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Abstract
The current study aims to introduce a new generalized photothermal model in which heat equation is described based on the 
Moore–Gibson–Thompson (MGT) equation. The thermo-optical transition process can be understood, and the interaction 
between elastic plasma waves and heat can be investigated and explained using the suggested model. The proposed model 
was used to investigate the thermal and photoacoustic effects in an infinitely constrained solid cylinder of semiconductor 
material that was crossed into a fixed magnetic field and subjected to a high-intensity laser heal flux. The Laplace transform 
technique is used to derive the numerical expressions for the components of thermal stresses, displacement, temperature field, 
and carrier density. The propagation of thermal, elastic, and plasma waves, as well as the distributions of each studied field, 
was investigated and described. The comparison is also used to evaluate the impact of thermoelastic response characteristics 
such as thermal relaxations, temperature frequency, and lifetime on the photo-thermoelastic response.

Keywords  MGTPT thermoelasticity · Semiconductor · Materials · Solid cylinder · Pulsed heating

1  Introduction

Laser-induced damage to optical materials is a distinct field. 
For more than 50 years, several publications have attempted 
to address the topic from a theoretical and experimental 
standpoint. As pulsed laser technologies are widely used 
in material processing and non-destructive detection and 
characterization, the excitation of thermoelastic waves by 
a pulsed laser in solids is of significant interest. When a 
solid material absorbs a laser pulse, it creates a localized 
temperature rise, which causes thermal expansion and heat 
wave formation in the material. There are two important 

effects in heating the ultra-short pulsed laser [1]. A focused, 
high-powered laser beam can heat materials to thousands of 
degrees Kelvin. The temperature of continuous-wave laser 
heating can be monitored remotely with great accuracy by 
fitting the spectrum radiation to a blackbody curve. Heating 
with a pulsed laser offers several benefits, but the tempera-
ture increases and falls in nanoseconds, necessitating quick 
electronics and time-consuming methods for temperature 
estimation [2].

Metal softening and/or hardness, annealing of crystalline 
or polycrystalline materials, diffusion of dopants in semicon-
ductors, synthesis of compounds and thin films, polymeriza-
tion of polymers, and other applications of laser heating are 
all possible. Thermally triggered processes, bulk diffusion, 
and phase transitions have all been aided by laser annealing. 
Laser heating has the benefit of being both spatially and tem-
porally localized. Additionally, by establishing thermal gra-
dients, sample temperatures considerably above the sample 
chamber's capacity can be obtained, such as heated samples 
in diamond anvil cells [3, 4].

Laser heating has a number of benefits over traditional 
techniques, including accuracy, local therapy, and cheap 
cost. Absorption occurs when a high-intensity laser interacts 
with a solid surface. As a result, the substrate material gains 
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internal energy and the irradiated zone releases heat. The 
temperature gradients in the irradiated zone remain consid-
erable since the process is often rapid. As a result, there is a 
lot of thermal stress and thermally generated tension in this 
area. Moreover, from the point of view of application, the 
end result is decisive in the laser treatment procedure. High 
stress levels in the irradiated zone may cause the surface 
to fail due to stress-induced cracking. As a result, caution 
should be exercised while performing laser therapy [5].

There is no elastic component in the heat conduction 
equation of the classical uncoupled thermoelasticity theory. 
Furthermore, the heat conduction equation is a parabolic, 
which means that heat waves will propagate at limitless 
rates. The physical facts contradict these two occurrences 
anticipated by the conventional uncoupled thermoelasticity 
theory. The goal of developing generalized thermoelasticity 
theories was to eliminate the above two phenomena. Biot [6] 
developed the coupled theory of thermoelasticity to resolve 
the contradiction that elastic changes have no influence on 
the temperature change in the conventional uncoupled the-
ory. The heat equation for the coupled theory, on the other 
hand, is of mixed parabolic/hyperbolic type; therefore, both 
theories share the second flaw.

Several theories of thermoelasticity have been established 
in order to eliminate the shortcoming of the traditional cou-
pled dynamic theory of thermoelasticity. Lord Shulman's 
theory (LS) [7] and Green-Lindsay's model (GL) [8] are the 
first two generalized models of thermoelasticity. Theoreti-
cally, one coefficient of thermal relaxation is given in the 
traditional Fourier law of thermal conductivity, while the 
G-L theory introduces two thermal relaxation times in the 
constituent relationships of force-pressure tensor and in the 
entropy equation. Green and Naghdi [9–11] postulated three 
new models of thermal elasticity allowing for a larger class 
of issues with heat flow, identified as GN Models I, II and 
III. For these three models, the first model (GN-I) will be the 
same as the conventional thermal conduction theory, the sec-
ond model (GN-II) will forecast the finite rate of the thermal 
propagation without energy dissipation, and the third model 
(GN-III) indicates the transmission of limited heat signals 
and involving dissipate energy. Several researchers including 
Abouelregal [12–15] have studied several interesting ther-
moelastic problems using thermoelastic theories [16–20].

The Moore–Gibson–Thompson (MGT) equation has 
grown more important in recent years, as evidenced by 
numerous academic articles devoted to its study and inter-
pretation. The theory was founded on a third-order differen-
tial equation, which is crucial to many fluid dynamics [21]. 
Quintanilla [22, 23] constructed a novel heat conduction 
model within the MGT equation. Abouelregal et al. [24–26] 
prepared the proposed modified heat equation after adding 
the relaxation parameter in the GN-III model and used the 
energy equation. The number of articles on this theory has 

increased significantly since the advent of the MGT equa-
tion [27–30].

Some materials, such as semiconductors, offer a variety 
of physical characteristics that are useful during research. 
According to the principle of thermoelasticity, semicon-
ductor materials may only be classed as elastic materials. 
The relevance of semiconductors in current technology was 
recently highlighted when they were utilized to produce 
electrical energy from sunlight while also being subjected 
to laser pulses [31]. Semiconductor materials are utilized as 
nanomaterials in various fields of mechanical and electri-
cal engineering, and they have a variety of uses in modern 
industry, including transistors, screens, and solar cells. The 
photothermal theory has recently been applied to semicon-
ductor mediums to produce sustainable energy technolo-
gies. To characterize the overlap between the photother-
mal equations and the thermoelasticity equations, several 
mathematical-physical models were studied. Gordon et al. 
[32] first introduced electronic deformations to photother-
mal spectroscopy. While using a laser source, photoacoustic 
spectroscopy is utilized in the context of sensitive analytical 
procedures to measure the velocity of sound of some semi-
conductor materials [33]. Many applications in engineering 
industries employ wave propagation during electro-deforma-
tions of elastic semiconductor medium in the photothermal 
processing techniques [34]. Acoustic velocity, thermal dif-
fusion coefficients, sample temperatures, bulk sample flow 
rates, specific heats, and volume expansion coefficients 
in materials have all been measured using photothermal 
spectroscopy.

The sample is uniformly elastic and electrically deformed 
by excited photo-carriers. The mechanism of electronic 
deformation is founded on the fact that photogenerated 
plasma in the semiconductor produces lattice crystal defor-
mation, that is, the deformation of the conductive potential, 
and valence bands in the semiconductor. This can result in 
local stress in the sample via photo-stimulated carriers. This 
strain in turn can create plasma waves in the semiconductor 
by regular elastic locally similar to thermal wave produc-
tion [35].

The mechanical, electric, and thermal properties of 
semiconductors materials vary with changes in tempera-
ture. When a temperature gradient due to absorption of 
light occurs in semiconductor, elastic materials causes an 
electric potential difference between endpoints in the sem-
iconductor. Several authors have analyzed the uncoupled 
and coupled system of plasma, thermodynamic and elastic 
equations as well as different effects of thermal as well as 
electronic deformation in semiconductors using classical 
models. According to a review of the literature, there is no 
work on the transient examination of the semiconductor 
cylinders subjected to ultra-short pulsed laser heating and 
photogenerated plasma, as well as temperature-dependent 
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material characteristics. The importance of the issue is 
the primary motivation for a thorough examination of it 
in this study. The discovery of a highly helpful technique 
for investigating solid materials has reignited attention in 
the photoacoustic impact in solids since then. In the dis-
ciplines of physics, biology, engineering, chemistry, and 
medicine, a great deal of theoretical and experimental 
research has been published. Semiconducting materials 
have become increasingly popular in modern engineering, 
as technology has advanced. Wave propagation in a semi-
conducting material will be of significant academic and 
practical importance. Photoluminescence, for instance, is a 
possible result of optical absorption, and when this occurs 
in conjunction with radiative trapping, delayed heat gen-
eration can occur. In addition, the photochemical mecha-
nism is a non-thermal deexcitation pathway for absorbed 
light energy. The chain reaction produced by the absorbed 
photons has resulted in the formation of a new chemical.

The purpose of this paper is to investigate disturbances 
in infinite, isotropic, homogeneous thermoelastic semicon-
ductor materials using the new Moore–Gibson–Thompson 
(MGT) heat conduction model. The propagation of waves 
in semiconductor materials has many applications in vari-
ous fields of science and technology, namely atomic phys-
ics, industrial engineering, thermal power plants, subma-
rine structures, pressure vessel, aerospace, chemical pipes, 
and metallurgy. The effect of thermo-electronic deforma-
tion in semiconductors has been investigated, including 
partially coupled plasma, thermal mechanism, and elastic 
waves. Under proper boundary conditions, we used the 
normal mode method analysis to solve a system of partial 
differential equations in this phenomenon. Physical field 
quantities are introduced analytically and graphed, along 
with some analytical comparisons. The results obtained 
were compared with the results of the work of other 
researchers.

2 � Basic equations

The generalized coupled hyperbolic plasma, generalized 
thermal and elastic equations, for thermoelastic semicon-
ductors with isotropic and homogeneous electronic, thermal 
and elastic properties, are given by:

Equations of motion:

The constitutive equations [26, 27]:

The strain–displacement relations:

(1)�ij,j + Fi = �ü i

(2)�ij = Cijklekl −
(
�ij� + dnijN

)
.

In Eqs. (1)-(3), �ij are the components of stress, � is the 
density of the material, ui are the displacement components, 
Fi are the components of body forces and i, j, k = 1, 2, 3 , eij is 
the strain tensor, ekk = e is the cubical dilatation, dnij = dni�ij 
are the difference in deformation potential of the conduction 
and valence bands, Cijkl are the elastic constants for material, 
and �ij = �i�ij are the stress-temperature coefficients. Also, 
� = T − T0 denotes the thermodynamical temperature, T0 is 
the reference temperature, and N is the carrier density.

The coupled plasma-thermal-elastic wave equation can 
be written as [35, 36]

where DEij are the diffusion coefficients, � is the thermal 
activation coupling parameter, � is the lifetime of photogen-
erated electron–hole pairs, and G is the carrier photogen-
eration “source” term. In the case of harmonic modulation 
lasers, Vasilev and Sandomirskii [37] initially found that the 
thermal activation coupling parameter � is insignificant at 
low temperatures.

Cattaneo–Vernotte in [38–40] introduced a wider Fourier 
law by adding the thermal relaxation �0 to the vector of the 
heat flow �⃗q as

In Eq. (1), Kij refers to the thermal conductivity tensor.
The improved Fourier law based on the GN-III model can 

be represented as [11]

where the function � denotes thermal displacement which 
satisfies 𝜗̇ = 𝜃 and the parameters K∗

ij
 refer to the thermal 

conductivity rates. The equation of the energy balance can 
be written as [41, 42]

where CE is the specific heat at constant volume and Q is 
the heat source.

The combination of improved Fourier law proposed in (6) 
with the energy Eq. (7) has the same weakness as Fourier's 
normal theory, predicting that thermal waves are spread-
ing immediately. Quintanilla [22, 23] and Abouelregal et al. 
[24–26] prepared the proposed modified heat equation after 
adding the relaxation parameter in the GN-III model. The 
modified Fourier's law would then take the following form 
[22, 23]

(3)eij =
1

2

(
ui,j + uj,i

)
.

(4)
(
DEijN,j

)
,i
= �

�N

�t
+

1

�
N + �� + G,

(5)
(
1 + 𝜏0

𝜕

𝜕t

)
q⃗ = −Kij∇⃗𝜃.

(6)q⃗ = −Kij ∇⃗𝜃 − K∗
ij
∇⃗𝜗,

(7)𝜌CE

𝜕𝜃

𝜕t
+ T0

𝜕

𝜕t

(
𝛽ijeij

)
= −∇⃗ ⋅ q⃗ + Q,
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Consider that the semiconductor elastic media is sub-
jected to light beams from the outside and that the excited 
free electrons create a carrier-free charge density with semi-
conductor gap energy Eg . Because of the absorbed optical 
energy, there is a change in electronic deformation and elas-
tic vibrations. Thermal-elastic-plasma waves will affect the 
overall form of the heat conductivity equation in this situa-
tion. The modified Fourier law for semiconductor materials 
with plasma effect in a generalized version can be written 
as follows:

The photo-excitation effect is represented by the final 
term in Eq. (9). When the above equation is differentiated 
with respect to x⃗ , the result is

By substituting Eq. (10) into Eq. (7), the modified heat 
conduction equation with thermal memory that explains the 
interaction between the thermal-plasma-elastic waves may 
be derived as

We assumed that the adjacent free space is permeated 
by an initial magnetic field H⃗ . This generates an induced 
electro field E⃗ and induced magnetic field h⃗ that fulfills the 
magnetic equations of Maxwell and is sufficient for slowly 
moving media [43]:

where �0 is the magnetic permeability, �⃗J is the current den-
sity, and �ij is the Maxwell stress tensor.

3 � Statement of the problem

This section presents case formulation and theoretical analy-
ses of a semiconductor medium based on the interaction of 
plasma, heat waves, and elastic waves. The model developed 

(8)
(
1 + 𝜏0

𝜕

𝜕t

)
q⃗ = −Kij ∇⃗𝜃 − K∗

ij
∇⃗𝜗.

(9)
(
1 + 𝜏0

𝜕

𝜕t

)
q⃗ = −Kij ∇⃗𝜃 − K∗

ij
∇⃗𝜗 − ∫

Eg

𝜏
Ndx⃗.

(10)

(
1 + 𝜏0

𝜕

𝜕t

)(
∇⃗ ⋅ q⃗

)
= −∇⃗ ⋅

(
Kij ∇⃗𝜃

)
− ∇⃗ ⋅

(
K∗
ij
∇⃗𝜗

)
−

Eg

𝜏
N.

(11)

(
1 + 𝜏0

𝜕

𝜕t

)[
𝜌CE

𝜕2𝜃

𝜕t2
+ T0

𝜕2

𝜕t2

(
𝛽ijui,j

)
− 𝜌

𝜕Q

𝜕t

]

=
(
Kij𝜃̇,j

)
,i
+
(
K∗
ij
𝜃,j

)
,i
+

Eg

𝜏

𝜕N

𝜕t
.

(12)

J⃗ = ∇ × h⃗,∇ × E⃗ = −𝜇0

𝜕h⃗

𝜕t
, E⃗ = −𝜇0

(
𝜕h⃗

𝜕t
× H⃗

)
,∇ ⋅ h⃗ = 0,

(13)�ij = �0

[
Hihj + Hjhi − Hkhk�ij

]
,

for this paper has been directly applied to the mentioned 
problem. A one-dimensional (1D) problem of a thermally 
homogenous, isotropic, electrically conducting solid cylinder 
of radius �0 owing to symmetry is considered. As a result, all 
studied field variables are assumed to be dependent on time t 
and radial distance � . The outer surface of the solid cylinder 
is constrained and has been illuminated using a laser pulse 
heating system. The z-axis is aligned with the cylinder axis 
with the use of the cylindrical coordinate system (�,�, z) . The 
temperature in the cylinder is initially constant and uniform 
( T0 ). Furthermore, all examined fields are assumed to be finite 
within the medium for the regularity condition. The displace-
ment components for the 1D problem and displacement–strain 
relations are given by

The stress–strain–temperature–carrier relations (2) will 
be the form

where �t is the linear thermal expansion coefficient, �n is the 
electronic deformation coefficient, � , � are the Lame’s con-
stants, and e = 1

�

�(�u)

��
 . When the Lorentz force F� is taken 

into account, the dynamic motion equation becomes

Assume the cylinder is immersed in a magnetic field of 
constant strength H⃗0 =

(
0, 0,H0

)
 . According to Eq. (12), we 

obtain

The magnetic field ��⃗H0 induces the radial component of 
Lorentz force F� , which is given by.

Thus, we have F� and Maxwell's stress ��� from Eqs. (13) 
and (17) as

(14)
u� = u(�, t), u�(�, t) = 0 = uz(�, t),

e�� =
u

�
, e�� =

�u

��
, e�� = e�z = ezz = e�z = 0.

(15)

��� = 2�
�u

��
+ �e − (3� + 2�)

(
�t� + �nN

)
,

��� = 2�
u

�
+ �e − (3� + 2�)

(
�t� + �nN

)
,

�zz = �e − (3� + 2�)
(
�t� + dnN

)
,

(16)
����

��
+

1

�

(
��� − ���

)
+ F� = �

�2u

�t2
.

(17)
E⃗ =

(
0,𝜇0H0

𝜕u

𝜕t
, 0

)
, J⃗ =

(
0,

𝜕

𝜕𝜌

(
1

𝜌

𝜕(𝜌u)

𝜕𝜌

)
, 0

)
, h⃗

=

(
0, 0,

1

𝜌

𝜕(𝜌u)

𝜕𝜌

)
.

(18)F𝜌 = 𝜇0

(
J⃗ × H⃗0

)
𝜌
.

(19)Fr = �0H
2

0

�

��

(
1

�

�(�u)

��

)
, ��� = �0H

2

0

1

�

�(�u)

��
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Inserting Eqs. (15) and (19) into Eq. (16), we have

where 
{
� , dn

}
= (3� + 2�)

{
�t, �n

}
.

When we apply the operator 1
�

�(�u)

��
 to both sides of Eq. (20), 

we obtain

In the cylindrical coordinate system, the Laplacian operator 
is given by ∇2 =

�2

��2
+

1

�

�

��
 . Without any heat sources ( Q = 0 ), 

the generalized modified MGTE heat conduction Eq. (11) will 
be as follows:

The governing equations can easily be transformed into 
dimensionless forms. As a result, the dimensionless variables 
listed below are presented:

In Eq. (23), the parameter v1 =
√

�+2�

�
 represents the dila-

tational wave speed, and the factor va =
√

�0H
2

0

�
 symbolizes 

the medium Alfven wave speed. The governing equations can 
be rewritten in the following forms if the primes are ignored

where

(20)

(
� + 2� + �0H

2

0

) �

��

(
1

�

�(�u)

��

)
− �

��

��
− dn

�N

��
= �

�2u

�t2
.

(21)
(
� + 2� + �0H

2

0

)
∇2e − �∇2� − dn∇

2N = �
�2e

�t2
.

(22)

(
1 + 𝜏0

𝜕

𝜕t

)[
𝜌CE

𝜕2𝜃

𝜕t2
+ 𝛾T0

𝜕2e

𝜕t2

]
= K∇2𝜃̇ + K∗∇2𝜃 +

Eg

𝜏

𝜕N

𝜕t
.

(23)

{
��, u�

}
= v0�{�, u},

{
t�, ��

0
, ��

}
= v2

0
�
{
t, �0, �

}
,
{
��,N�

}
=

1

�v2
0

{
��, dnn

}
,

{
��
ij
, ��

��

}
=

1

�v2
0

{
�ij, ���

}
, � =

�CE
K

, v2
0
= v2

1
+ v2

a
.

(24)

(
1 + �0

�

�t

)[
�2�

�t2
+ �1

�2e

�t2

]
=
(
�

�t
+ �∗

)
∇2� + �2

�N

�t
,

(25)∇2e − ∇2� − ∇2N =
�2e

�t2
,

(26)∇2N = g1
�N

�t
+ g2N + g3�,

(27)
��� = 2�2

�u

��
+
(
1 − 2�2

)
e − � − N,

��� = 2�2
u

�
+
(
1 − 2�2

)
e − � − N,

�zz =
(
1 − 2�2

)
e − � − N,

(28)
�2 =

�

�+2�
, �1 =

�2T0

�2Cec
2

0

,�∗ =
K∗

c2
0
K
, �2 =

�Egv
2

0
�

�dn�CE

,

�0 =
(
c0�

)2
, g1 =

�

DE�0
, g2 =

1

DE�0�1
, g3 =

�dn

�DE�0
.

4 � Initial and boundary conditions

The initial conditions of the problem are taken as

We suppose that the cylinder's exterior surface is con-
strained. Then the mechanical boundary condition in this 
case can be expressed as

Also, we assume that a variable heat flux in the form of 
exponentially laser pulsed heat is applied to the boundary 
surface � = �0 . As a result, the following boundary condition 
may be applied [44]:

where q0 is a constant and tp is the pulsing heat flux dura-
tion time.

Using the modified Fourier’s law (8) after using dimen-
sionless variables (23) will be

Equations (31) and (32) are decoupled to provide the fol-
lowing boundary condition

The carriers can reach the sample surface during the dif-
fusion phase, with a finite probability of recombination. As a 
result, the carrier density boundary condition may be written 
as follows:

where sv is the surface recombination velocity.

5 � Solution in the domain of the Laplace 
transform

For solving linear differential equations with constant 
coefficients, the Laplace transform is utilized. In control 
system engineering, the Laplace transformation is very 
important. Laplace transforms of various functions must 
be performed to examine the control system. In order to 

(29)
u(�, 0) = 0 =

�u(�,0)

��
, N(�, 0) = 0 =

�N(�,0)

��
,

�(�, 0) = 0 =
��(�,0)

��
.

(30)u(�, t) = 0 at � = �0.

(31)q� = q0
t2

16t2
p

e−t∕tp , at � = �0,

(32)
(
1 + 𝜏0

𝜕

𝜕t

)
q̇𝜌 = −

(
𝜕

𝜕t
+ 𝜔∗

)
𝜕𝜃

𝜕𝜌

(33)

q0

16t2
p

(
1 + �0

�

�t

)
�

�t

(
t2e−t∕tp

)
= −

(
�

�t
+ �∗

)
��

��
at � = �0

(34)DE

�N

��
= svN at � = �0,
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analyze the dynamic control system, both the character-
istics of the Laplace transform and the inverse Laplace 
transformation are employed. The Laplace transform of 
function g(t) , which is denoted by L

[
g(t)

]
 or by g(s) , is 

defined by the following equation:

We get the following results by using the Laplace trans-
form approach to Eqs. (24) to (27):

where � = s2
(
1 + �0s

)
∕(s + �∗).

When Eqs. (36, 37, 38) are decoupled, we get

where �2 , �1, and �0 are specified by

Presenting �i, (i = 1, 2, 3) into Eq. (40), we obtain

where �2
1
 , �2

2
 , and �2

3
 are the roots of the equation

which are given by

with

(35)L
[
g(t)

]
= g(s) =

∞

∫
0

g(t)e−stdt, s > 0.

(36)
(
∇2 − �

)
� = ��1e − �2sN,

(37)
(
∇2 − s2

)
e = ∇2� + ∇2N,

(38)
(
∇2 − g4
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The general solution of Eq. (40) can be written in the 
form

where In(.) indicates the second types of modified Bessel 
functions of ordern . Ai (i = 1, 2, 3) are three parameters that 
are dependent ons . In addition, Li and Mi are two distinct 
factors that are correlated withAi . We get the following rela-
tions by inserting Eq. (46) into Eqs. (36–38)

The displacement u may be represented as follows in the 
Laplace transform domain:

The following well-known Bessel function relation was 
utilized to obtain Eq. (48):

When we differentiate Eq. (48) in terms of � , we get

As a result, the final solutions for thermal stresses are 
derived in the closed form as

where

The non-dimensional Maxwell's stress M�� is given by

(45)
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The boundary conditions (30), (33) and (34) have the 
following forms after performing the Laplace transform

Equations (46) and (49) are substituted into Eq. (54), 
giving

We derive the values of the parameters Ai, (i = 1, 2, 3) 
by solving the system (54).

The inversion of Laplace transforms was obtained 
in this study using an accurate and efficient numerical 
approach based on Fourier series expansion [45]. Any 
function in the Laplace domain can be inverted to the time 
domain using this method as follows:

where Nf  denotes the number of terms, Re denotes the real 
part, and i denotes the imaginary number unit. Numer-
ous numerical tests have demonstrated that the value of 
the parameter c fulfills the relation c� ≅ 4.7 , allowing for 
quicker convergence [46].

6 � Numerical results

We will now show some numerical findings in order to 
demonstrate the theoretical results gained in the previous 
sections. The influence of the modified photothermal heat 
equation (MGTPT), which is defined by the Moore–Gib-
son–Thompson (MGT) equation, on the studied physical 
fields is now shown in the form of graphical representa-
tions and tables using Mathematica software. For theoreti-
cal analysis, isotropic silicon (Si) is utilized as the semi-
conductor solid material.

At T0 = 300K , the following physical parameters are 
used [35]:

(54)
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In the context of the coupled theory of thermal-plasma-
elastic waves under MGTE model, the numerical approach 
described in (57) has been used to distribute the distribution 
of non-dimensional temperature � , the radial displacement u , 
the radial and hoop stresses ��� and ��� , Maxwell's stress ��� 
and the absolute carrier density N along the radial direction 
of the cylinder. Figures 1, 2, 3, 4, 5, 6 graphically depict the 

� = 3.64 × 1010kgm−1s−2,� = 5.46 × 1010kgm−1s−2, � = 2330kgm−3,

K = 1.51Wm−1K−1,CE = 6.95 × 102JkgK−1, dn = −9 × 10−31m3,

Eg = 1.11eV ,DE = 2.5 × 10−3m2s−1, sf = 2ms−1, � = 5 × 10−5s.
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Fig. 1   The temperature variation � for different models of photo-ther-
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numerical findings for time t t = 0.12s and �0 = 1 . In three 
cases, numerical calculations are made for all the studied 
field variables.

6.1 � Comparison of several thermoelasticity models

The suggested Moore–Gibson–Thompson photothermal 
(MGTPT) model is a generalization of several photo-ther-
moelasticity models used in this study. It was provided not 
only to generalize but also to solve some of the physical 

consequences found in some earlier models. In the first and 
second sections, many inconsistencies are addressed.

Many earlier models of photo-thermoelasticity can 
be derived as special instances by reference to the modi-
fied Moore–Gibson–Thompson heat conduction equation 
(MGTPT). When �0 = K∗ = 0 , the coupled photo-thermoe-
lasticity theory (CPTE) is obtained, and when K∗ = 0 , the 
generalized Lord and Shulman photo-thermoelasticity model 
(PLS) is obtained. Furthermore, the photothermal Green and 
Naghdi model (PGN-III) can be obtained if the relaxation 
parameter �0 = 0 is omitted, and the photothermal Green 
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Fig. 3   The carrier density N variation for different models of photo-
thermoelasticity
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Fig. 4   The radial stress variation ��� for different models of photo-
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and Naghdi model (PGN-II) may be obtained if the term 
that contains the parameter K is absent. If 𝜏0,K∗ > 0 , this 
indicates that the photothermal model (MGTPT) is used.

The present subsection will examine the compari-
son of the newly given model with other previous pho-
tothermal models in order to verify them. To illustrate 

comparison and research, as well as for practical purposes, 
tables and figures will be used to illustrate discussions 
and comparisons. Tables 1, 2, 3, 4, 5, 6 show the changes 
in investigated studied fields against radial distance � for 
the CPTE, PLS, PGN-II, PGN-III, and MGTPT models. 
In this case, the non-dimensional carrier lifetime param-
eter � and the pulsing heat flux duration time tp are fixed 
( � = 0.01, tp = 0.15 ). From the figures and tables, we can 
mention some noteworthy facts:

•	 The existence of variations in the fields is obviously 
developing over time in the photothermal MGTPT model 
and has an important influence across all domain profiles 
examined.

•	 The thermal parameters �0 and K∗ have a significant 
impact on all of the domains investigated, as seen in the 
graphs.

•	 The phenomena of restricted thermal transmissions 
velocity of photo-thermoelasticity MGTPT theory is well 
understood in all figures and tables.

•	 Different domain distributions have a limited prevalence. 
This is in contrast to cases where coupling and decou-
pling theorems on photo-thermoelasticity have an infinite 

Table 1   The variation of the temperature � against the radial distance 
�

r CPTE PLS PGN-II PGN-III MGTPT

0 0.0233386 0.0052514 0.0168889 0.0320273 0.00334223
0.1 0.0234512 0.00525333 0.0169645 0.032235 0.00334273
0.2 0.0238524 0.00526153 0.0172356 0.0329539 0.00334477
0.3 0.0247718 0.00528754 0.0178643 0.034522 0.00335123
0.4 0.0267522 0.00537256 0.019239 0.0376959 0.00337467
0.5 0.031001 0.00566274 0.0222377 0.0440523 0.00346959
0.6 0.0401833 0.00668134 0.0288313 0.0568347 0.00387595
0.7 0.0601967 0.0103184 0.0434586 0.0827184 0.0056606
0.8 0.104144 0.0234491 0.0761572 0.135484 0.0136036
0.9 0.20125 0.0712286 0.149717 0.243675 0.0492572
1 0.416923 0.246133 0.316064 0.466606 0.21029

Table 2   The variation of the 
displacement u against the radial 
distance �

r CPTE PLS PGN-II PGN-III MGTPT

0 0 0 0 0 0
0.1 7.41464E-05 5.1307E-07 1.13465E-05 0.000716417 3.9704E-08
0.2 0.000247958 2.75535E-06 0.000044944 0.00199275 2.79356E-07
0.3 0.000769977 1.49364E-05 0.000171544 0.00487517 2.03905E-06
0.4 0.00242003 8.37314E-05 0.000669916 0.0118258 1.54689E-05
0.5 0.00773542 0.000480467 0.0026697 0.028955 0.000120254
0.6 0.0250614 0.00279987 0.010797 0.0716426 0.000948476
0.7 0.0819694 0.0164339 0.0440776 0.178783 0.00749893
0.8 0.26785 0.0949536 0.179065 0.446941 0.057535
0.9 0.804495 0.477893 0.656589 1.04624 0.371727
1 0 0 0 0 0

Table 3   The variation of the 
carrier density N against the 
radial distance �

r CPTE PLS PGN-II PGN-III MGTPT

0 1.40E-09 2.59E-07 9.54E-08 2.06E-08 1.63E-06
0.1 3.56E-09 4.42E-07 1.75E-07 4.24E-08 2.45E-06
0.2 2.06E-08 1.39E-06 6.19E-07 1.80E-07 6.24E-06
0.3 1.43E-07 5.29E-06 2.64E-06 9.15E-07 1.91461E-05
0.4 1.06E-06 2.16267E-05 1.21096E-05 4.99E-06 6.32279E-05
0.5 8.16E-06 9.15762E-05 5.74709E-05 2.82027E-05 0.000216692
0.6 6.39336E-05 0.000396359 0.000278723 0.00016277 0.000759459
0.7 0.000505582 0.00173869 0.00136934 0.000950733 0.00269973
0.8 0.00395923 0.00762443 0.00671514 0.00552876 0.00961621
0.9 0.0286855 0.0310237 0.0305282 0.029767 0.0318281
1 0.126132 0.0415579 0.054444 0.0765722 0.0200745
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propagation rate, which results in nonzero values for all 
functions anywhere in the medium.

•	 The coupled photothermal model (CPTE), as well as 
modified and generalized photothermal models (PLS, 
PGNII, PGNIII, and MGTPT), give values that are dif-
ferent in magnitude and similar in behavior at the surface 
of the semiconducting cylinder, where the boundary con-
ditions appear.

•	 For all physical domains, all curves converge, where � 
tends to zero to meet the regularity requirement.

•	 The result indicates that the non-dimensional radial 
displacement u grows with decreasing distance r until 
it reaches its maximum values, then declines rapidly to 
reach minimum points, and then gradually decreases to 
seem stable.

Table 4   The variation of the 
radial stress ��� against the 
radial distance �

r CPTE PLS PGN-II PGN-III MGTPT

0  − 0.0118484  − 0.00658627  − 0.00857676  − 0.0142958  − 0.00525006
0.1  − 0.0118662  − 0.00658904  − 0.00858347  − 0.0143264  − 0.00525138
0.2  − 0.0119349  − 0.0066005  − 0.00861044  − 0.0144412  − 0.00525681
0.3  − 0.012115  − 0.00663487  − 0.00868659  − 0.0147291  − 0.00527351
0.4  − 0.0125734  − 0.00673907  − 0.00889931  − 0.0154232  − 0.00532713
0.5  − 0.0137532  − 0.0070657  − 0.00950645  − 0.0171087  − 0.00550907
0.6  − 0.0168331  − 0.00811449  − 0.0112725  − 0.0212548  − 0.00614769
0.7  − 0.0249671  − 0.0115345  − 0.0164792  − 0.031566  − 0.00843226
0.8  − 0.046642  − 0.0228047  − 0.0319819  − 0.0574344  − 0.0167013
0.9  − 0.104871  − 0.0602931  − 0.0785461  − 0.122849  − 0.0469359
1  − 0.264296  − 0.187799  − 0.221309  − 0.291315  − 0.160205

Table 5   The variation of the 
hoop stress ��� against the 
radial distance �

r CPTE PLS PGN-II PGN-III MGTPT

0  − 0.00858296  − 0.0018317  − 0.014404  − 0.0118624  − 0.00675907
0.1  − 0.00858296  − 0.00524518  − 0.00657814  − 0.0118624  − 0.00394512
0.2  − 0.00860766  − 0.00525003  − 0.00658854  − 0.0119267  − 0.00394693
0.3  − 0.00867652  − 0.00526428  − 0.00661889  − 0.0120941  − 0.00395195
0.4  − 0.00886666  − 0.00530845  − 0.00670885  − 0.0125168  − 0.00396763
0.5  − 0.00940448  − 0.00545488  − 0.00698651  − 0.013598  − 0.0040237
0.6  − 0.0109584  − 0.00596155  − 0.007869  − 0.0164068  − 0.00424027
0.7  − 0.015519  − 0.0077597  − 0.0107289  − 0.0237986  − 0.00511033
0.8  − 0.0291253  − 0.0143072  − 0.0201861  − 0.0435164  − 0.00874492
0.9  − 0.072429  − 0.0407317  − 0.0540998  − 0.0989098  − 0.0264361
1  − 0.285796  − 0.221518  − 0.250572  − 0.330857  − 0.185297

Table 6   The Maxwell's stress 
��� against the radial distance �

r CTE LS GN-II GN-III MGTE

0 1.40E-09 2.59E-07 9.54E-08 2.06E-08 1.63E-06
0.1 3.56E-09 4.42E-07 1.75E-07 4.24E-08 2.45E-06
0.2 2.06E-08 1.39E-06 6.19E-07 1.80E-07 6.24E-06
0.3 1.43E-07 5.29E-06 2.64E-06 9.15E-07 1.91461E-05
0.4 1.06E-06 2.16267E-05 1.21096E-05 4.99E-06 6.32279E-05
0.5 8.16E-06 9.15762E-05 5.74709E-05 2.82027E-05 0.000216692
0.6 6.39336E-05 0.000396359 0.000278723 0.00016277 0.000759459
0.7 0.000505582 0.00173869 0.00136934 0.000950733 0.00269973
0.8 0.00395923 0.00762443 0.00671514 0.00552876 0.00961621
0.9 0.0286855 0.0310237 0.0305282 0.029767 0.0318281
1 0.126132 0.0415579 0.054444 0.0765722 0.0200745
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•	 Fig. 3 shows that the displacement u begins with the 
value of zero for all surface � = 1 situations that are 
consistent with the limiting condition and progressively 
decrease to their lowest value.

•	 The temperature of GN-III is likewise found to be higher 
than that of MGTE, with comparable results for the PLS 
and MGTPT models.

•	 The results of the frequently used GN-III thermoelastic 
model show that it differs significantly from the GN-II 
thermoelastic models in terms of reduced energy dissipa-
tion. In the LS and MGTE models, the inclusion of the 
relaxation parameter might result in a slower temperature 
decline.

•	 The PGN-III results also show convergence from the con-
ventional elasticity model (CPTE), which, unlike other 
generalized thermoelasticity models, does not vanish fast 
inside the body due to heat. This is fully consistent with 
the claims of Quintanilla [22] and the observations of 
Abouelregal et al. [25–27].

•	 In one section of the cylinder, all kinds of pressure are 
compressed, while in another area there is tension. Ten-
sile highlights that the medium next to the cylinder sur-
face is positioned throughout time and this conforms to 
the information given in [47]. Furthermore, the higher 
value and amplitude of fields measured at the cavity 
surface are obvious with the rise in radial breadth. The 
explanations for this occurrence are included in [48].

6.2 � The effect of carrier lifetime and laser pulse 
duration parameters

Exploration of lasers was useful to understand the properties 
of a material's inner structure, and as a result, various mod-
ern applications in physical sciences, engineering, and medi-
cine have emerged. The thermal effect of a non-Gaussian 
laser on a thermoelastic material that is employed as a heat 
source is highly relevant under the influence of extended 
thermoelastic theories.

The use of photothermal excitation of shorter elastic 
pulses (high-frequency elastic waves) for various fields 
of practical physics is now of great interest. When a laser 
beam (laser light sources) hit a sample inside the cavity, the 
laser pulses caused the temperature to increase. The intensi-
ties of free carrier charge are shown after all photo-excited 
electrons have been excited. The fact that the ultrasound 
produced by photothermal contains information about the 
medium produced and the surrounding media has enabled 
the creation of one-dimensional theoretical models.

Theoretical and practical ways of obtaining informa-
tion on carrier intrinsic concentrations and a long carrier 
lifetime � are critical criteria for modeling semiconductor 

devices in order to comprehend and improve device phys-
ics and performance. Minority carrier movement and 
effective carrier lifetime parameter � of the absorber 
material for solar cells affect the open-circuit voltage and 
photo-generated current density N  in particular.

The phenomena of microwave heating using pulsed 
lasers is investigated in this section. The solid cylinder is 
constructed of silicon and heated by a pulsed non-Gauss-
ian laser beam with a duration tp , causing the vibration 
to be dampened by thermoelasticity. Energy dissipation 
occurs when temperature and stress combine, turning 
mechanical energy into permanent heat energy. Table 7 
shows how the duration of a laser pulse tp and the lifespan 
parameter � influence the dimensionless thermo-physical 
investigated fields at � = 0.9 . The study in this subsection 
will be carried out in light of Moore–Gibson–Thomson's 
photo-thermoelastic modified theory (MGTPT).

The investigated fields, comprising temperature, dis-
placement carrier density, and thermal stress components, 
are dependent not only on distance � and time t  but also on 
the duration of the laser pulse tp and the photo-generated 
carrier lifespan parameter � , as shown in Table 7. Moreo-
ver, thermal and mechanical waves are more sensitive with 
the change of laser duration tp than with the change of 
lifetime �.

The values of the temperature � , carrier density N , and 
radial displacement u have all been demonstrated to decrease 
as the time of the laser pulse tp grows, but the values of ther-
mal stress ��� and Maxwell's stress ��� have both increased. 
From the table, it can be seen that by increasing the photo-
generated carrier lifetime parameter � , we find that there is 
an increase in the temperature, carrier density N , the mag-
nitudes of the thermal stress ���, and Maxwell's stress ��� . 
However, the radial displacement u distribution decreases 
with the increase in value of the lifetime parameter �.

In the investigation of the macroscopic output of some 
materials pertaining to photothermal materials, which dom-
inate in the determination of material characteristics, the 
carrier lifetime parameter � will play a significant role. All 
of these findings demonstrate the concept of limited heat 
dispersion rates. For designers of novel materials and other 
disciplines of materials science and physical engineering, 
the results obtained in this example might be useful in the 
presence of plasma waves and elasticity. Because of flaws 
and a lack of information about material characteristics, 
measuring carrier lifetime in many thin-film photovoltaic 
materials may be challenging.

Rapidly varying contraction and expansion cause temper-
ature fluctuations in materials susceptible to heat transmis-
sion by conduction [49]. Because pulsed laser technologies 
are widely utilized in material processing, nondestructive 
testing, and characterization, this mechanism has attracted 
a lot of attention [50].
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7 � Conclusion

This paper proposes a new photo-thermoelastic heat conduc-
tion model based on the Moore–Gibson–Thompson equa-
tion. The Green–Naghdi type III model, in addition to the 
Lord and Shulman heat transfer equation, was included in 
the modified thermos-photovoltaic model. The interplay of 
heat, plasma, and elastic waves in semiconducting materi-
als is investigated using this extended model. Only a few 
literature reviews have been published on our model. From 
the suggested model, several thermoelastic and photothermal 
models may be derived as special cases.

According to the discussions, thermal factors have a 
great influence on the distributions of photothermal fields. 
The effects of laser pulse length and lifetime characteris-
tics on the investigated fields are also important. In the new 
extended photo-thermoelastic model (MGTPT), heat travels 
through the medium as a wave of finite velocity rather than 
as a wave of unlimited velocity. Compared with the PGN-III 
model, the generalized MGTPT model is better at explaining 
the photo-thermoelastic process. The results of PGN-III also 
show convergence with the conventional elasticity model 
(CPTE), which, unlike other generalized thermoelastic mod-
els, does not disappear rapidly within the body due to heat.

The photothermal approach can provide simple and sen-
sitive ways for measuring optical absorption in materials, 
as well as some insight into deexcitation processes. Scien-
tists working in disciplines such as physics, material design, 
thermal efficiency, and geophysics will benefit greatly from 
ideas presented in this paper. The technique utilized in the 
preceding study may be applied to solve a wide range of 
photo-thermoelasticity and thermodynamic issues.
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