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Abstract
A novel recursive multi-scale modeling is developed for the purpose of predicting the burst pressure in filament wound 
composite pressure vessels. The modeling covers all scales of micro, meso and macro and the unavoidable imperfections 
associated with fiber arrangement during the filament winding process are taken into account. The modeling starts from the 
scale of micro where fiber spacing and fiber contiguity are simulated. Then at the scale of meso as an in-between scale, the 
influence of fiber-bundle undulation, crossovers and overlaps are captured. At the final scale of macro, the distribution of 
stress/strain on each layer is analyzed. After accomplishment of bottom-up modeling, a top-down modeling is implemented. 
The obtained stress/strain are downscaled from macro to meso and from meso to micro to extract individual stress components 
on fiber and resin. The failure occurrence is investigated using micro-failure criteria and progressive damage modeling. The 
recursive modeling procedure repeats till the complete failure of the vessel.

Keywords  Filament winding · Multi-scale modeling · Manufacturing inconsistencies · Computational modeling · 
Progressive damage modeling

1  Introduction

Cleanness, high efficiency in comparison with fossil fuels, 
and rational cost are the main reasons that hydrogen energy 
has recently received much more attention among various 
eco-friendly energy sources from industrial sectors and 
academic community. Global warming concerns and the 
necessary requirements of avoiding greenhouse gas emis-
sion are the most important motivations for replacing fossil 
fuels with hydrogen. Various ways of storing hydrogen are 
polymer and composite foams [1], liquid storage tanks [2], 
metal hydrides [3] and gaseous high-pressure vessels [4]. 
Currently, the most prominent storage method of hydrogen 
for the purpose of commercial applications is recognized as 
high pressure gaseous hydrogen storage.

Excellent resistance to corrosion, high strength-/stiffness-
to-weight ratio and more importantly prolonged service life-
time against cyclic loading are the unique characteristics of 

composite pressure vessels. Hence, the application of Type 
III and Type IV of composite pressure vessels is rapidly 
increasing in the field of high-pressure storage and trans-
portation of hydrogen.

The cost reduction of hydrogen storage is a key issue 
for the economical and extensive deployment of hydrogen 
energy in large scale. This can be accomplished through the 
appropriate structural design of the composite vessels. The 
safe and at the same time inexpensive structural design of 
composite pressure vessels is in need of the proper under-
standing of its mechanical behavior.

The ultimate strength of a composite pressure vessel 
determined by failure pressure plays an essential role in 
the structural integrity of the vessel during service. Conse-
quently, accurate prediction of the failure pressure in com-
posite pressure vessels is viewed as the basic requirement 
of safe design.

Predicting the burst pressure of composite pressure ves-
sels relying on computational modeling has been the main 
streamline of various studies. Since the burst pressure is 
associated with occurrence of last-play-failure, combining 
various failure criteria with material degradation rules in 
the form of progressive damage modeling (PDM) was the 
main core of some investigations [5–15]. A few studies have 
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been performed to investigate the influence of manufactur-
ing parameters consisting of fiber volume fraction, strength, 
fiber packing and winding angle on the burst pressure and 
thus stochastic modeling was conducted [16–19]. Among 
them, stochastic or probabilistic studies have performed cap-
turing the influence of manufacturing-induced uncertainties 
on the burst pressure of composite pressure vessels [17, 18]. 
From the open literature, it is evident that less attention has 
been paid to the imperfections arisen from fiber distribution 
patterns in the filament winding process. Limited studies 
have focused on analyzing the influence of fiber distribution 
imperfections on the effective properties of filament wound 
vessels without predicting the burst pressure [20, 21].

2 � Problem statement

The main objective of this research is to predict the burst 
pressure of a composite pressure vessels taking into account 
fiber crossovers, undulation and overlaps. For this purpose, a 
recursive multi-scale modeling is developed covering scales 
of micro, meso and macro. The effect of fiber packing and 
contiguity at micro-scale and the influence of fiber crosso-
vers and undulation on the macro-scale stress are studied. 
Then, obtained stress at the level of laminate (macro-scale 
stress) are fed back into meso-scale and then to the micro-
scale. Therefore, micro-stress components imposed on fiber 
and resin are extracted, separately. The failure of the pres-
sure vessel is studied at the scale of micro using proper 
micro-level failure criteria.

Motivated by experimental observations carried out by 
Wang et al. [14, 15], the case study is performed on the 
Type-III composite over-wrapped pressure vessel (COPV) 
with Aluminum liner. The diameter of the COPV is 185 mm 
and the thickness of liner is 2.5 mm. The filament wound 
lay-up configuration of the vessel is [90/±12/±15/±19/90
/±22/±27/±32/±38/90] and the fiber volume fraction was 
reported as 62%. Carbon fiber has elastic modulus of 277 
GPa, Poisson's ratio of 0.3, tensile strength of 4150 MPa and 
compressive strength of 2075 MPa. The utilized epoxy resin 
has Young's modulus of 3 GPa and the Poisson's ratio of 0.4 
with tensile and compressive strengths of 105 MPa and 241 
MPa, respectively. COPV was subjected to the increasing 
internal pressure with the rate of 0.2 MPa/s and the burst 
pressure was observed as 95~98 MPa [17].

3 � Developing recursive multi‑scale 
modeling

The overall roadmap of the recursive multi-scale modeling 
for the purpose of predicting burst pressure of COPV captur-
ing the imperfections associated with fiber distribution and 
winding patterns is shown in Fig. 1. The outputs of each 
scale are used as the input of the very next scale during 
a bottom-up approach and results of the stress analysis at 
each scale is used as the constraints of the preceding scale 
in a top-down procedure. The failure is examined at the 
scale of micro and thus it is required to extract the induced 
stress at this scale. If failure occurs at the scale of micro, 

Fig. 1   Overview of recursive multi-scale modeling
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the mechanical properties of fiber and resin are degraded 
properly based on continuum damage mechanics. Thus, the 
bottom-up and top-down modeling approaches are recur-
sively repeated in an integrated framework till no load more 
loading can be tolerated by the COPV. The details of the 
employed strategy and utilized modeling are present in the 
proceeding sections.

4 � Bottom‑up modeling

4.1 � Micro‑scale modeling

The modeling starts from the scale of micro by selecting 
proper representative volume element (RVE). For the pur-
pose of capturing fiber spacing and fiber contiguity, those 
types of micro-scale RVEs containing multiple fibers are 
required to be chosen instead of the RVEs accommodating 
single fiber. The chosen micro-scale RVEs are schemati-
cally shown in Fig. 2. Commercial Abaqus FE package is 
employed to construct the FE models of the micro-scale 
RVEs. Solid elements are used and the dimensions of the 
FE models are chosen in a manner to resemble the same 
fiber volume fraction of the COPV chosen for case study (i.e. 
62%). Perfect bonding is assumed between fiber and resin. 
Constructed FE models of the micro-scale RVE are sub-
jected to the proper periodic boundary conditions (PBC) and 
loadings detailed in Appendix A. Thus, effective mechanical 
properties of the micro-scale RVE are extracted.

4.2 � Meso‑scale modeling

At the scale of meso, winding pattern is aimed to be consid-
ered. Designated by ±θ, the winding of each helical layer is 
accomplished through the numerous and certain numbers 
of circuits as shown in Fig. 3. Each circuit is also shaped 
by two successive passages of fiber bundles. The number of 

required winding circuits for completing a cross ply can be 
calculated using following formulation [20]:

where D is the diameters of the cylinder, w stands for the 
bandwidth of the fiber bundle and θ is the winding angle.

Reciprocal winding process of helical layers intrinsically 
induces fiber bundle crossovers and undulation. These geo-
metrical imperfections have considerable effect on the effec-
tive properties of the layers. Undulations are formed as a 
consequence of fiber bundle intersections in the crossover 
regions.

Therefore, undulation appears because of fiber bundle 
overlaps in the crossover regions after two sequential pas-
sages of the fiber for the completion of a circuit. Introduced 
fiber undulation is not exclusively associated with filament 
winding process, but they also appear in woven and braided 
composites. Unfolding the filament wound tubes to a plane 
rectangle, a series of repetitive diamonds can be observed 
as shown in Fig. 3. The aforementioned diamonds can be 
viewed as a meso-scale repeated unit cell (RUC) addressing 
fiber bundle undulation.

The cross-section of the fiber bundle includes a rectangle 
with two wings at both ends based on the microscopic obser-
vations by Rousseau et al. [22] on the specimen cut from 
the filament wound cylinder. Depicted in Fig. 4, the shape 
of the end wings at assumed fiber strips can be described as 
below [20]:

When two fiber bundles with the same orientation are 
placed adjacent to each other, wing parts will overlap. Thus, 
the effective bandwidth of the assumed fiber bundle shape 
is equivalent to 2a + b. Thus Eq. (1) is reformed as below:

(1)n =
�D cos �

w

(2)y =
h

2

[
1 − cos

(
x

b
�

)]

Fig. 2   Micro-scale RVEs accounting for fiber spacing and fiber contiguity
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Fig. 3   Formation of fiber undu-
lation during filament winding 
process

Fig. 4   Fiber bundle cross section and meso-scale RUC​
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Thus, a, b, θ and n as four independent parameters 
describe the geometrical shape of the meso-scale RUC.

Indicated in Fig. 4, the meso-scale RUC is partitioned 
into three different types of constitutive blocks designated 
by A, B and C. These meso-blocks are specified as: (A) The 
crossovers with three layers, (B) the crossovers with four 
layers and (C) uniform segment without undulation [22]. 
Therefore, 3-D modeling of the RUC block is carried out 
through the following steps:

1)	 Creating meso-blocks A, B and C with the dimensions 
of a×b×2h, b×b×2h and a×a×2h

2)	 Defining the required numbers of each meso-blocks 
based on the number of winding circuit (i.e., n)

3)	 Positioning of each meso-block at the appropriate place 
in the meso-scale RUC​

A computer code is written using Python to perform 
abovementioned tasks for any arbitrary winding angle.

Due to the complex configurations of the meso-blocks, 
especially types A and B, tetrahedral element is used for 
constructing the FE model of the meso-scale RUC. Extracted 
mechanical properties at the scale of micro (Sect. 4.1) are 
assigned to the fiber bundles in the meso-scale blocks as 
input data of the scale of meso. Constructed FE model for 
blocks A and B is shown in Fig. 5. Due to the periodic nature 
of the meso-scale RUC, its effective properties are obtained 
using periodic boundary conditions as detailed in Appendix 
B.

(3)n =
� cos �

2a + b
D

4.3 � Macro‑scale modeling

At the scale of macro, full-scale FE model of the investigated 
COPV is constructed. The liner of the COPV is constructed 
using cubic solid element (C3D8R) and presented stress-strain 
curve in Fig. 6 is considered as its constitutive behavior [15]. 
Composite overwrapped layers are built using continuum shell 
elements (SC8R) on the outer surface of the liner.

Mechanical properties of each pair of helical layer are 
the outputs of performed analyses at the preceding scale of 
meso. The model is subjected to a uniform internal hydro-
static pressure. All degree-of-freedoms of a nipple node on 
one cap are fully restricted to avoid rigid body motion. A cut 
view of the constructed FE model of the COPV is provided 
in Fig. 6. The output of the macro-scale analysis is the dis-
tribution of stress/strain components for each ply.

5 � Top‑down modeling

Obtained stress/strain distributions at the uppermost scale 
of the macro in the bottom-up modeling are scaled down to 
extract micro-stress components on fiber and resin, sepa-
rately. The applied stress to each layer is read as the output 
of the macro-scale FEA and applied to the FE model of the 
meso-scale RUC as boundary conditions. Thus, stress com-
ponents in meso-scale RUC are extracted. Then, the meso-
scale stress components are scaled down to the micro-scale 
to obtain the stress distribution on the micro-scale RVE. 
Inspired from the developed generalized method by Jin et al. 
[23], the stress components can be scaled down to micro-
scale using below formulation:

Fig. 5   Constructed FE models 
for meso-block types A and B

Fig. 6   Stress-strain curve of the Aluminum liner and constructed FE model of the COPV
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where σ is micro-stress and � is the stress at higher scale. 
M� and A� are stress magnification factors and thermal effect 
coefficients, respectively. ΔT  also denotes temperature vari-
ations. For the purpose of this study, thermal variation is not 
considered and thus the second part of Eq. (4) is ignored. 
Stress magnification factors are formed as below [23]:

For deriving the components of M� matrix, one unity 
stress is applied to the FE model of the micro-scale RVE. 
In the meantime, others stress components are zero and 
proper boundary conditions are also applied for each case 
of loading. The details of applied boundary conditions and 
loading for obtaining the components of M� matrix is out-
lined in Appendix C. After extracting M� for each micro-
scale RVE, then micro-stress components can be obtained 
using reduced form of Eq. (4). After obtaining the overall 
micro-stress distributions on micro-scale RVE, the aver-
age of individual micro-stress components acting on fiber 
and resin are obtained. It should be emphasized that the 
explained procedure for obtaining stress magnification fac-
tors is implemented once for each shape of micro-scale RVE 
and obtained components of M� matrix is used in all stages.

Now, having in hand the micro-stress components acting 
on fiber and resin, the occurrence of failure at micro-scale is 
examined. The failure criteria for identifying failure initia-
tion in fiber is used as below [24]:

where Cf  and Tf  stand for compressive and tensile strengths 
of fiber, respectively. �f1 denotes longitudinal stress in fiber.

Treating matrix as an isotropic material, the initiation of 
failure in matrix is identified using below failure criterion 
[24]:

where Cm and Tm are compressive and tensile strengths of 
matrix. I1 is also first stress invariant and σvm stands for von-
misses stress in matrix at the scale of micro.

(4)� = M�� + A�ΔT

(5)M� =

⎛⎜⎜⎜⎜⎜⎜⎝

M11 M12 M13 M14 0 0

M21 M22 M23 M24 0 0

M31 M32 M33 M34 0 0

M41 M42 M43 M44 0 0

0 0 0 0 M55 M56

0 0 0 0 M65 M66

⎞⎟⎟⎟⎟⎟⎟⎠

(6)−Cf < 𝜎f1 < Tf

(7)
�2
�m

TmCm

+

(
1

Tm
−

1

Cm

)
I1 = 1

After occurrence of failure either in fiber or matrix, 
applying more loading is resulted in degradation of mechani-
cal properties in the context of continuum damage mechan-
ics [25]. The material degradation model is chosen as linear 
energy-based softening law as below [25]:

where �eq and �eq for fiber and resin are calculated using fol-
lowing formulations [25]:

where lc is characteristic length of the utilized element in 
Abaqus commercial FE package [25]. For fiber failure, the 
failure energy is taken as fracture toughness of composites 
along fiber, whilst for matrix failure, the failure energy is 
obtained using mixed-mode fracture energy as below [25]:

where Gnc and Gsc stand for transverse normal toughness 
and transverse shear toughness, respectively. Gns and Gsc 
are assumed as 0.28 and 0.79, respectively [15]. Gn and Gs 
are normal fracture toughness and shear fracture toughness, 
respectively and obtained using below formulations [26]:

Finally, damage variables for fiber and resin are expressed 
as below [26]:

Inserting corresponding values for fiber and matrix in 
Eq. (8), damage variable for fiber (df) and resin (dm) are 
obtained, accordingly. In Eq. (13), �0

eq
 is equivalent displace-

ment at failure initiation and �feq is equivalent displacement 
at final failure. Thus, corresponding constitutive laws for 
fiber damage and matrix damage are mentioned in Fig. 7.

The constitutive laws for a cohesive zone can be catego-
rized as initially elastic or initially rigid. For the case of 
initially elastic rules, the traction is zero at zero separation 
and then it increases with increasing separation till a maxi-
mum value and then it diminishes and approached to zero. 

(8)GC =

∞

∫
0

�eqd
(
�eq

)

(9)�eq
|||f = lc�11, �eq

|||f = lc
(
�11�11

)/
�eq

|||f

(10)�eq
|||m = lc

√
�2
22
+ �2

12
+ �2

23
, �eq

|||m = lc
(
�22�22 + �12�12 + �23�23

)/
�eq

|||m

(11)Gc = Gnc +
(
Gsc − Gnc

)( Gs

Gn + Gs

)�

(12)Gn =
1

2

(
�22�22

)
lc,Gs =

1

2

(
�12�12 + �23�23

)
lc

(13)d = 1 −

�0
eq

(
�
f
eq − �eq

)

�eq

(
�
f
eq − �0

eq

) �0
eq
≤ �eq ≤ �f

eq
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In the case of initially rigid cohesive laws, the surfaces sub-
jected to separation remain in contact till a critical traction 
is reached [27, 28]. Afterward, the traction decreases to zero 
with growing separation. In this specific study, initially elas-
tic cohesive laws are employed.

After obtaining the damage variables associated with 
fiber and resin, the mechanical properties are degraded using 
below relation [26]:

where df and dm are obtained using Eq. (13) as independent 
damage variables, while ds is obtained using below formula-
tion [26]:

Some advanced multi-sale modeling techniques have been 
already developed for the purpose of predicting fracture of 
composites [29–31], however, in this article the developed 
recursive multi-scale modeling is categorized under the con-
tinuum damage mechanics framework.

6 � Implementing recursive multi‑scale 
modeling

The explained bottom-up modeling and top-down modeling 
are integrated in an unitized modeling using a written code 
with Python. The flowchart of the whole modeling procedure 
is provided in Fig. 8.

(14)Cd =

⎛
⎜⎜⎜⎜⎜⎜⎝

�
1 − df

�
C11

�
1 − df

��
1 − dm

�
C12

�
1 − df

��
1 − dm

�
C13 0 0 0�

1 − dm
�
C22

�
1 − dm

�
C23 0 0 0�

1 − dm
�
C33 0 0 0�

1 − ds
�
C44 0 0

sym
�
1 − ds

�
C55 0�

1 − ds
�
C66

⎞⎟⎟⎟⎟⎟⎟⎠

(15)ds = 1 −

(
1 − d

f

)(
1 − d

m

)

First of all, mechanical properties of the micro-scale 
RVE are extracted taking into account fiber contiguity and 
fiber spacing. The results of obtained mechanical proper-
ties through FE modeling of micro-scale RVEs in compari-
son with outputs of simple micromechanics rules are pre-
sented in Table 1. The comparison clearly shows the degree 
to which fiber contiguity and fiber spacing can affect the 
mechanical properties, since aforementioned phenomena 

are not considered using micromechanical rules at all. As 
it can be seen the maximum discrepancy of the results with 
micromechanics rule is associated with the micro-scale RVE 
with 65º-fiber arrangement. This specific micro-scale RVE 
and also the outputs of micromechanical rules are chosen for 
the remaining of the analysis. It should be pointed out that 
rule of mixture is used for obtaining longitudinal modulus 
and Poisson’s ratio, whilst Halpin-Tsai rule is employed for 
predicting shear modulus [32].

The obtained mechanical properties of the micro-scale 
RVE are fed as input data to the meso-scale RUC. Proper 
meso-scale RVEs are generated for each winding angle 
capturing fiber bundle overlap/undulation/crossovers as 
the effective parameters of meso-scale. Then, the effec-
tive properties of meso-scale RUC are extracted through 
FEA. Full-scale FE model of the COPV is constructed at 
the scale of macro. The COPV is subjected to internal pres-
sure and induced stress are extracted. The obtained stress 
distributions at the scale of macro are downscaled to the 

Fig. 7   Constitute laws for fiber (left) and matrix (right)



	 R. Rafiee, A. Salehi 

1 3

388  Page 8 of 14

Fig. 8   Flowchart of the developed recursive multi-scale modeling
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scale of micro and the occurrence of failure is examined 
at the micro-scale. If no failure is experienced, the whole 
procedure repeats with increased internal pressure from the 
beginning. If failure is experienced, the mechanical proper-
ties of the microscale RVE are degraded accordingly and 
the modeling is restarted from the scale of micro. The whole 
procedure repeats several times till COPV cannot undergo 
any more loading implying on the complete failure.

Implementing the developed recursive multi-scale mode-
ling, the burst pressure of the investigated COPV is obtained 
as 93.8~95.3 MPa which in excellent agreement with experi-
mentally measured 95~98 MPa [15].

7 � Conclusion

A novel multi-scale modeling is developed for predicting the 
burst pressure of filament wound composite pressure vessel 
taking into account manufacturing-induced inconsistencies. 
Unlike conventional multi-scale modeling where involved 
scales are proceeded in a one-way manner, the modeling 
takes place through recursive multi-scale modeling. The 
effect of fiber spacing and contiguity at micro-scale and the 
influence of fiber crossovers, undulation and overlaps on 
the macro-scale stress are studied. Then, obtained stress at 
the level of laminate (macro-scale stress) are fed back into 
meso-scale and then to the micro-scale. Therefore, micro-
stress components imposed on fiber and resin are extracted, 
separately. The failure of the pressure vessel is studied at 
the scale of micro using proper micro-level failure criteria. 
The main reason of investigating failure at the scale of micro 
instead of using widely available macro-scale failure criteria 
is placed behind this fact that the influence of fiber undula-
tion on the failure can be also taken into account during 
the progressive damage modeling process. The estimated 
outputs of this research not only agree perfectly with experi-
mental observations, but also the developed modeling con-
verges to the lower bound of experimental data rendering the 
approach as a conservative one. The results of this research 
imply on the significant importance of fiber arrangement as a 

local phenomenon on the global behavior of pressure vessel 
characterized by the burst pressure.

Appendix A

Extracting mechanical properties of the micro-scale RVE
Applied boundary conditions to the micro-scale RVE 

for extracting its mechanical properties are presented in 
Table 2. The overall shape of the element and assumed 
dimensions are also shown in Fig. 9 for square-shaped RVE 
as an example.

The average stress and strain are related together as 
below:

where C is the effective stiffness matrix of micro-scale RVE. 
The average of stress and strain are also defined as below:

where σα and εα are stress and strain of each element, 
respectively.

(A1)�� = C����(�, � = 1, ... , 6)

(A2)�� =
1

V ∫v

��dV

(A3)�� =
1

V ∫v

�� dV

Table 1   Mechanical properties of the micro-scale RVEs

(1) 45 (2) 60 (3) 65 Microme-
chanical 
rules

Ex (GPa) 141.4 141.5 141.5 141.8
Ey (GPa) 10.5 16.3 23 16.3
νxy 0.33 0.33 0.32 0.33
νyz 0.6 0.3 0.31 –
Gxy (GPa) 4.7 3.46 3.8 3.41
Gxz (GPa) 3.1 6.26 8.8 –

Fig. 9   Square-shaped micro-scale RVE and its dimensions
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Applying PBC’s to the micro-scale RVE, just one of the 
strain components has unity value for each case while the 
others are all zero. Thus, for each case of loading mentioned 
in Table 2 we have [30]:

Consequently, the components of C�� will be obtained. 
Finally, inversing stiffness matrix ( C�� ), compliance matrix 
of the micro-scale RVE is obtained ( C−1

��
= S�� ) and then 

effective mechanical properties of the micro-scale RVE are 
obtained as below:

Since YZ plane is considered as the plane of isotropy 
in Fig. 9, the final remaining mechanical property can be 
obtained using below formulation:

Appendix B

Extracting mechanical properties of meso-scale RUC​
Suquet expressed the displacement field for a periodic 

array as below in accordance with tensorial notation [34]:

(A4)C�� = �� =
1

V ∫v

��
(
x1, x2x3

)
dV , �� = 1

(A5)
Ex =

1

S
11

�xy = −
S
12

S
11

Gxy =
1

S
66

Ey =
1

S
22

Gyz =
1

S
44

(A6)Gyz =
Ey

2(1 + �yz)

(B1)ui(x1, x2, x3) = �ikxk + u∗
i
(x1, x2, x3)

where �ik is the global strain applied to the periodic body, 
and xk is the Cartesian coordinate. u∗

i
(x1, x2, x3) is the peri-

odic part of the deformation. The continuity condition of 
traction is also expressed as below:

where M and N are an arbitrary pair of periodic points on 
the two opposite boundary surfaces and nj is the compo-
nents of the unit outward normal vector to the surfaces. The 
boundary conditions applied to the RUC can be expressed 
as displacement constraints enforcing the boundaries of the 
RUC being parallel before and after the deformation [35, 
36]. On the boundary pair (C1, C3), for an arbitrary pair of 
periodic points M, N, we denote the displacement as ui(M ϵ 
C1)-ui(N ϵ C3)=ui(C1) - ui(C3). Thus, for opposite boundaries 
we have:

where j+ and j- denote a pair of opposite parallel boundaries 
in the RUC. Thus we have:

Since, the boundaries are parallel pairs in the investigated 
RUC, Δxj

k
 is constant and hence we have:

where cj
i
 stands for mean extension/contradiction in the 

RUC. Eq. (B5) can be directly used as boundary conditions 
in FEA.

(B2)�ij(M)nj(M) = −�ij(N)nj(N)

(B3)
u
j+

i
= �ikx

j+

k
+ u∗

i

u
j−

i
= �ikx

j−

k
+ u∗

i

(B4)u
j+

i
− u

j−

i
= �ik(x

j+

k
− x

j−

k
) = �ikΔx

j

k

(B5)u
j+

i
(x1, x2, x3) − u

j−

i
(x1, x2, x3) = c

j

i

Table 2   Applied loadings and 
periodic boundary conditions to 
the micro-scale RVE [33]

Boundary conditions

Location 
loading

x=0 x=2a1 y=− a2 y=a2 z=− a3 z=a3

�x = 1 ux = 0 ux = 2a
1

uy = 0 uy = 0 uz = 0 uz = 0

�y = 1 ux = 0 ux = 0 uy = 0 uy = 2a
2

uz = 0 uz = 0

�z = 1 ux = 0 ux = 0 uy = 0 uy = 0 uz = 0 uz = 2a
3

�xy = 1 uy = 0 uz = 0 uy = 0 uz = 0 ux = 0 ux = 2a
2

uz = 0 uz = 0

�yz = 1 ux = 0 ux = 0 ux = 0 uz = 0 uz = 0 uz = 0 uy = 0 uy = 2a
3

�xz = 1 uy = 0 uz = 0 uy = 0 uz = 0 uy = 0 uy = 0 ux = 0 ux = 2a
3
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Applying mentioned displacement constraints, a unique 
solution is obtained in a displacement-based FEM and the 
traction continuity condition expressed by Eq. (B2) is auto-
matically satisfied [37].

The average stress and strain over the volume V of the 
RUC can be written as:

where Vk is the volume of kth element. N is also the total 
numbers of integration points in FE model of the RUC.

Finally, elastic relation between stress and strain is 
described as:

(B6)

�ij =
1

V ∫v

�ijdV =
1

V

N∑
k=1

�k
ij
Vk(i, j = 1, 2, 3)

�ij =
1

V ∫v

�ij dV =
1

V

N∑
k=1

�k
ij
Vk(i, j = 1, 2, 3)

(B7)�ij = Cijkl�ij(i, j, k, l = 1, 2, 3)

where Cijkl is the effective stiffness of the RUC.
Thus, the effective properties of the RUC are extracted 

using abovementioned procedure.

Appendix C

Boundary conditions and loadings for obtaining micro-stress 
components

Applied boundary conditions and loadings to the micro-
scale RVE for extracting micro-stress distribution based on 
meso-scale stress distribution are presented in Table 3. The 
overall shape of the element and assumed dimensions are 
the same as Fig. 9

Reflected “C” in Table 3 implies on a certain value where 
the plane faces remain plane after deformation for the paral-
lelograms [38].

A sample of stress distribution under different loadings 
and applied boundary conditions are shown in Fig. 10.

Table 3   Applied loadings and 
periodic boundary conditions to 
the micro-scale RVE [20]

Boundary conditions

Location loading x=0 x=2a1 y=− a2 y=a2 z=− a3 z=a3

�x = 1 ux = 0 ux = C

Fx = 2a
2
× 2a

3

uy = 0 uy = C

Fy = 0

uz = 0 uz = C

Fz = 0

�y = 1 ux = 0 ux = C

Fx = 0

uy = 0 uy = C

Fy = 2a
1
× 2a

3

uz = 0 uz = C

Fz = 0

�z = 1 ux = 0 ux = C

Fx = 0

uy = 0 uy = C

Fy = 0

uz = 0 uz = C

Fz = 2a
1
× 2a

2

�xy = 1 uy = 0 uy = C

Fy = 2a
2
× 2a

3

ux = 0 ux = C

Fx = 2a
1
× 2a

3

uz = 0 uz = C

Fz = 0

�yz = 1 ux = 0 ux = C uz = 0 uz = C

Fz = 2a
1
× 2a

3

uy = 0 uy = C

Fy = 2a
1
× 2a

2

�xz = 1 uz = 0 uz = C

Fz = 2a
2
× 2a

3

uy = 0 uy = C

Fy = 0

ux = 0 ux = C

Fx = 2a
1
× 2a

2
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Fig. 10   Outputs of the FE analysis on the micro-scale RVE
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