 
also been predicted, with a Tc of 305–325 K at 250 GPa 
calculated via numerical solution of the Eliashberg equa-
tions [18], but such a phase has not yet been experimentally 
obtained. A ternary structure synthesized by mixing La and 
Y into the Fm3̄m lattice has demonstrated Tc up to 253 K at 
183 GPa, where the addition of La is thought to stabilize the 
YH10 framework [315]. In addition, other ternary hydrides 
with impressive predicted Tc s and pressure stability ranges 
have been identified, including a metastable Li2MgH16 phase 
(Fig. 6d) that is predicted to be a “hot” superconductor with 
a Tc ∼473 K at 250 GPa [140]. A family of phases based on 
adding a third element into void spaces of the MH10 lattice, 
resulting in stoichiometries such as LaBH8 [183, 316] and 
KB2H8 [317] show promise in maintaining stability to pres-
sures below a megabar. These discoveries are paving the 
way to warm and light superconductivity at more readily 
accessible pressures.

4 � Conclusion

For the vast majority of us who have never left Earth’s sur-
face, the only way in which we adjust our lives to account 
for the effects of pressure is to adapt cooking recipes to 
account for water boiling at a lower temperature at high 

altitudes. From the top of Mount Everest to the bottom 
of the Mariana Trench, the pressure difference is roughly 
only a tenth of a gigapascal. The development of experi-
mental techniques to access successively higher pressures, 
coupled with a dramatic improvement in theoretical meth-
ods and computational power has allowed researchers to 
explore materials at extreme high pressure conditions. In 
many cases, this has led to the discovery of a profoundly 
different chemistry.

High pressure alters the relative orbital energies of atoms, 
driving electronic transitions within atoms and ultimately 
resulting in unfamiliar, let us call it extreme, chemistry. In 
some cases, valence electrons compressed into void regions 
become interstitial quasiatoms, while in others the energies 
of core orbitals increase enough to partake in bonding and 
chemistry. Elements that are stubbornly immiscible with 
one another, or are just plain unreactive, under atmospheric 
conditions form compounds at high pressures. Unfamiliar 
structures can emerge, from extended 3D networks of hydro-
gen [137] to lattices of tetrel dumbbells [274] to pentagonal 
planar CsF5 units [163] (with Cs taking on a charge > +1 
to boot!).

Experimental methods to synthesize and probe such 
strange phases have advanced greatly, with improvements 
in diamond anvil cells including toroidal [3, 5] and dou-
ble-stage diamond anvil cells [318], as well as in dynamic 
compression experiments [7, 8] accessing higher and higher 
pressures. Theoretical methods remain closely intertwined 
with experiment, providing guidance on promising systems 
to investigate and elucidating the structural and electronic 
character of the phases that are found.

Crystal structure prediction (CSP) techniques have proven 
immensely useful in helping researchers begin to develop 
chemical intuition under pressure. Ranging from methods 
that finely explore particular regions of a PES (e.g., meta-
dynamics and minima hopping) to those that promote broad 
exploration (e.g., random searches, particle swarm optimiza-
tion, and genetic algorithms), CSP has been used to identify 
a plethora of new phases. The synergy between experiment 
and theory is evident in the rapid progress made in the field 
of high-temperature superconductivity in the hydrides, 
beginning with the discovery of the record-breaking H 3 S 
and LaH10 phases. Experimental reports of room-temper-
ature superconductivitiy in a C–S–H phase has inspired 
numerous studies. Complex phases combining three, four, 
or even more elements and strange chemical behavior await 
to be uncovered as researchers further explore this fascinat-
ing field.
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