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Abstract
We propose a theoretical method for calculating the stimulated Brillouin scattering (SBS) gain coefficient in metamaterials. 
The presented model is based on homogenization and effective medium theories. We examined all of the optical, acoustic, and 
opto-acoustic parameters required to calculate SBS gain coefficient in metamaterials and proposed an approximate method 
for calculating each one. We have shown that the electrostriction is not the only important mechanism, and for different 
metamaterials, other parameters can play a significant role in the enhancement and suppression of the SBS gain coefficient. 
This result is consistent with previous work.
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1 Introduction

Although optics and acoustics have separate long histories, 
opto-acoustics is considered a recent science, which began 
in 1922 with Brillouin’s prediction of scattering of light by 
acoustic waves in a medium [1]. The incident electromag-
netic wave fields on a material induce density variations at 
different points of that material. Such density changes intro-
duce refraction index variations at different points, which in 
turn results in the scattering of light through that medium 
(Fig. 1). In general, stimulated Brillouin scattering (SBS) 
refers to the scattering of light by acoustic waves (e.g., pres-
sure or mechanical waves) [2]. SBS is normally observed in 
an isotropic material [3]. From the viewpoint of quantum 
mechanics, this phenomenon can be interpreted as the scat-
tering of photons by acoustic phonons.

Researchers have long been interested in controlling the 
scattering of the propagated light through a medium and 

employing metamaterials is a new way of controlling optical 
properties. The term “metamaterial” was first used in 2001 
by Walser [4]. The prefix “meta” indicates that the material 
does not exist in nature, but it can be produced artificially in 
the laboratory. Therefore, metamaterial is meant to convey 
a notion of superiority to the materials normally available in 
nature. In some literature, metamaterial is used to describe 
left-handed materials (i.e., materials with simultaneously 
negative electric permittivity and magnetic permeability) 
[5], whereas, in others, metamaterial is synonymous with 
a heterostructure of two or more different materials [6]. 
Although no exact definition so far has been presented for 
metamaterials, the following seems to have been recognized 
as a common definition by researchers: A metamaterial is an 
engineered composite with a rational ordered structure com-
posed of two or more constituent materials [4, 6, 7]. Here, 
the constituent materials are just considered from a macro-
scopic perspective without taking into account their micro-
scopic structure (i.e., their atoms and molecules). This is a 
correct and reasonable assumption aimed at distinguishing 
a metamaterial from an ordinary crystal [8]. Disregarding 
the microscopic structure of a material makes it possible to 
use the continuum mechanics theory in studying that mate-
rial. A continuous material retains its properties even if it 
is broken into very small segments. A continuum medium 
was assumed in the present article, where linear conditions 
are dominant. These are conditions we encounter and expe-
rience in our daily life. To express the laws of physics in a 
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continuum medium, the tensor analysis should be utilized. 
Tensors are mathematical tools we use to describe the phe-
nomena, events, and interactions that occur within a con-
tinuum medium.

In this paper, an analytical framework is proposed for 
calculating the SBS gain coefficient in a metamaterial con-
sisting of spheres embedded in a matrix. The proposed 
framework enables scholars to obtain a reasonable and fast 
approximation of enhancement or suppression of the SBS 
gain coefficient in a new metamaterial. Such theoretical stud-
ies may shed light on the way of experimental efforts in 
this field. The paper is organized as follows. In Sect. 2, we 
present an overview of SBS and the parameters required for 
determining SBS gain coefficient in the constituent media 
[10]. The following section then considers techniques to 
determine these parameters for a metamaterial. The methods 
used for determining the properties of the metamaterial are 
discussed in Sects. 3.1–3.4. Numerical examples are pre-
sented in Sect. 4, and also the results of the proposed model 
are compared with those obtained by Smith et al. [10]. The 
difference between our model and the previous study is in 
the employed theories. While we utilize the homogenization 
model and effective theory, they use a combination of energy 
density methods and perturbation theory.

2  SBS in constituent media

SBS is an opto-acoustic phenomenon. When matter (fiber) 
is exposed to a coherent, high-power laser beam, most of 
the laser energy is reflected, creating what is known as the 
Stokes wave. According to quantum mechanics, a photon 
scatters when it comes into collision with a particle—often 
a molecule. In the analysis of SBS, from a quantum mechan-
ics perspective, the incident beam and matter are assumed 
to be made up of photons and phonons, respectively. In con-
trast, in classical mechanics, the incident light is assumed 
as an electromagnetic wave and matter as a linear medium 
that follows tensor analysis relationships. According to the 
classical approach, illuminating a material medium with a 
strong enough light field of the amplitude E1 , frequency �1 , 
and wave vector k1 results in periodic changes in the mate-
rial density. In other words, a matter wave (sound) with the 
wavelength Ω is produced. The density variations cause 

periodic changes in the refractive index, too, creating a 
Bragg grating. The Bragg grating scatters the incident light 
in the opposite direction at �2 with the wave vector k2 . In 
this process, the intensities of the incident I1 and scattered 
waves I2 are related as

where x1 is the direction of propagation as shown in Fig. 1 
and g is the SBS gain coefficient at the spectrum line-center 
which is defined as [11]

Here, γ is the electrostriction, n is the refractive index, 
c is the speed of light in vacuum, �1 is the incident optical 
wavelength in vacuum, � is the material density, �l is the 
longitudinal acoustic wave velocity, and ΓB is the Brillouin 
linewidth (a measure of the acoustic loss). Equation (2) is 
also known as the SBS maximum gain coefficient that, for 
the sake of simplicity, we call it the SBS gain in the rest of 
this article. The SBS gain consists of the optical parameter 
n , the acoustic parameter �l , the opto-acoustic parameter ΓB , 
the electrostriction �2 , and the density � . The present work 
studies all the parameters in Eq. (2) then proposes analytical 
techniques to determine these parameters for a metamate-
rial composed of spheres embedded in a matrix. Here, it 
is assumed that the acoustic properties of the material sys-
tem remain unchanged; and the nonlinear optical effects, 
including four-wave mixing and the magnetic reactions of 
the metamaterial, are ignored. Throughout the article, we 
assume that the medium is linear elastic.

3  SBS in metamaterial

In this section, we calculate the SBS gain for a metamaterial 
using homogenization model. To this end, we examined all 
the parameters in Eq. (2) for metamaterials to finally con-
struct a general equation for the SBS gain in metamaterials. 

(1)

dI1

dx1
= −gI1I2

dI2

dx1
= gI1I2

(2)g =
4�2�2

nc�2
1
��lΓB

Fig. 1  Schematic view of the 
SBS process in a linear elastic 
medium [9]
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Figure 2 illustrates the homogenization process (effective 
medium theory). Effective medium theory refers to an ana-
lytical or theoretical model that describes the macroscopic 
properties of the metamaterial. In this context, instead of 
two materials (matrix and inclusion), we use an equivalent 
material (effective material) with new macroscopic proper-
ties. Figure 2a schematically depicts the composition of a 
metamaterial (spheres embedded in a matrix). Figure 2(b) 
illustrates the equivalent or effective medium which repre-
sents the real composite medium. The combined stresses 
exerted on a small element in this system are second-order 
tensors shown in Fig. 2(c). We define the filling fraction:

where Vi is the volume of inclusion and Vm is the volume of 
matrix. Here, superscripts i, m, and eff refer to the inclusion, 
matrix, and effective medium (metamaterial), respectively. 
The outline in this section is as follows: In Sect. 3.1, we 
examine the longitudinal acoustic velocity in metamaterials. 
In Sect. 3.2, we describe methods to determine the effective 
permittivity. In Sect. 3.3, we investigate the electrostric-
tion in metamaterials. Finally, in Sect. 3.4, we examine the 
Brillouin linewidth in metamaterials.

3.1  Longitudinal acoustic velocity in metamaterials

First of all, we investigate the acoustic parameter  �l in meta-
materials. According to Fig. 2 the stress–strain equation for 
a continuous medium is written as [12]

(3)f =
Vi

Vi + Vm

Equation (4) can be rewritten using the Voigt indexes as

where �ij represents the stress tensor, Cijkl the stiffness tensor, 
ekl the strain tensor, and i,j,k,l = 1,2,3. For a metamaterial 
with a cubic array, the number of components in the stiffness 
tensor Cijkl reduces from 81 to 3, and therefore the elastic 
behavior of the system can be evaluated using only the three 
components C1111 , C1122 , and C2323 . Illustrative representa-
tions of the bulk and shear moduli are shown in Fig. 3c and 
d, respectively. They are geometrically related to the stiff-
ness tensor components:

(4)
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Fig. 2  a Schematic representation of a metamaterial; spherical par-
ticles are embedded homogeneously within a matrix; �i , � i , and ni 
are shear modulus, bulk modulus, and refractive index of the inclu-
sions, while �m , �m , and nm are shear modulus and bulk modulus, and 

refractive index of the matrix, respectively. b Outline of Homogeni-
zation process. c Stress vectors along three perpendicular directions, 
each shown by a face of the cube represents a small element of the 
volume
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where � and � are the bulk and shear moduli, respectively. 
The following well-known Hashin formulas are used to cal-
culate the effective bulk and shear moduli [13–15]:

and

Equations  (7) and (8) can be valid over the range 
0 < f < 0.5.

Here, using the above-defined effective moduli, we are 
going to study the propagation of the sound wave in a meta-
material medium. In contrary to the gas state that is only able 
to transmit longitudinal sound waves, solids are capable of 
transmitting both longitudinal and transverse sound waves. 
Figure 3a and b illustrate the propagation of longitudinal 
and transverse sound waves, respectively. The velocities of 
longitudinal and transverse sound waves are expressed as [6]

(6b)� = C2323

(7)�eff = �m + f
� i − �m

� i +
4

3
�m

(
�m +

4

3
�m

)

(8)

�eff = �m + f
�i − �m

�i +
3

2

(
1

�m
+

10

9�m+8�m

)−1

×

(

�m +
3

2

(
1

�m
+

10

9�m + 8�m

)−1
)

where vl and vs are the velocities of longitudinal and trans-
verse sound waves, respectively. In order to determine 
the SBS, just the velocity of the longitudinal sound wave 
is required. Substituting Eqs. (7) and Eq. (8) in Eq. (9a), 
the velocity of the longitudinal sound wave in the effective 
medium is obtained

where  t he  e f fec t ive  dens i ty  i s  de f ined  as 
�eff = f�i + (1 − f )�m . Obviously, the sound velocity is 
higher in materials having a higher stiffness tensor than 
those with a lower one. For example, the sound velocity in 
silica is two times of that in Arsenic trisulfide.

3.2  Permittivity in metamaterials

In the following, we review different methods for calculating 
the effective permittivity of metamaterials. Although various 
methods have been proposed for this purpose, the validity 
of each method depends on the geometry of composite, the 
homogeneity of inclusions, isotropy, filling fraction, etc. 

(9a)vl =

√
C1111

�
=

√
� +

4

3
�

�

(9b)vs =

√
C2323

�
=

√
�

�

(10)v
eff

l
=

√√√√�eff +
4

3
�eff

�eff

Fig. 3  Illustrative representation 
of a) A longitudinal wave, b) A 
transverse wave, c) Bulk modu-
lus, and d) Shear modulus [16]
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An efficient numerical method is to use the optical wave 
with Bloch’s boundary conditions. This indirect method 
can only be used for dielectrics with cubic symmetry. The 
refractive index in this method is defined as n = c|k|∕� , 
where k represents Bloch’s wave vector. The cubic dielec-
tric metamaterial is investigated at long wavelengths, then 
� = 1 , and the effective refractive index can be written as 
n =

√
� [18]. Another model that researchers consider is 

the Maxwell–Garnett (MG) model. This model is valid for 
a cubic structure consists of spherical particles embedded 
in a matrix provided that the diameter of spherical parti-
cles is much less than the incident wave. Table 1 lists the 
available methods for calculating the refractive index of a 
composite material. To the best of our knowledge, there is 
not a comprehensive map to determine which model is suit-
able for which composite material. However, it is evident 
that the MG model is not valid for all f values but is suitable 
for simple cubic metamaterials [17]. The Bruggeman (BR) 
model may be accurate when the two materials occupy com-
parable filling fraction of the composite, and also it is valid 
for multilayer composites [19]. The series and parallel mod-
els are also used to estimate the effective refractive index. 
Moreover, these two models are used for estimating thermal 
and electrical conductivities of a composite material [17].

3.3  Electrostriction in metamaterials

As another key parameter, we are going to derive the elec-
trostriction for metamaterials [20]. We begin by considering 
the potential electric energy per unit volume [11, 21]

where � is permittivity. When an electromagnetic wave of 
an adequate intensity passes through a dielectric material, it 
causes displacement of the dielectric molecules and subse-
quently changes the density. The change in density, in turn, 
causes a change in permittivity:

(11)u =
�E2

8�

(12)Δ� =
��

��
Δ�

Therefore, the change in the energy density can be writ-
ten as

According to the law of conservation of energy, the 
change in energy of a system is equal to the negative of the 
work done during the process of compression or expansion 
of that system. Hence,

where pet represents the alternating pressure exerted on the 
system by the electric field called the electrostriction pres-
sure. Using Eq. (14), electrostriction pressure is

where � is the electrostriction constant and is defined as [11]

Here, � denotes the electrostriction for constituent media. 
In the following, we try to derive electrostriction for meta-
materials ( �eff  ). We present two methods for determining 
�eff  . First, we calculate �eff  using Bruggeman (BR) model. 
This model has the form [22]

where �i and �m are the permittivities of the matrix and inclu-
sion, respectively. By substituting Eq. (17) in Eq. (16), we 
write the electrostriction of a composite as

With hydrostatic and boundary conditions we evaluate six 
derivatives in Eq. (18):
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Table 1  Different effective methods for calculating the effective per-
mittivity [17]
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For a detailed discussion on hydrostatics condition of the 
calculated derivatives in Eqs. 19a–f see “Appendix”. Sub-
stituting Eqs. 19a–f in Eq. (18), the electrostriction for our 
metamaterial is given by

To complete our discussion, we mention the method pro-
posed in ref. [22]for calculating effective electrostriction of 
the metamaterial. They derived the effective electrostriction 
using the MG model:

The relation is valid for a diluted array. In Sect. 4, we 
investigate the effective electrostriction relations Eqs. (20) 
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and (21), using a combination of different materials, and also 
compare the two models.

3.4  Brillouin linewidth

The last important parameter in metamaterials we are dis-
cussing is the Brillouin linewidth [23]. The wave equation 
in a very simple particle-spring system with no energy loss 
is expressed as md2x

dt2
= −kx . Mapping the mass and spring 

constant to the density and stiffness tensor, respectively, the 
mechanical wave (or the oustic wave) equation in an iso-
tropic continuous medium with no loss becomes [24]

Indeed, the loss is an integrated part of the elastic wave 
propagation. Loss may be originated from the thermal con-
ductivity, viscosity, etc. It has been experimentally shown 
that loss is proportional to �2 . In the presence of loss, the 

stiffness tensor is written as [25]

where cijkl and c′
ijkl

 are the stiffness tensors without and with 
loss, respectively, and �ijkl denotes the tensor of phonon 

(22)
�2ul

�t2
− cijkl

�2ul

�xj�xi
= 0

(23)c�
ijkl

= cijkl + i�ijkl
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viscosity. Using the concept of Eq. (23), Eq. (22) will be as 
follows [11]

where Γ� is the damping parameter and is defined as [11, 26]

where �ph and �ph are the bulk and shear phonon viscosity 
coefficients, respectively, and are defined as

The Brillouin linewidth in Eq. (2), which is also known 
as the phonon half-life, is given by

where q is the sound wave vector and is defined as 
q = 2k = 2n�∕c . To the best of the authors’ knowledge, 
there are no established methods for calculating Γeff

B
 of a 

metamaterial [27]. We suppose that �ijkl = �Cijkl , where � 
is constant. Therefore, we can define effective bulk phonon 
viscosity and shear phonon viscosity as
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)

(26)�ph = �2323

(27)ΓB = q2Γ� =
4n2�2

�c2

(
4

3
�ph + �ph

)

 and

by substituting Eqs. (28) and (29) in Eq. (27), the effective 
Brillouin linewidth for a metamaterial is given by

4  Discussion

To describe the procedure outlined in the previous sections, 
we investigate the effective SBS gain for a metamaterial con-
sists of spheres embedded in a dielectric matrix. According 
to the previous sections, we define the effective SBS gain as

(28)�
eff

ph
= �m

ph
+ f

� i
ph
− �m

ph

� i
ph
+

4

3
�m
ph

(
�m
ph
+

4

3
�m
ph

)

(29)

�
eff

ph
= �m

ph
+ f

�i
ph
− �m

ph

�i
ph
+

3

2

�
1

�m
ph

+
10

9�m
ph
+8�m

ph

�−1

×

⎛
⎜
⎜
⎝
�m
ph
+

3

2

�
1

�m
ph

+
10

9�m
ph
+ 8�m

ph

�−1⎞
⎟
⎟
⎠

(30)Γ
eff

B
=

4(neff )2�2

�eff c2

[
4

3
�
eff

ph
+ �

eff

ph

]

Table 2  Electrostriction γ , bulk modulus κ (in GPa), shear modulus 
� (in GPa), refractive index n, Brillouin linewidth ΓB∕2π (in MHz), 
phonon viscosity coefficient ξ2323 (in m.Pa.s), stiffness tensor coeffi-

cient C1111 (in GPa), material density ρ (in Kg∕m3 ), and acost velocity 
vl (in m/s) for  SiO2 and  As2S3 compounds [9, 10]

Material � � � n Γ
B

2�
�
1111

�
1122

�
2323

C
1111

C
1122

C
2323

� v
l

SiO2 1.19 36.9 31.2 1.45 16 1.6 1.29 0.16 78.6 16.1 31.2 2200 5960
As2S3 7.53 10.4 6.4 2.37 34 1.8 1.45 0.18 18.7 6.1 6.4 3200 2595

Fig. 4  Contribution from each 
term in Eq. (2) to improvement 
in SBS gain for a)  SiO2 spheres 
in  As2S3 and b)  As2S3 spheres 
in Si
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By rewriting Eq. (31) as follows, we examine the con-
tribution from each term in Eq. (31) to the enhancement 
or suppression of the SBS gain when the filling fraction is 
changing:

In this way, the contribution from each parameter to the 
enhancement or suppression of the SBS gain can be inves-
tigated by simply adding the value taken from each curve 
at a specified filling fraction. Some material parameters are 
shown in Tab. 2. In Fig. 4a and b, we have plotted the contri-
bution from each term in Eq. (32) for  SiO2 spheres in  As2S3 

(31)geff =
4�2

(
�eff

)2

nc�2
1
�eff �

eff

l
Γ
eff

B

(32)

10 log

(
max

(
geff

)

max(gm)

)

= 10 log
(
nm

neff

)
+ 10 log

(
�m

�eff

)
+ 10 log

(
Γm
B

Γ
eff

B

)

+10 log

(
vm
l

v
eff

l

)

+ 10 log

((
�eff

�m

)2
)

and  As2S3 spheres in Si, respectively. In the case of  SiO2 
spheres embedded in  As2S3, we showed that the electrostric-
tion and velocity try to reduce the SBS gain and other terms 
try to enhance the gain. In this example, we found that the 
velocity and electrostriction are important parameters in the 
suppression of the SBS gain. In the case of  As2S3 spheres 
embedded in Si, the only term that always goes against the 
enhancement of the gain is the density and all other param-
eters try to enhance the SBS gain. We can conclude that the 
SBS gain increases in this metamaterial because there is no 
effective reducing factor. Unlike the case of  SiO2 spheres in 
 As2S3, we see that the Brillouin linewidth and density affect 
the enhancement and suppression of the SBS gain as much 
as the velocity.

In figure 5, we have plotted the SBS gain as a function 
of the filling fraction for  SiO2 spheres in  As2S3 (red curve). 
From the graph, one can find out that the SBS gain for this 
metamaterial is suppressed by 13% and 38% at f = 0.05 and 
f = 0.2, respectively. This result is consistent with the results 
of Smith et al. (blue carve). For a more accurate comparison 
of the results shown in Fig. 5, we present the numerical 
results in Table 3. Comparing the analytical calculations of 
the previous section with these numerical results, we deduce 
that our formalism provides a logical approximation for the 
rapid calculation of the SBS gain in a metamaterial in dif-
ferent filling fractions. Moreover, within our formalism, we 
can easily calculate the contribution from each parameter in 
the enhancement or suppression of the SBS gain.

In Fig. 6, we investigate the effective electrostriction 
expressions (20) and (21), using a combination of differ-
ent materials, and also compared the two models. The solid 
green curves represent the electrostriction obtained from 
the MG model and the red stars show the electrostriction 
obtained from the BR model. In Fig. 6a, we showed the 
electrostrictions of GaAs spheres in Si over the full range of 
filling fractions (0 < f < 1) obtained from both models. Here, 
we observe that the behavior of �eff   over the full range of 
filling fractions is almost entirely independent of the choice 
of model. This suggests that the suppression or enhancement 
of electrostriction in this metamaterial is independent of the 
lattice structure. In Fig. 6(b), we showed the electrostriction 
of  SiO2 spheres in Si. In this example, the �eff  is completely 
suppressed (at f ≈ 0.08 ) which can be attributed to a totally 
vanished SBS. We also observe that the difference between 
the two models is negligible over the ranges of f < 0.17 and 
0.8 < f.

Finally, it is important to keep in mind that the MG model 
is suitable for low solute concentrations such as a dilute 
array with a simple cubic structure. On the other hand, the 
BR model may be accurate for high filling fraction such as 
face-centered cubic structure.

Fig. 5  SBS gain for SiO
2
 spheres in As

2
S
3
 ; our model (red) versus 

Smith’s simulation [10] (blue)s

Table 3  SBS gain g (in nm W−1 ) for SiO2 spheres in  As2S3 for vari-
ous fill fraction

Fill fraction

0.05 0.2 0.4 0.5 0.73

Our model 0.74 0.57 0.38 0.3 0.16
Smith’s simulation [10] 0.75 0.57 0.38 0.28 0.15
Simple model
geff = fgi + (1 − f )gm

0.75 0.63 0.48 0.41 0.24
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5  Conclusion

We presented a formalism for calculating the SBS gain in 
metamaterials consist of spheres embedded in a matrix using 
homogenization and effective theory. The procedure involves 
the calculation of the mechanical, optical, and opto-acoustic 
properties involved in Eq. (2). The effect of each parameter 
on the SBS enhancement or suppression was studied. The 
results demonstrated the electrostriction is not always the 
only important mechanism, and other parameters can play 
a significant role in the enhancement or suppression of the 
SBS. Finally, the results of the proposed model were com-
pared with those obtained by Smith et al. The numerical 
comparison showed that the model presented in this paper 
can be considered as an acceptable approximation for exam-
ining changes in the SBS gain of a new metamaterial.

Appendix

In this section, we present a discussion on the hydrostat-
ics condition for evaluating the derivatives in Eq. (18). To 
evaluate these six derivatives, we use the mechanical condi-
tion of a material. During the electrostriction process, for 
each volume element, the product of density and volume is 
constant. Thus,

Another condition we use in our analysis is that the pres-
sure that particles exert on matter is equal to the pressure 
that matter exerts on particles

Here Ω represent boundary and Pm,i denotes pressure. 
With this condition, we write [22]

(33)
�iVi = mi = constant

�mvm = mm = constant

(34)ΔPm|Ω = ΔPi|Ω

Integrating both sides, we have

where C is constant.
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