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Abstract
Effective properties of a polyethylene matrix and 0.965
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 (KNNS-

BNZH) inclusion piezocomposite were calculated using finite element method. Auxetic [negative Poisson's ratio (NPR); 
� = −0.32 ] and non-auxetic (positive Poisson’s ratio � = 0.2 ) polyethylene matrix was considered. Sensing, actuation, and 
energy harvesting performance of the piezocomposite are investigated at six different volume fractions using the effective 
properties. Performance was found to improve with an increase in volume fractions of the KNNS-BNZH piezoelectric 
inclusions in the polyethylene matrix. Significant improvement in voltage and harvested power was observed in the case of 
longitudinal mode when auxetic polyethylene matrix was used compared to non-auxetic. Poisson’s ratios effect was studied 
by varying it between � = −0.9 and � = 0.4 at 30% piezoelectric inclusion by volume fraction. Sensing, actuation, and energy 
harvesting performance were studied at each Poisson’s ratio both in transverse and longitudinal modes. Auxetic piezocom-
posite at � = −0.9 performed better compared to non-auxetic at � = 0.4 . Voltage, actuation, and power all increased with the 
use of auxetic polyethylene matrix as compared to the non-auxetic one.

Keywords Auxetic Piezocomposite · Negative Poisson's Ratio (NPR) · Non-Auxetic Piezocomposite · Finite element 
method · Homogenization technique · Energy harvesting

1 Introduction

Piezoelectric materials are special materials that demon-
strate coupled electro-mechanical behaviors due to which 
they generate an electrical voltage in response to applied 
strain and vice versa [1]. These materials are often used for 
sensors, actuators, and energy harvester applications [2–6]. 
Bulk piezoelectric materials have several disadvantages 
and are therefore not very useful. Piezoelectric materials 
are mostly used in the form of piezoceramics or piezocom-
posites. Piezocomposites are manufactured easily and are 
flexible. This makes them a suitable choice to be used as 

sensors, actuators, and energy harvesters [7–10]. Different 
types of piezoelectric materials, both lead-based and lead-
free, are reported by Priya et al. [11]. Lead-based piezo-
electric materials were preferred due to their high piezo-
electric coefficients. But due to their toxic nature, lead-free 
piezoelectric materials are gaining importance these days 
[12–19]. Several lead-free materials are reported in the lit-
erature like 

(
Bi0.5Na0.5

)
TiO3 [BNT], sodium potassium nio-

bate 
(
K0.5Na0.5

)
NbO3 [KNN], bismuth potassium titanate (

Bi0.5K0.5

)
TiO3 [BKT], etc. [20]. KNN is a promising pie-

zoelectric material, and several researchers have worked on 
KNN material[21–25]. Recently, Qiao et al.[26] fully char-
acterized a promising lead-free KNN-based piezoelectric 
material 0.965(K
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(KNNS-BNZH) having high Curie temperature and high 
value of piezoelectric coefficient d33 . Various methods can 
be employed to enhance the performance of a piezoelec-
tric material like imparting porosity to a solid piezoelectric 
material, controlling the sintering and calcination tempera-
ture, etc. [27–29].
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A different approach has been reported recently to 
enhance the piezoelectric performance of a piezocomposite 
using an auxetic polyethylene matrix [30]. Auxetic mate-
rials are unique materials that elongate in the transverse 
direction when subjected to tensile stress. On the contrary, 
they undergo contraction in the transverse direction when 
subjected to compressive load in the longitudinal direction 
[31]. The term “auxetic” is a Greek word that means that 
which tends to increase. Material can be made to behave like 
auxetic material using special types of structures like a hon-
eycomb, circular auxetic structures, hexagonal and inverted 
hexagonal cells, etc. [32–35]. Inherently auxetic materials, 
having a negative Poisson’s ratio, are also reported in the lit-
erature [30, 36–38]. Krishnaswamy et al. [30] developed an 
inherently auxetic polyethylene material matrix and used it 
to develop a BaTiO3-based piezocomposite. Auxetic matrix 
was found to enhance the effective piezoelectric properties.

Although much work has been done on auxetic structure-
based piezoelectric materials, from the literature, it is con-
firmed that the studies on auxetic piezocomposites are sparse 
[32–34, 39, 40]. The present study is planned with this moti-
vation. In the present work, piezocomposite material made 
of inherently auxetic and non-auxetic polymer-based matrix 
called polyethylene and KNNS-BNZH piezoelectric material 
was studied for sensing, actuation, and energy harvesting 
applications. Effective properties are calculated numerically 
at different volume fractions to study the sensing, actuation, 
and energy harvesting performance of the piezocomposite. 
Similar studies were conducted at a known volume fraction 
but for different Poisson’s ratios.

A micro-mechanical analysis approach has been adopted 
to calculate the effective properties of the piezocomposite. In 
this approach, a heterogeneous composite structure is replaced 
with a homogeneous medium. Several methods are available 
to calculate and predict the overall/effective electro-mechan-
ical properties of the piezocomposite material. Chan [41] and 
Smith [42] reported basic analytical approaches to calculate 
effective properties of 1–3 piezocomposites. These basic ana-
lytical approaches however are not suitable for generalized 
loading conditions. The asymptotic homogenization approach 
is reported to take care of the arbitrary loading conditions [43, 
44]. Li and Dunn [45] reported semi-analytical methods for 
theoretical studies generalizing Hashin–Shtrikman variational 
principles. Salavati et al. [46] used atomistic bond potential 
and equivalent mechanical energy approach to calculate effec-
tive properties in the nanoscale of boron nitride nanotubes. 
Level set methods are reported to optimize flexoelectric com-
posite topologies, to detect material interfaces in piezoelectric 

structures, etc. [47, 48]. Mechanical mean-field-type methods 
have been reported capable of predicting the electro-elastic 
behavior [49–52]. However, this method does not account for 
local fluctuations of the field quantities. The above drawbacks 
have been overcome by the unit cell method which utilizes 
the periodic microfield approach. Various numerical meth-
ods can be used to calculate the field variables by the unit 
cell method. Several numerical techniques like the finite ele-
ment method(FEM)[53], isogeometric analysis(IGA) [54–56], 
extended finite element method [48], etc., are available which 
can be used to calculate the effective properties. The finite ele-
ment method has been used extensively to calculate piezoelec-
tric fiber composite’s effective properties and has been widely 
reported in the literature [57–62]. In the present study also, 
the finite element method (FEM) has been used to calculate 
the effective elastic, piezoelectric and dielectric properties of 
the piezocomposite materials. Using this method, the linear 
response to complex loading condition involving mechanical 
and electrical load or a combination of both can be calculated.

2  Materials and methods

Auxetic materials are meta-materials that have a negative 
Poisson’s ratio due to which it undergoes lateral expansion 
when elongated. Such auxeticity can be imparted to the 
matrix geometrically by using structures manufactured by 
various 3D manufacturing and printing techniques. Auxetic-
ity can also be imparted to materials, such as polymers by 
implementing specific processing steps [30] due to which 
the material possesses a negative Poisson’s ratio and is often 
referred to as inherently auxetic materials. In the present 
study, the performance of 0–3 piezocomposite made of pol-
yethylene-based inherently auxetic and non-auxetic matrix 
material along with KNNS-BNZH piezoelectric ceramic 
inclusion is studied and compared. KNN-based piezoelec-
tric materials are quite promising and popular among lead-
free piezoelectric materials due to several factors like high 
piezoelectric coefficient, high Curie temperature, stability, 
etc [63–66]. The properties of the KNNS-BNZH piezoelec-
tric material are given in Table 1 [26].

Here, the compliance coefficients Sij are measured in 
10−12m2

∕N , and piezoelectric coefficients are measured in 
pC∕N . �T

11
 and �T

33
 are relative permittivity in strain charge 

form and are dimensionless. Material can be inherently 
auxetic or it can be made to behave as an auxetic material 
using different types of auxetic structures[32–35]. In either 
case, Poisson’s ratio of such a material is negative, which 

Table 1  Elastic and 
Piezoelectric properties of 
KNNS-BNZH material in strain 
charge form
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physically means that when the material is elongated, its 
lateral dimension also increases and vice versa. In the pre-
sent study, Poisson’s ratio of the auxetic and the non-auxetic 
material considered is �a = −0.32 and �

na
= 0.2 . Polyethyl-

ene material can be made auxetic or non-auxetic depend-
ing upon the processing steps. The elastic modulus of the 
auxetic material is considered to be E = 100MPa . Effective 
properties of the piezocomposite were calculated at different 
volume fractions. The original 0–3 piezocomposite mate-
rial is replaced by an equivalent homogeneous material. For 
sensing and energy harvesting purposes, the piezocompos-
ite material is attached to a vibrating device. Commonly 
used vibrating structures are cymbal, stack, shell, cantilever 
beam, etc. [67]. In the present case, a cantilever beam made 
of structural steel, having Young’s modulus E = 200GPa 
and density � = 7850kg∕m3 is used as a host structure. The 
piezocomposite is attached to one side of the cantilever 
beam host structure in unimorph configuration. The piezo-
composite material is attached to the beam, beginning from 
the fixed end, to take advantage of the maximum bending 
stress developed at the fixed end of the beam. To reduce the 
natural frequency of vibration of the structure and bring it 
close to ambient vibration, a proof mass of mp = 15gm is 
attached to the free end of the cantilever beam.

The structure is subjected to base excitation of 1 × g 
acceleration where g is the acceleration due to gravity. Volt-
age and power responses are collected in the frequency 
domain.

The performance of the actuator is measured in terms of 
the cantilever beam’s tip’s displacement. Both transverse 
and longitudinal modes are considered for the present study. 
Actuator displacement is measured in terms of the cantile-
ver beams tip’s displacement. Cantilever beam-based energy 
harvester operating in transverse 

(
d31

)
 mode and longitudinal (

d33
)
 mode is shown in Figs. 1 and 2, respectively. Vibration 

led to the accumulation of charges in the electrodes. Sensing 
voltage is measured by the open-circuit voltage developed 
between the electrodes due to the accumulated charges.

Power is harvested by connecting an external load resist-
ance RL between the electrodes. Maximum power is har-
vested at an optimum resistance R

opt
 which depends upon the 

structure’s natural frequency of vibration and capacitance of 
the system and is given by Eq. (1):

In Eq. (1), � and C are natural frequency of vibration of 
the structure and capacitance of the system.

3  Finite element model to calculate 
the effective properties

Several numerical and analytical methods are reported 
in the literature to calculate the effective elastic and pie-
zoelectric coefficients of the 0–3 piezocomposites [53, 
68–70]. Initial analytical methods were not sufficient 
[67, 71]. Berger et al. [58, 72] used both analytical and 
numerical methods to successfully evaluate the effective 
elastic and piezoelectric coefficients of a piezocomposite. 
The analytical solution was determined by the asymptotic 
homogenization method (AHM) [73, 74], and the finite 
element method (FEM) was used to determine the numeri-
cal solution. Numerical methods are more suitable com-
pared to analytical methods when dealing with inclusions 
of complex shapes and are used by various researchers [53, 
70, 75]. Numerical methods such as FEM are not applied 
over the entire material volume of the composite. Com-
posite materials are generally considered to be made of a 

(1)Ropt =
1

�C

Fig. 1  Cantilever beam-based piezoelectric energy harvester operat-
ing in transverse mode

Fig. 2  Cantilever beam-based 
piezoelectric energy harvester 
operating in longitudinal mode 
a Isometric view b Top view 
with dimensions
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repetition of representative volume elements (RVE). Effec-
tive properties are then calculated by applying suitable 
boundary conditions to the RVE. Since effective elastic 
and piezoelectric properties depend only upon the volume 
fraction of the piezoelectric inclusions, it is possible to 
choose an RVE having unit dimensions. Such an RVE is 
often referred to as a unit cell. Effective properties calcu-
lated using RVE can be used to represent a homogeneous 
medium that can replace the original 0–3 composite, and 
the corresponding technique is called the homogenization 
technique [76]. Figure 3 shows a typical RVE whose oppo-
site faces are designated as A,B, and C . Boundary condi-
tions are applied on these faces. The piezocomposite was 
poled along in the z direction.

Piezoelectric materials when exposed to a mechanical 
strain give rise to a potential gradient. This phenomenon 
is often referred to as the direct piezoelectric effect. The 
opposite phenomenon in which a mechanical strain is 
observed when the piezoelectric material is exposed to 
a potential gradient is referred to as the converse piezo-
electric effect. Problems dealing with the generation of 
potential gradients due to mechanical strain and vice versa 
are often referred to as coupled piezoelectric problems. 
The relationship between mechanical and electrical quan-
tities of piezoelectric material is often characterized by 
piezoelectric coefficients. The constitutive Eq. relates the 
mechanical quantities stress to strain and the electrical 
quantities electric field to the electrical displacement. A 
coupled constitutive Eq. relating to these quantities is writ-
ten in matrix form and is given by Eq. (2) [58]:

In Eq. (2), T  and S are the average stress and strain, 
respectively. Similarly, D and E are the average value of 
the electrical displacement and electric field, respectively. 
C, e, and � are the material parameters referred to as stiffness 
coefficients, piezoelectric coefficients, and relative permit-
tivity, respectively. In tensor form, this can be written as:

The symbols T,D,S, and E are the stress (�) , electrical 
displacement, strain (�s), and electrical field vectors. C, e, 

(2)
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=

[
C −et

e �
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E

]

and � are stiffness tensor, piezoelectric coupling tensor, and 
relative permittivity, respectively. It is assumed that the 
matrix and the piezoelectric inclusions are perfectly bonded 
to each other.

3.1  Implementation of boundary conditions

RVE’s can be arranged in a periodic array to get the actual 
composite material. Therefore, to simulate the responses, 
periodic boundary conditions are applied. Application of 
periodic boundary conditions ensures the same mode of 
deformation across the RVE without any interpenetration 
and separation at the boundary of the two RVEs. Expressed 
in terms of the Cartesian coordinate system, this can be writ-
ten as given in Eq. (4) [62, 76]:

whereSij and vi are the average engineering strain and local 
fluctuations, respectively. The local fluctuations vi gener-
ally depend upon the applied global loads and is unknown. 
The periodic boundary conditions are specifically applied 
on the opposite faces of the RVE facing each other. The 
corresponding Equations of boundary conditions are given 
by Eqs. (5) and (6):

(4)ui = Sijxi + vi

(5)uK
+

i
= Sijx

K+

j
+ vK

+

i

(6)uK
−

i
= Sijx

K−

j
+ vK

−

i

Fig. 3  A representative volume element containing piezoelectric 
inclusions
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whereK+ and K− denotes normal to the faces in the positive 
and negative directions, respectively. For equal values of 
local strains on the two faces facing each other, the macro-
scopic strain is given by Eq. (7):

The corresponding value for the electric potential is given 
by Eq (8):

Volume average of the stress, strain, electric field and 
electrical displacement is calculated over the entire volume 
V  of the RVE using Eqs. (9) to (12), respectively:

Boundary conditions are applied by assigning zero val-
ues to all the strain fields except one. Effective properties 
are calculated using the average quantities calculated using 
Eqs. (9) to (12). Table 2 lists all the boundary conditions 
and the corresponding formulas required to calculate the 
effective mechanical and piezoelectric properties of the 

(7)uK
+

i
− uK

−

i
= Sij

(
xK

+

j
− xK

−

j

)

(8)Φ
K+

− Φ
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= Ei

(
xK

+

i
− xK

−

i

)

(9)Sij =
1

V ∫V

SijdV

(10)Tij =
1

V ∫V

TijdV

(11)Ei =
1

V ∫V

EidV

(12)Di =
1

V ∫V

DidV

piezocomposite material. The boundary conditions are 
applied in the form ui∕� , where ui means displacement 
boundary condition, whereas � means electrical bound-
ary condition.

4  Modeling of sensor, actuator, and energy 
harvester

The response of the piezoelectric material to the base 
vibration of the structure is modeled using the finite ele-
ment method. The finite element method is a very com-
mon numerical scheme adopted to analyze and simulate 
the static and dynamic response of a piezoelectric struc-
ture [24, 77–81]. The piezoelectric material is attached 
to the cantilever beam beginning from the fixed end of 
the cantilever beam to exploit higher bending stress and 
bending moment at the fixed end of the cantilever beam. 
For simplification of analysis, the piezoelectric theory 
assumed here is a linear one. Electrodes connected to the 
piezoelectric material are connected to external resistance. 
Assuming linear behavior of piezoelectric material, the 
electromechanical constitutive Eq. for piezoelectric mate-
rial is given by Eq. (3). The structure is discretized and the 
field variables within the structure can be written in terms 
of shape function and nodal variables as given in Eq. (13):

where {u} is the vector of field variables, [N] is the shape 
function also referred to as polynomial interpolation func-
tion, and {qe} is a vector of the nodal variables. Since stress 
is related to strain and strain is related to displacement, 
strain–displacement relation, given in Eq. (14), is often used:

(13){u} = [N]{qe}
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In tensor notation, this can be written as

where �s is the strain vector, [�]e is the matrix contain-
ing the derivatives of the polynomial functions w.r.t the 
material coordinates, and {��} is a vector of the values of 
the field variables at the nodes. Similarly, the field variable 
of the electric field vector is related to the values of the 
potentials at the nodal coordinates by Eq.:

Now applying Hamilton’s principle [55], we get:

where KE is the kinetic energy, H is the potential energy, and 
We is the electrical energy stored due to piezoelectric mate-
rial. The kinetic energy term can be written as:

Using Eq. (13), Eq. (18) can be written as:

where

The potential energy term can be written as:

Stress � given in Eq. (21) can be written in terms of 
stiffness and piezoelectric coupling coefficient from Eq. 
(3) as:

Substituting the mechanical strain vector and the electric 
field vector from Eqs. (15) and (16) into Eq. (22), we get
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where we have

and.

The electrical energy produced by the piezoelectric mate-
rial is given by.

Using the constitutive Eq., Eq. (26) can be rewritten as 
follows:

In Eq. (27), 
[
�u�

]
 and 

[
�
��

]
 are called piezoelectric coupling 

matrix and capacitance matrix. Substituting the above expres-
sions in Hamilton’s Eq., considering damping of the material 
and simplifying, we get the elemental Eq. of motion of the 
beam given by Eqs. (28) and (29) [82]:

where me
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and stiffness matrices. ke
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} . Correspondingly, the stiffness matrix of the ele-

ment is given by Eq. (30) as:

The elemental Equations are assembled to get the global 
Equations as given by Eqs. (31) and (32) as:
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}

(29)
[
ke
�u

]
{ue} +

[
ke
��

]
{�

e
} = {Qe

}

(30)[k]e =

[
ke
uu

ke
u�

ke
�u

ke
��

]

(31)
[
muu

]
{ü} +

[
Cuu

]
{u̇} +

[
kuu

]
{u} +

[
ku𝜑

]
{𝜑} =

{
Fext

}

(32)
[
k
�u

]
{u} +

[
k
��

]
{�} = {Q}
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In the global Equations of motion given by Eqs. (31) 
and (32), muu,Cuu and k

uu
 are the global mass, damping and 

mechanical stiffness matrices, respectively. k
uφ

 and k
φu

 are 
global direct and inverse piezoelectric coupling matrices, 
respectively. k

φφ
 is the global dielectric stiffness matrix. The 

coupled Eq. of motion can be written as given by Eq. (33):

(33)

[
muu 0

0 0

]{
ü

�̈�

}
+

[
Cuu 0

0 0

]{
u̇

�̇�

}
+

[
kuu ku𝜑
k
𝜑u k

𝜑𝜑

]{
u

𝜑

}
=

{
Fext

Q

}

Boundary conditions are applied so that there is no dis-
placement at the fixed end, i.e., u = 0 . Body load due to 
gravity acts throughout the length of the beam. Initial dis-
placements and charges on the electrodes are considered to 
be zero. The entire system is subjected to base vibration, and 
voltage and power are recorded. Open-circuit voltage (OCV) 
gives the sensing voltage, and to harvest power, an external 
load resistance RL is attached between the electrodes. The 
sensing voltage is given by Eq. (34):

Fig. 4  Effective elastic properties of the Piezocomposite at different volume fractions of KNNS-BNZH for a Non-Auxetic matrix b Auxetic 
matrix piezocomposite

Fig. 5  Piezoelectric Coefficients at different volume fractions of 
KNNS-BNZH piezoelectric inclusions in auxetic and non-auxetic 
polyethylene matrix
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Current flowing through the circuit in terms of charge and 
voltage is given by

Using Eqs. (32) and (35), the current through the load 
resistance is given by.

Using Eqs. (36) and (37), the voltage across the resistance 
is given by.

Harvested power can easily be calculated using the 
relation P = Vi where V  and i are calculated using Eqs. 
(37) and (38). respectively. To calculate the actuation 
response, the tip displacement of the cantilever beam was 
recorded in response to unit input voltage applied across 
the electrodes. During actuation, the initial displace-
ment vector is zero, i.e., {u} = 0, and the initial charge 
vector on the electrodes is also zero, i.e., {�} = 0 . The 
potential vector {�} has zero values at the nodes on the 
ground electrodes and unity on the nodes on the other 

(34){�} = −

[
k
��

]
−1[

k
�u

]
{u}

(35)i = −

dQ

dt

(36)i =
V

RL

(37)i = −

dQ

dt
= −

d

dt

([
k
�u

]
{u} +

[
k
��

]
{�}

)

(38)V = RL × −

d

dt

([
k
�u

]
{u} +

[
k
��

]
{�}

)

electrode at which unit voltage is applied. Initial values 
of the voltage in the remaining nodes are unknown and 
are to be determined. Substituting the above values, the 
potential distribution inside the piezoelectric material is 
calculated using Eq. 

[
�
��

]
{�} = 0 . Substituting this in 

Eq. (31) and solving for {u} , the actuation displacement 
due to unit voltage applied to one of the electrodes can 
be calculated.

5  Results and discussion

Effective properties of the piezocomposite made of KNNS-
BNZH piezoelectric inclusions and polyethylene-based 
piezocomposite were calculated using homogenization 
technique for both auxetic and non-auxetic piezocomposite. 
The piezoelectric inclusions within the RVE are assumed 
to be dispersed randomly within the representative volume 
element (RVE). Figures 4 and 5 show the elastic and piezo-
electric effective properties of the piezocomposite, respec-
tively, at different volume fractions. The gradual increase in 
effective properties with volume fraction can be explained 
by a simple mixture rule. The effective properties, which 
were calculated using the homogenization technique, were 
used to investigate the sensing, actuation, and energy har-
vesting performance of the piezoelectric material attached 
to the host cantilever beam structure. Both transverse 

(
d31

)
 

and longitudinal 
(
d33

)
 modes were considered. The sche-

matic diagrams of the two modes of operations are shown in 

Fig. 7  a Voltage and b Power versus frequency plot for auxetic piezocomposite at optimum resistance in transverse mode at different volume 
fractions of KNNS-BNZH
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Figs. 1 and  5. Voltage and power responses are calculated 
in the frequency domain.

Open-circuit voltage developed in the electrodes in 
response to the applied strain gives rise to the sensing volt-
age. A load resistance RL is connected between the elec-
trodes to harvest power. Harvested power is maximum at 
the optimum resistance; therefore, optimum resistance can 
be determined by plotting the power vs resistance curve as 
shown in Fig. 6. Figure 6 shows the power vs resistance plot 
for the auxetic piezocomposite operated in the transverse 
mode. Similar plots are also obtained for auxetic piezocom-
posite operated in the longitudinal mode and for non-auxetic 
piezocomposite operated both in transverse and longitudinal 
mode. Since the plots are similar, they are not shown here. 

Voltage and power in the frequency domain are shown in 
Fig. 7.

It can be observed that voltage and power increase with 
the increase in volume fraction of the piezoelectric material 
in the piezocomposite. It was also observed that the highest 
value of voltage and power at all the volume fractions were 
obtained within a closed range of natural frequency. This 
could be because the natural frequency of vibration depends 
upon the mass and stiffness properties of the entire structure, 
and in this case, the host steel beams mass and stiffness dom-
inate over the piezocomposites mass and stiffness. Figure 8 
shows the maximum voltage and power at different volume 
fractions for both auxetic and non-auxetic piezocomposites, 
and Fig. 9 shows the corresponding FOMs in the transverse 
and longitudinal modes. It can be observed that both voltage 

Fig. 8  Maximum voltage and harvested power at different volume fractions of KNNS-BNZH piezoelectric inclusions embedded in auxetic and 
non-auxetic polyethylene matrix (a), (c) in transverse 

(
d
31

)
 mode and (b), (d) in longitudinal 

(
d
33

)
 mode
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and harvested power increase with an increase in volume 
fraction of piezoelectric inclusions in the piezocomposite 
material. This can be explained by a simple mixture rule. 
It can be observed that voltage is higher in transverse mode 
compared to that in longitudinal mode, while power is more 
in transverse mode compared to that in longitudinal mode. In 
transverse mode, the electrodes are arranged in top–bottom 
configuration also referred to as TBE arrangement. In the 
longitudinal mode, interdigitated electrodes (IDE) are used. 
The capacitance of interdigitated electrodes (IDE) is always 
less than the capacitance of top–bottom electrodes (TBE).

This lower capacitance in IDE configuration compared 
to that of TBE configuration explains why higher voltage 
is obtained in longitudinal mode and higher power in trans-
verse mode [83]. In the transverse mode of operation, bet-
ter performance was observed in piezocomposite made of 
non-auxetic matrix compared to that made of the auxetic 
matrix. But in the longitudinal mode, the performance of 
piezocomposite made of the auxetic matrix was better than 
that made of the non-auxetic matrix. This could be explained 
by looking into the variation of elastic and piezoelectric 
properties with volume fraction as shown in Figs. 3 and 4. 
Sensing voltage depends upon both elastic properties and 
piezoelectric properties. It can be observed that both stiff-
ness and piezoelectric coefficients increase with the increase 
in the volume fraction of the piezoelectric materials. While 
the increase in stiffness tends to reduce strain and hence 
voltage and power, an increase in piezoelectric coefficients, 
on the other hand, tends to increase the voltage and power. 
Depending upon which factor dominates the voltage and 
power may increase or decrease in the case of auxetic or 
non-auxetic cases.

The opposite behavior of the auxetic and non-auxetic 
materials in transverse and longitudinal modes of operations 
can be understood by observing the piezoelectric coefficients 
of the auxetic and non-auxetic materials in transverse and 
longitudinal modes. For the present choice of Poisson’s ratio 
of the auxetic and non-auxetic materials (Auxetic � = −0.32 
and Non-auxetic � = 0.2 ), the piezoelectric coefficient in the 
transverse mode 

(
e31

)
 of the non-auxetic material is always 

more than that of the auxetic material at all the volume frac-
tions, while on the other hand, in the longitudinal mode, the 
piezoelectric coefficient e33 of the auxetic material is always 
more than the non-auxetic one. This explains the opposite 
behaviors of sensing and energy harvesting performance of 
the auxetic and non-auxetic materials in the transverse and 
longitudinal modes of operation.

In transverse mode, no improvement was observed by 
using auxetic matrix compared to non-auxetic matrix. In 
transverse mode, the maximum voltage and maximum power 
dropped by about 9.4% and 20.2% in the case of auxetic 
piezocomposite compared to that of non-auxetic piezocom-
posite at a 30% volume fraction. In the case of longitudinal 
mode, however, a performance improvement was observed 
for piezocomposite made of auxetic matrix compared to 
non-auxetic matrix. Voltage increased by about 28% and 
harvested power by about 66% in the case of auxetic piezo-
composite compared to the non-auxetic one at 30% volume 
fraction.

FOM calculated using Eq. (39) [84] is shown in Fig. 9. 
Plots of power and FOM against volume fractions show that 
they follow a similar pattern. This also explains the nature 
of power plots plotted with volume fractions.

Fig. 9  FOM at different volume fractions of KNNS-BNZH inclusions embedded in auxetic and non-auxetic polyethylene matrix in a Transverse (
d
31

)
 and b Longitudinal 

(
d
33

)
 mode
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Physically, Eq. (39) means that both piezoelectric coef-
ficient and stiffness increase, but in longitudinal mode, the 
piezoelectric coefficient increases at a faster rate compared 
to stiffness for auxetic material compared to non-auxetic 
material. In the case of transverse mode, stiffness increases 
at a faster rate compared to piezoelectric coefficients in the 
case of non-auxetic material compared to auxetic mate-
rial. This is shown in Fig. 9 in the FOMs plotted against 

(39)FOM =
e2

�Ey

the volume fraction of the piezoelectric inclusions in the 
piezocomposite.

In the case of actuation, the cantilever beam’s tip deflec-
tion is recorded in response to a unit voltage applied across 
the electrodes. Figure 10a and b shows the deflection in the 
transverse and longitudinal mode for both auxetic and non-
auxetic piezocomposite. In this case, also it was observed 
that non-auxetic piezocomposite performed better in trans-
verse mode, while auxetic piezocomposite’s performance 
was better in longitudinal mode. In longitudinal mode, the 
deflection due to auxetic matrix improved by about 28% 
compared to non-auxetic matrix-based piezocomposite. 

Fig. 10  Cantilever tip deflection � at different volume fractions of 
KNNS-BNZH piezoelectric inclusions in auxetic and non-auxetic 
polyethylene matrix both in a Transverse 

(
d
31

)
 mode and b Longitu-

dinal 
(
d
33

)
 mode. Parameter �ij c in transverse mode 

(
�
31

)
 and d in 

longitudinal mode 
(
�
33

)
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The auxetic matrix in transverse mode did not show much 
improvement in actuation capabilities. The cantilever beam 
structures dimensions and piezocomposites properties affect 
the deflection of the cantilever beam’s tip deflection and are 
given by Eq. (40) [85]:

In the above Eq., t  and L are the thickness and length 
of the beam. The beam thickness t  can be expressed as 

(40)� =

3L2

2t
×

2AB(1 + B)2

A2B4
+ 2A

(
2B + 3B2

+ 2B3
)
+ 1

× dijEf

t = tp + tm , where t  is the thickness of the beam, tp is the 
thickness of the piezoelectric material, and tm is the thick-
ness of the host beam. The constants A and B are ratios of 
elastic modulus and thicknesses given by A = Em∕Ep and 
B = tm∕tp . EmandEp are the elastic constants of the host 
and piezoelectric beam, respectively. dij is the piezoelec-
tric coefficient, and Ef  is the electric field.

The beam’s length and thickness do not vary; therefore, 
the tip deflection can be expressed as proportional to the 
following quantity given by Eq. (41):

Fig. 11  Effective elastic properties at different Poisson's ratio a C
11
,C

33
 b C

12
,C

13
 c C

44
,C

66
 and d e

31
, e

33
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The plots of �31 and �33 are shown in Fig. 10c and d. It 
can be observed that the tip deflection (�) and the param-
eter �ij vary with volume fraction in a similar manner in 
both transverse mode and longitudinal mode. This explains 
the nature of the actuation curve.

The effects of auxetic and non-auxetic matrix on the 
sensing, actuation, and energy harvesting performance are 

(41)� ∝

2AB(1 + B)2

A2B4
+ 2A

(
2B + 3B2

+ 2B3
)
+ 1

× dijEf = �ij

investigated further by changing Poisson’s ratio between 
-0.9 and 0 for auxetic material and between 0 and 0.4 for 
non-auxetic material. Material with negative Poisson’s 
ratio up to � = −0.9 has already been reported in the lit-
erature [38, 86]. Effective elastic and piezoelectric prop-
erties are calculated at 30% volume fraction at different 
Poisson’s ratios using homogenization technique as shown 
in Fig. 11. Figure 12a and b shows the maximum sens-
ing voltage attained at different Poisson’s ratios. It can 
be observed that higher values of negative Poisson’s ratio 

Fig. 12  Sensing voltage at different Poisson's ratios in a Transverse mode b Longitudinal mode and harvested power at different Poisson’s ratios 
in c Transverse mode d Longitudinal mode
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enhance the sensing capabilities. Sensing capabilities of 
the auxetic matrix at � = −0.9 compared to the non-auxetic 
matrix at � = 0.4 increased by about 2.46 times in trans-
verse mode and by about 5.78 times in longitudinal mode. 
Similarly, Fig.  12c and d shows the plot of maximum 
power at different Poisson’s ratio. It can be observed that 
power increased by about 6.25 times in transverse mode 
and by about 34.2 times in longitudinal mode. Figure 13a 
and b shows the variation of FOM with Poisson’s ratio 
calculated using Eq. (39). Maximum power and FOM were 
found to vary with Poisson’s ratio in a similar pattern.

Actuation capabilities of the auxetic matrix at � = −0.9 
increased by about 2.5 times in transverse mode and 5.7 
times in longitudinal mode compared to the non-auxetic 
matrix at � = 0.4 as shown in Fig. 14a and b. Actuation 
depends on material properties and geometrical properties 
given by the parameter �ij in Eq. (41). Actuation tip dis-
placement � and the parameter �ij vary in a similar pattern 
w.r.t the Poisson’s ratio � as shown in Fig. 14. This explains 
the nature of the actuation curve shown in Fig. 14a and b.

Improvement in sensing, actuation, and energy harvest-
ing capabilities of the auxetic piezocomposite compared to 
the non-auxetic one has been observed. This improvement 
can be attributed to the better mechanical coupling between 
the applied strain to the rigid KNNS-BNZH piezoelectric 
inclusions in the soft and flexible polyethylene matrix due 
to which the strain gets transferred to the piezoelectric inclu-
sions in a much better way [30, 87].

6  Conclusion

Homogenization technique was used to calculate the effec-
tive elastic and piezoelectric properties of a KNNS-BNZH 
and polyethylene-based 0–3 piezocomposite using finite 
element method-based numerical technique. Two differ-
ent types of polyethylene matrices were considered, viz. 
inherently auxetic matrix having negative Poisson’s ratio of 
� = −0.32 and non-auxetic matrix having positive Poisson’s 
ratio of � = 0.2 . A unit cell was used to calculate the effec-
tive elastic and piezoelectric properties at different volume 
fractions. The sensing, actuation, and energy harvesting 
performance of the piezoelectric material attached to the 
cantilever beam host structure was studied. For the chosen 
auxetic and non-auxetic materials, having Poisson’s ratio 
� = −0.32 and � = 0.2 , the auxetic piezocomposite mode 
did not show much improvement in performance in trans-
verse mode compared to that in longitudinal mode. At 30% 
volume fraction, voltage and harvested power increased by 
about 28% and 66% in the longitudinal mode. Studies were 
also conducted at different Poisson’s ratios starting from 
� = −0.9 to � = 0.4 at 30% volume fraction. At other Pois-
son’s ratios, in the range 𝜈 < −0.32 in particular, the aux-
etic piezocomposite showed better performance compared 
to the non-auxetic one. Improved sensing, actuation, and 
harvested power performance were observed at negative 
Poisson’s ratio of � = −0.9 compared to the non-auxetic 
material having positive Poisson’s ratio of � = 0.4 . Sensing 
voltage increased by about 2.5 times in transverse mode and 
by about 5.8 times in longitudinal mode. Power increased by 
about 6 and 34 times in transverse and longitudinal modes, 
respectively. Actuation increased by about 2.5 and 5.7 times 

Fig. 13  Variation of FOM with Poisson's ratio in a Transverse mode and b Longitudinal mode
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in transverse and longitudinal mode, respectively. Similarly 
in some other negative Poisson’s ratio zone of the auxetic 
matrix (𝜈 > −0.32and𝜈 < 0) , non-auxetic piezocomposite 
demonstrated better performance compared to auxetic one. 
Therefore, choosing a proper value of the auxetic piezo-
composite (when 𝜈 < 0 ) is quite important to ensure bet-
ter performance of auxetic piezocomposite compared to the 
non-auxetic one in either mode of operation, transverse or 
longitudinal.

Appendix

See Figs. 15, 16, 17 and  18 and Table 3

The model used in the present study is validated by 
calculating and comparing the effective properties of a 
PZT-5 and a polymer-based piezocomposite calculated by 
Berger et al. [72] using finite element (FE) and asymptotic 
homogenization (AH) methods. The elastic, piezoelectric 
effective properties and the relative permittivity calculated 
using the present model and those used by Berger et al. are 
compared as shown in Fig. 15, 16, and 17.

It can be observed that the effective properties calcu-
lated by the present method and those calculated by Berger 
et al. [72] are in good agreement.

The energy harvester model is validated by comparing the 
voltage generated per unit base acceleration by the present 
method and by Erturk and Inman [88]. The parameters for 
the host beam and the piezoelectric material used for calcu-
lations and comparison are given in Table 3.

Fig. 14  Actuation measured in terms of tip displacement of the cantilever beam in a Transverse mode and b Longitudinal mode; Actuation is 
proportional to c �

31
 in transverse mode and d �

33
 in longitudinal mode
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Fig. 15  Stiffness parameters of the present model compared with FEM and AHM model by Berger et al.[72]

Fig. 16  Piezoelectric coefficient calculated by the present model compared with FEM and AHM model by Berger et al.[72]
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The material properties CE
11
,CE

22
,CE

33
,⋯ ,CE

66
 are the 

elements of the stiffness matrix in stress charge form. 
eE
31
andeE

32
 are the piezoelectric coupling coefficient in the 

stress-charge form in transverse mode. eE
33

 is the cou-
pling coefficient in longitudinal mode written in stress 
charge form. �S

11
and�

S
33

 are permittivity in stress-charge 
form. Voltage per unit base acceleration calculated at a 
load resistance of R = 1 × 106Ω by the present method 
and by Erturk and Inman [88] is compared and is shown 
in Fig. 18. It can be observed that the voltages per unit 
base acceleration calculated by the two methods does not 
differ much which validates the present method. A minor 
difference between the two responses could be due to the 
discretization error.
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