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Abstract
A numerical investigation is performed to examine the static bending behavior of piezoelectric nanoscale beams subjected 
to electrical loading, considering flexoelectricity effects and different kinematic boundary conditions. The nanobeams are 
modeled by the Bernoulli–Euler beam theory, and the stress-driven integral nonlocal model is used in order to capture size 
influences. It is also considered that the nanobeams are embedded in an elastic medium. The Winkler and Pasternak elas-
tic foundation models are used for simulating the substrate medium. Based upon Hamilton’s principle and the electrical Gibbs 
free energy, the governing equations are derived which are then numerically solved via a finite difference-based method. 
Numerical results are presented to study the influences of nonlocal, flexoelectric and Winkler/Pasternak parameters on the 
bending response of piezoelectric nanobeams under various end conditions.

Keywords  Piezoelectric nanobeam · Flexoelectricity effect · Stress-driven nonlocal model · Bending · Bernoulli–Euler 
beam theory · Numerical approach

1  Introduction

Piezoelectric microbeams and nanobeams are extensively 
used in nanoscale and microscale devices and systems 
such as biosensors, field-effect transistors, energy harvest-
ers, resonators, MEMS and NEMS [1, 2]. For an accurate 
design, understanding the mechanical behaviors of such 
small-scale structures under various loading conditions is 
necessary. Hence, several research works can be found on 
the mechanical analysis of piezoelectric microbeams and 
nanobeams including their vibrations, buckling and bending 
in both linear and nonlinear regimes. The majority of theo-
retical studies are based on the continuum mechanics theory 
due to its computational efficiency as compared to atomis-
tic approaches. As size influences become significant when 
structures are scaled down to sub-micron levels and as the 
classical elasticity theory is size-independent, the modified 

versions of elasticity theory such as the surface elasticity 
theory [3, 4], strain gradient theory [5] and couple stress 
theory [6, 7] are widely utilized for the mechanical analy-
sis of nanostructures and microstructures which are able to 
capture size effects.

The nonlocal elasticity theory (NET) is another size-
dependent theory initiated by Eringen and his co-workers [8, 
9]. Based on NET, the stress at a reference point is consid-
ered to be a functional of the strain field at the neighborhood 
of that point. Originally, the nonlocal constitutive equation 
was presented in integral form in which a kernel function 
was introduced for capturing nonlocality [8]. The differential 
nonlocal constitutive equation was then introduced by Erin-
gen in [10]. A literature survey indicates that NET has been 
extensively used to date by many researchers for studying 
the behaviors of nanostructures [11].

However, it was shown that using the differential NET 
leads to paradoxical results in some cases (e.g., [12, 13]). An 
important paradox is related to the bending of clamped-free 
beams. More clearly, in contrast to other end conditions, the 
maximum deflection of nonlocal cantilever decreases with 
increasing the nonlocal parameter. Motivated by this para-
dox and some others, several attempts have been made for 
solving the integral nonlocal governing equations [14–18]. 
Recently, Romano et  al. [19–23] proposed an integral 
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nonlocal model called as “stress-driven” nonlocal model in 
which the characters of stress and strain fields are swapped. 
Romano et al. [22] commented that the equivalence of a 
differential formulation to the integral formulation without 
satisfying constitutive boundary conditions is not correct. 
The application of stress-driven nonlocal model to various 
problems of nanostructures has been reported by several 
researchers (e.g., [24–29]).

Electromechanical coupling of dielectrics plays an impor-
tant role in the performance of systems/devices including 
piezoelectric nanostructures. In particular, piezoelectricity 
(generating electric charges reacted to uniform strain) has 
a significant effect on these systems. Also, flexoelectricity 
is another source of electromechanical coupling which is a 
spontaneous electric polarization made in dielectric crystals 
because of a strain gradient. A literature review shows that 
studying the influence of flexoelectricity on various mechan-
ical behaviors of nanoscale structures has been the subject 
of several papers up to now. Some of the relevant papers are 
cited herein.

According to the extended linear piezoelectricity theory 
together with the first-order shear deformation beam theory, 
Yan and Jiang [30] studied the influence of flexoelectricity 
on the bending and vibrational behaviors of piezoelectric 
nanobeams with simply supported boundary conditions. 
Analytical expressions for the vibration and stability prob-
lems of piezoelectric classical nanobeams considering the 
surface, flexoelectric and nonlocal electric effects were pre-
sented by Liang et al. [31]. They reported that the surface 
and flexoelectric influences are important at a limited range 
of thickness; however, the effects diminish as the thick-
ness increases. Li et al. [32] addressed the buckling, bend-
ing and free vibration problems of magneto-electro-elastic 
Timoshenko nanobeams based upon NET. It was revealed 
that positive electric potential and negative magnetic poten-
tial lead to decreasing beam’s stiffness. Yue and co-work-
ers [33] developed a microscale first-order shear deform-
able beam model considering surface and flexoelectricity 

effects in order to investigate the behavior of beam under 
buckling and bending loads. The nonlinear formulation of 
piezoelectric Timoshenko nanobeams was developed by 
Tadi Beni [34] according to the consistent size-dependent 
piezoelectricity theory. Ebrahimi and Barati [35] analyzed 
surface effects on the dynamics of flexoelectric nanoscale 
beams resting on the Winkler-Pasternak foundation with 
various end conditions based on NET. It was found that 
flexoelectricity increases the frequencies, particularly for 
thin beams. In another paper [36], they studied the influ-
ences of magnetic field on the stability of smart flexoelec-
trically actuated piezoelectric nanobeams. Based on NET, 
the free vibrations of piezoelectric nanobeams embedded in 
viscoelastic foundation considering flexoelectric effect were 
investigated by Zhang et al. [37] using the Bernoulli–Euler 
beam theory. They reported that the frequencies of the nano-
beams increase considerably as the flexoelectric coefficient 
gets larger. Recently, Zarepour et al. [38] used the extended 
theory of piezoelectricity and multiple scales technique for 
studying nonlinear vibrations of Timoshenko nanobeams. 
They considered the flexoelectricity effect and captured the 
size effect based upon NET. Theoretical range of flexoelec-
tricity constant was estimated in their work through buck-
ling. Also, Zhao et al. [39] developed a porous flexoelectric 
beam model according to the strain gradient elasticity. Wang 
and Feng [40] studied the effect of surface stresses on the 
vibration and buckling of piezoelectric nanowires. Also, 
Wang and Wang [41] analyzed surface effects on the buck-
ling of piezoelectric nanobeams. Using the Kelvin–Voigt 
model, Malikan and Eremeyev [42] incorporated the viscoe-
lasticity into the Bernoulli–Euler beam theory to investigate 
the effect of flexoelectricity on the response of piezoelectric 
nanobeams. In another paper, Malikan et al. [43] focused on 
the postbuckling of piezomagnetic and flexomagnetic beam-
like nanostructures.

In the current work, based on the stress-driven inte-
gral nonlocal model, a numerical methodology is pre-
sented to address the bending problem of piezoelectric 

Fig. 1   Geometry and coordinates of the piezoelectric nanobeam
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Bernoulli–Euler nanoscale beams taking the flexoelectric-
ity influence into account. It is considered that the nanobe-
ams are embedded in the Winkler-Pasternak foundation and 
have arbitrary boundary conditions. To obtain the governing 
equations, the electrical Gibbs free energy and Hamilton’s 
principle are utilized. Furthermore, on the basis of the finite 
difference method, matrix operators are developed for the 
numerical solution of the problem. In the numerical results, 
the effects of nonlocal, flexoelectric and Winkler/Pasternak 
parameters on the bending response of piezoelectric nano-
beams subject to different boundary conditions are studied.

2 � Governing equations

The electric Gibbs free energy density can be expressed 
as [37]

where aij, bijkl, cijkl, eijk, μijkl, Ei, Ɛij.l, Ek.l denote dielectric 
constant tensor, nonlocal electrical coupling coefficient ten-
sor, elastic stiffness tensor, piezoelectric coefficient tensor, 
flexoelectric coefficient tensor, electric field vector, gradient 
of strain and gradient of electric field, respectively.

Figure 1 shows the geometry and coordinates of the 
considered piezoelectric nanobeam. Based on the Ber-
noulli–Euler beam theory, the displacement field is for-
mulated as follows:

Using Eq. (2) together with the relation of �ij =
1

2

(

ui,j + uj,i
)

  
one has

Now, on the basis of the stress-driven integral nonlocal 
model, constitutive relations can be written as
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in which tij, Tijk, Qij and Di are nonlocal stress, higher-order 
nonlocal stress, electric quadrupole, and electric displacement, 
respectively. Also, x stands for a reference point and x indi-
cates all points on the domain. Nonzero terms of Eqs. (4) are 
expressed as

By using the stress-driven integral model formulation 
one has

where txx is nonlocal stress and Txxz stands for nonlocal 
higher-order stress. Also, � stands for the kernel function 
and � denotes the nonlocal parameter.

It is assumed that the poling direction of the piezoelectric 
material coincides with z-direction, and the electric field in 
the z-direction is only taken into account, i.e., [33, 40, 41]

in which � denotes the electric potential. Without free 
electric charges, Gauss’s law obliges that

Based on Eqs. (5c), (5d) and (8) one can arrive at
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Now, through inserting Eq. (7) in (9) and by using the 
electric potential conditions and higher-order electric condi-
tions on the top and bottom surfaces in the following form 
[31],

the electric potential differential equation can be 
derived as

Using boundary conditions, Eq. (11) can be solved as

For simplicity, the higher-order nonlocal coupling influ-
ence in the previous equation is neglected by b33 = 0 . Sub-
stituting Eq. (12) into (7) leads to [31, 37]

Now, Eqs. (5a) and (5b) can be rewritten as
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Hamilton’s principle states that

where the variation of strain energy �Πs and variation of 
external work �ΠF can be calculated as

Substituting these relations into Hamilton’s principle 
and setting coefficients of �w to zero results in

with the following corresponding boundary conditions

Also, by using Eqs. (5a), (5b), (6a) and (6b) one has
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Table 1   Convergence of 
dimensionless maximum 
deflection of piezoelectric 
nanobeam based on the 
stress-driven nonlocal model 
for various values of nonlocal 
parameter ( �31 = 10−7

c

m
,Kw

=10 and Kp=5)

nx 25 50 100 200 500

C-C �

L
= 0.05 0.0002 0.000198 0.000192 0.00019 0.00019

�

L
= 0.03 0.00023 0.00022 0.00021 0.000219 0.00022

�

L
= 0.01 0.00045 0.0003 0.00025 0.00024 0.00024

S-S �

L
= 0.05 0.0013 0.0012 0.0012 0.0012 0.00118

�

L
= 0.03 0.0014 0.0013 0.0012 0.0012 0.0012

�

L
= 0.01 0.0024 0.0016 0.0013 0.0012 0.00121

C-S �

L
= 0.05 0.00046 0.00045 0.00045 0.00045 0.00045

�

L
= 0.03 0.00053 0.00049 0.00049 0.00048 0.00048

�

L
= 0.01 0.00099 0.0065 0.00054 0.00051 0.00051

C-F �

L
= 0.05 0.0085 0.0086 0.0087 0.0088 0.0089

�

L
= 0.03 0.0094 0.0091 0.0091 0.0091 0.0092

�

L
= 0.01 0.0149 0.0113 0.0099 0.0096 0.0096
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3 � Solution method

For discretizing the derived integral governing equations, the 
finite difference method (FDM) is employed. In the solution 

Fig. 2   Variations of maximum dimensionless deflection of simply supported and clamped nanobeams with the nonlocal parameter ( Kw=0, Kp=0, 
�31=0,e31 = 0)

Table 2   Convergence of 
dimensionless maximum 
deflection of nanobeam based 
on the stress-driven nonlocal 
model for various values of 
nonlocal parameter ( Kw=0, Kp

=0, �31=0,e31 = 0)

nx 50 100 200 500 700 Ref. [19]

C-C �

L
= 0.2 0.002 0.0015 0.001 0.0008 0.0008 0.0008

�

L
= 0.4 0.0012 0.0007 0.0004 0.0003 0.0003 0.0003

�

L
= 0.6 0.0008 0.0004 0.0002 0.00016 0.00016 0.00016

S-S �

L
= 0.2 0.0101 0.01037 0.01039 0.01039 0.01039 0.01047

�

L
= 0.4 0.0075 0.007681 0.007682 0.007682 0.007682 0.0077

�

L
= 0.6 0.0058 0.00595 0.00595 0.00595 0.00595 0.006
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approach, matrix derivative operator of order n ( �(n) ) and 
matrix integral operator ( � ) are developed by means of FDM 
and the trapezoidal integration rule. Also, one can generalize 
the integral operator to the one-dimensional space as follows:

Spatial domain is considered with constant differences 
between grid points as

The kernel function is expressed as

(20)

x2

∫
x1

f (x)dx = �1×n�

(21)xi =
i − 1

nx − 1
Li = 1.2… .nx

(22)�i =
1

2�
e
−
|
x−xi|

� i = 1, 2… , n

where x =
[

xi
]

=
[

x1, x2,… , xnx

]

 and xi = xi . Moreover, �i 
belongs to the i-th row of matrix. The discretized form of 
kernel function can be written as

By considering the integral operator in Eq. (20), Eq. (19) 
can be discretized as

Note that ⊗ and ◦ are used for the Kronecker and Hadamard 
products. Now by considering
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Fig. 3   Effect of nonlocal parameter on the maximum dimensionless deflection of piezoelectric nanobeams ( Kw=10, Kp=5, �31 = 10−7)
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where

the discretized forms of Eqs. (17), (19a) and (19b) consider-
ing the definitions of integral operators in Eq. (24) are given 
as follows:

(25)� =
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T
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���
, �
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Fig. 4   Effect of flexoelectric coefficient on the maximum dimensionless deflection of piezoelectric nanobeams ( �
L
= 0.05)
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4 � Results and discussion

In this section, after convergence and validation studies, the 
effects of important parameters including nonlocal parame-
ter, flexoelectric coefficient and parameters of elastic founda-
tion on the static bending of piezoelectric nanobeams under 
electrical loading are investigated. The piezoelectric nano-
beam is constructed from BaTiO3 . The geometrical proper-
ties of nanobeam are assumed as

L = 40 nm (length), h = 2 nm (thickness), b = h (width)
The material properties are also taken as
� = 7500

kg

m3
 (mass density), c11 = 131GPa (elastic 

stiffness),
�31 = 1 × 10−7

c

m
 ( f l exo e l e c t r i c  c o e f f i c i e n t ) , 

a33 = 12.56 × 10−9
c

V m
(dielectric constant)

e31 = −4.4
c

m2
 (piezoelectric coefficient).

Nanoscale beams subject to C-C, SS-SS, C-SS and C-F 
boundary conditions are studied herein (F: free, SS: simply 
supported, C: clamped). Also, the dimensionless form of 
deflection ( W  ), Winkler and Pasternak parameters ( Kw , Kp ) 
are defined as

First, in order to check the convergence of developed 
numerical solution approach, the dimensionless maximum 
deflections of piezoelectric nanobeams under different 
boundary conditions are tabulated in Table 1 for various 
values of grid points. The results of this table are given 
based on the stress-driven nonlocal model considering vari-
ous values of nonlocal parameter ( �∕L ) ranging from 0.01 
to 0.05. It is clearly seen that the results tend to converge 
with increasing nx.

W = w
c11I

PL4
, Kw = kw

bL4

c11I
, Kp = kp

bL2

c11I

Fig. 5   Effect of Winkler parameter on the maximum dimensionless deflection of piezoelectric nanobeams ( �
L
= 0.05,�31 = 10−7,Kp = 0)
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For validation study, a comparison is made between the 
current results and those given in [19]. In Fig. 2, the dimen-
sionless maximum deflection of C-C and S-S nanobeams is 
plotted versus the nonlocal parameter based on the stress-
driven nonlocal model. Similar comparison is presented in 
Table 2 in the tabulated form. In Fig. 2 and Table 2, the 
flexoelectric and piezoelectric effects as well as the influ-
ence of elastic foundation are neglected for the purpose of 
comparison with the results of [19]. To this end, it is consid-
ered that e31 = �31 = Kw = Kp = 0 . The comparisons show 
that there is a good agreement between two sets of results 
for both boundary conditions. It should be noted that there 
is a negligible difference between two sets of results in the 
case of S-S beam, which can be related to different solution 
approaches in the two works.

In Fig. 3, the effect of nonlocal parameter on the bending 
response S-S, C-F, C-S and C-C piezoelectric nanobeams 
is investigated. The maximum non-dimensional deflection 
is plotted against �∕L in this figure for two cases: I) with 
flexoelectric effect II) with flexoelectric and elastic medium 
effects. The important finding in Fig. 3 is that the stress-
driven nonlocal integral model leads to hardening structural 

responses with increasing nonlocal parameter for all types of 
end conditions. It should be noted that such a result agrees 
with the one contributed in the more general mathematical 
framework of nanobeams modeled by local/nonlocal stress-
driven mixtures [44, 45]. Also, it is worth mentioning that 
the paradox related to cantilever is resolved using the devel-
oped stress-driven integral nonlocal model. More clearly, 
increasing �∕L has a stiffening influence on the behavior of 
nanobeams.

Figure 4 highlights the effect of flexoelectric coefficient 
( �31 ) on the maximum dimensionless deflection of piezo-
electric nanobeams under various boundary conditions. 
The results of this figure are given with and without effect 
of elastic foundation. It is seen that the elastic medium 
has a stiffening effect. It is also observed that the deflec-
tion of nanobeams decreases as the flexoelectric coefficient 
gets larger. This is because the rigidity of the piezoelec-
tric nanobeam is increased due to increasing flexoelectric 
coefficient.

Finally, in Figs. 5 and 6, the effects of Winkler and Pas-
ternak parameters ( Kw and Kp ) on the maximum dimension-
less deflection of nanobeams are indicated, respectively. 

Fig. 6   Effect of Pasternak parameter on the maximum dimensionless deflection of piezoelectric nanobeams ( �
L
= 0.05, �31 = 10−7 , Kw = 0)
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The figures show that increasing both parameters has a 
decreasing effect on the deflection. In other words, elastic 
medium makes the nanobeam more rigid and the maximum 
deflection decreases. Also, it is found that Pasternak layer 
has more significant impact on the maximum deflection of 
flexoelectric nanobeam than the Winkler layer.

5 � Conclusion

In this article, within the framework of nonlocal elastic-
ity theory in its stress-driven integral form, the linear static 
bending of piezoelectric small-scale beams was analyzed 
considering the influence of flexoelectricity. The govern-
ing equations including nonlocal and flexoelectricity effects 
were derived using a variational approach on the basis of the 
Bernoulli–Euler beam theory. Also, an efficient numerical 
approach was proposed to solve the problem for arbitrary end 
conditions. In this approach, matrix differential and integral 
operators were introduced for discretization which were con-
structed by central FD formulation together with the trapezoi-
dal integration rule. Selected numerical results were finally 
given to investigate the nonlocal, flexoelectric and Winkler/
Pasternak parameters on the bending response of piezoelectric 
nanobeams. It was indicated that the stress-driven nonlocal 
integral model leads to hardening structural responses with 
increasing the nonlocal parameter for all types of end condi-
tions. It was also observed that increasing the flexoelectric 
coefficient and Winkler-Pasternak parameters leads to the 
reduction of beam’s deflection.
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