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Abstract
Nowadays, much attention is paid for developing lead-free ceramics, which can be utilized in the refrigeration domain. 
This communication provides a detailed description of the synthesis and characterization of a lead-free solid solution of 
 BaTi0.91Sn0.09O3. The X-ray diffraction analysis showed that the compound exhibits a single phase of tetragonal symmetry 
(P4mm (99)). The average crystallite size estimated using Scherrer’s technique was found to be 122 nm. The microstructure 
or surface morphology of the sintered sample was investigated by using scanning electron microscopy. Based on mapping 
image, the sensitivity and spatial resolution of the different elements in our sample were improved. Analytical and simulation 
data for the electrocaloric effect in our sample were reported. A good electrocaloric strength (ξ = ΔT/ΔE) of ξ = 0.171 K mm/
kV near the ferroelectric-paraelectric phase transition temperature was obtained. These values are very interesting when 
compared to those for other materials and show the possibility of using such lead-free ceramics for refrigeration domain.

Keywords Lead-free ceramic · Ferroelectric · Theoretical model · Electrocaloric effect · Entropy change · Heat capacity 
change

1 Introduction

The refrigeration market has grown considerably because 
of the constant expansion of the industry, rising living 
standards, and climate change [1]. This has resulted in 
a lack of control over consumer energy expenditure. It 
should be noted that the extensive use of refrigeration is 
a major factor of excessive energy consumption resulting 
in the depletion of non-renewable energy resources, which 

exacerbates the effect of global warming. Nowadays, the 
open debate is mainly focused on the energy transition 
towards a green development focused on protecting the 
environment, preserving human health and reducing 
global warming [2–4]. The necessity to improve energy 
performance has become a major concern for industrial 
and scientific communities. This fragment of innovation 
has, therefore, become under great pressure to produce 
more sustainable technological solutions predicated on 
promising cooling technologies. A few successful tech-
niques have been developed. For example, the thermoelec-
tric technique (Thomson or Peltier, Seebeck effect), solar 
sorption [1], as well as magnetocaloric (MC) [5–8] and 
electrocaloric (EC) cooling [9–13]. Compared to MC cool-
ing, EC cooling main advantage is that the high electric 
fields necessary for the refrigeration cycle are less costly 
and much easier to produce than the magnetic fields nec-
essary for MC refrigeration [1]. The electrocaloric effect 
(ECE) could be defined in adiabatic conditions by the 
change of temperature when an electric field is applied. 
In 2006, Mischenko et al. found a giant ECE in thin films 
 PbZr0.95Ti0.05O3 (PZT) [9]. The disadvantage of this type 
of material is that they are toxic and require high electric 
fields, which limits practical applications [14, 15]. So far, 
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most inorganic materials with exceptional ECE are lead-
based while lead-free ceramics, generally, have a lower 
ECE [1, 16]. Nevertheless, because of worldwide lead lim-
itations, there is a pressing need to create environmentally-
friendly materials [17–22]. This makes them attractive to 
further research in relation to widely used refrigeration 
technology based on gas compression. Among the lead-
free EC materials are the prototypical  BaTiO3 (BT), which 
has a maximum ECE at high temperatures [16, 23–25]. To 
enhance their ferroelectric performance and adjust their 
Curie temperature  (TC), near room temperature, a transi-
tion strategy has been adopted by substitution at A (such 
as  Ca2+and  Sr2+), B (such as  Sn4+and  Zr4+) or in both 
sites [26–30]. It worth noting that the substitution of  Ti4+ 
by  Sn4+ in BT has also been an effective way to shift the 
 TC close to room temperature and also to induce various 
interesting properties in the dielectric behavior and sen-
sor applications [31–33]. Thus, it is important to continue 
research to achieve a giant ECE in a lead-free material in 
ceramic form by applying a relatively small electric field 
near room temperature.

In this work, we present a detailed study of the struc-
tural, morphology and EC properties of  BaTi0.91Sn0.09O3 
compound, which can be a suitable candidate as a work-
ing substance in refrigeration domain near room tempera-
ture. A phenomenological model for the simulation of the 
dependence of polarization on temperature variation under 
different applied electric fields is used for predicting the 
different EC parameters such as entropy ( ΔSE ), relative 
cooling power (RCP), heat capacity (ΔCP,E) , temperature 
changes (ΔT) and electrocaloric strength ξ.

2  Experimental Details

BaTi0.91Sn0.09O3 polycrystalline sample was prepared by 
the solid-state reaction method. In this process, stoichio-
metric amounts of  BaCO3 (99.9% purity, Aldrich),  TiO2 
(99.9% purity, Aldrich) and  SnO2 (99.9% purity, Aldrich) 
precursors were taken in the appropriate molar ratio. The 
powders were weighed according to the stoichiometric 
proportion of the following equation:

The initial powder was prepared by grinding the start-
ing materials in ethanol with an agate mortar for 2 h. Then, 
it was calcined in two stages: at 900 °C for 24 h and at 
1200 °C for 12 h. The obtained powder was again ground 
for 2 h and pressed into pellets. Subsequently, these pel-
lets were sintered at 1400 °C for 2 h to get dense ceramic. 
Hence, the experiment density of our sample was equal to 
5.7 g/cm3. Figure 1 summarizes the schematic diagram of 
the synthesis procedure for  BaTi0.91Sn0.09O3.

X-ray diffraction (XRD) pattern of our sample was 
recorded on a Philips diffractometer using CuKα radia-
tion (λ = 1.54056 Å). The microstructure was character-
ized by scanning electron microscopy (SEM) using a TS 
QUATA 250. In order to predict the ECE properties, we 
determined the change in polarization as a function of the 
electric field for the selected temperature using a current 
Keithley 428 amplifier and a high voltage amplifier TREK 
Model 20/20C. The entropy change values, under different 

(1)
BaCO3 + 0.91TiO2 + 0.09SnO2 → BaTi0.91Sn0.09O3+ ↑ CO2

Fig. 1  Schematic diagram for 
synthesis of  BaTi0.91Sn0.09O3



Electrocaloric properties of lead-free ferroelectric ceramic near room temperature  

1 3

Page 3 of 10 483

applied electric field, (experimental data) are calculated, 
using the Maxwell approach [34]:

where S, P, E, ρ and T are the entropy, polarization, applied 
electric field, mass density of the sample and the tempera-
ture of the system, respectively.

3  Results and discussion

3.1  Structural properties

To describe the structural properties of our sample, we car-
ried out XRD analysis, at room temperature. Figure 2 shows 
the dependence of XRD patterns of BST ceramic. It crystal-
lized in the tetragonal structure with P4mm (99) space group 
with cell parameters: a = b = 4.0187(0) Å and c = 4.0199(9) 
Å; α = β = γ = 90°.

Based on Debye Scherer’s formula [35, 36] and William-
son–Hall (W–H) method [37, 38], the mean size of the crys-
tallites of our ceramic was calculated, using the following 
equations:

where k (= 0.89), � , � , � , � and D are, respectively, the 
shape factor, the wavelength of X-ray, the full width at half 

(2)ΔSE =
1

�

E1

∫
E2

(
�P

�T

)
E
dE

(3)D =
k�

� cos �

(4)� cos � = 4� sin � +
k

D

maximum (FWHM), the half of Bragg’s angle, the strain in 
the lattice and the crystallite size. The values of D obtained 
using Debye Scherrer’s formula and W–H method (inset of 
Fig. 2) were 129 and 151 nm, respectively. The difference of 
D values between the two methods is due to the lattice stress 
correction term in the calculations.

To better understand the morphology, the SEM image of 
our ceramic is shown in the inset (a′) of Fig. 3. The parti-
cles of our ceramic featured a relatively dense microstruc-
ture. Hence, the average particle size was estimated using 
ImageJ software. Then, we adjusted the data obtained with 
the log–normal function [35, 39]:

where σ and D0 are, respectively, the data dispersions 
and the median diameter. The inset (a″) of Fig. 3 shows 
the dispersion histogram. The mean diameter 
< D ≥ D0 exp

(
𝜎2

2

)
 a n d  s t a n d  d e v i a t i o n 

�D = ⟨D⟩�exp �2 − 1
� 1

2  were determined using the results 
obtained from the fit to Eq. (5). Therefore, the average 
grain size was found to be 0.6 µm. In order to confirm the 
existence of all elements present in our sample, the energy-
dispersive X-ray (EDX) analysis was carried out. Figure 3a 
shows the appearance of characteristic peaks of these ele-
ments on the EDX spectrum, confirming the purity of our 
sample. In addition, Fig.  3b shows the composition 
dependence of element mapping. It was suggested that the 
distributions of the four elements are uniform, which 
improved the stability of the electrical properties.

3.2  ECE studies

3.2.1  Theoretical considerations

To determine EC properties, both the experimental and 
theoretical approaches were used. For the experimental 
evaluation, an approach based on polarization (P) data was 
applied (Eq. 2). However, for the theoretical investigation, 
a phenomenological model outlined in [40–42] is used. 
From this model, the variation of P versus temperature (T) 
and TC can be defined as:

where;

(5)f (D) =
1√
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ln
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D
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�2

2�2

⎞
⎟⎟⎟⎠
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2

)[
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(
A
(
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))]
+ BT + C

Fig. 2  XRD diffraction patterns of  BaTi0.91Sn0.09O3. The inset shows 
Williamson–Hall graph of our sample
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• Pi/Pf are the initial/final values of P at ferroelectric 
(FE)–paraelectric (PE) transition, respectively, as 
shown in the inset (a) of Fig. 4.

• B is P sensitivity dP
dT

 at FE state before transition.

From Eq. (6), the electrocaloric entropy change ΔSE 
(Eq. 2), caused by the variation of the external electric 
field (E) from E1 to E2, can be rewritten as follows:

A =

2B −
dP

dT

|||T=Tc
Pi − Pf

C =
Pi + Pf

2
− BTc

where � is the mass density of the sample.
At T = TC, ΔSE becomes maximum. So Eq. (7) may be 

written as follows:

According to this model, a full width at half maximum 
can be calculated as follows:

(7)ΔSE =

(
−A

(
Pi − Pf

2

)
sech2

(
A
(
Tc − T

))
+ B

)
ΔE

�

(8)ΔSE
max

=

(
−A

(
Pi − Pf

2

)
+ B

)
ΔE

�

Fig. 3  a EDX analysis for 
 BaTi0.91Sn0.09O3 sample. Insets: 
a″ of a shows the typical SEM 
and a″ shows the histogram of 
the distribution of particles size. 
b EDX maps for Ba, Ti, Sn and 
O elements
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Another very important parameter for refrigeration is the 
relative cooling power RCP, which presents the product of 
ΔSE

Max
 and �TFWHM . It is defined as:

A polarization-related change of heat capacity is given by:

According to this phenomenological model, a change of 
heat capacity is given by:

(9)�TFWHM =
2

A
cosh−1

⎛⎜⎜⎝

���� 2A
�
Pi − Pf

�

A
�
Pi − Pf

�
+ 2B

⎞⎟⎟⎠

RCP = ΔSE
max

× �TFWHM

(10)

RCP =
�
Pi − Pf − 2

B

A

�
ΔE

�
× cosh−1

⎛⎜⎜⎝

���� 2A
�
Pi − Pf

�

A
�
Pi − Pf

�
+ 2B

⎞⎟⎟⎠

(11)ΔCP,E = T
�ΔSE

�T

A temperature change of a polar system under adiabatic 
electric field variation from an initial value E1 to final value 
E2 can be written in the form:

CE is a heat capacity at constant electric field.

3.2.2  Simulation

In order to apply the phenomenological model, numeri-
cal calculations were carried out with the parameters dis-
played in Table 1. The FE-PE transition temperature (TC) 
was determined from the inflection point of dP/dT versus 
T (°C), as shown in the inset (b) of Fig. 4. Figure 4 shows 
P versus T for our sample under different electric fields 
(5–30 kV  cm−1). The symbols signify the experimental data 
and the red lines indicate the modeled data given by Eq. (6). 
It was found that these modeled data are consistent with the 
experimental data. Figure 5 shows the experimental entropy 
change data and their theoretical plot resulting from Eq. (7), 
at various applied electric fields. It appears that the results 
of the simulations agree well with the experimental data. It 
can also be noted that, for all applied electric fields and over 
the entire temperature range, the variation of ΔSE is posi-
tive, which confirms the FE character [43]. From Fig. 5, ΔSE 
increased sharply until reaching a peak near  TC. Hence, the 
values of ΔSE

max
 are summarized in Table 2. Under an applied 

electric field E = 30 kV/cm, ΔSE
max

 of our sample reached a 
value of 0.56 J  kg−1  K−1.

In the framework of EC refrigeration, it is essential to 
take into account two other parameters, having the same 
importance of ΔSE

max
 , namely RCP and �TFWHM , which are 

defined in Eqs. 7 and 8, respectively. All EC parameters are 
recorded in Table 2, which are comparable to other works 
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ΔCP,E = −2TA2
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2

)
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))(
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(
A
(
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)))ΔE
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T
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E2

∫
E1

(
�P

�T

)
E
dE
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T
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[
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2
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(
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(
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))
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]
ΔE

Fig. 4  Polarization versus temperature, under different electric field 
for  BaTi0.91Sn0.09O3 sample. The red lines are modeled results by Eq. 
(6) and symbols represent experimental data. The inset a shows the 
temperature dependence of polarization for  BaTi0.91Sn0.09O3 ceramic 
under constant electric field. The inset b is the plot of dP/dT versus T 

Table 1  Model parameters for 
our sample, under different 
electric fields of 5–30 kV  cm−1

∆E (kV  cm−1) TC (°C) Pi (µC  cm−2) Pf (µC  cm−2) A (µC  cm−2  K−1) B (µC  cm−2  K−1)

5 49.13 8.358 2.375 0.03426  − 0.01681
10 53.50 9.312 3.963 0.03569  − 0.02016
15 53.92 9.683 4.721 0.03637  − 0.02301
20 54.12 10.194 5.543 0.03716  − 0.02407
25 54.16 10.708 5.601 0.036501  − 0.01782
30 54.33 11.557 6.853 0.03702  − 0.02019



 H. Kacem et al.

1 3

483 Page 6 of 10

such as 0.75 PMN-0.25 PT [44] and Pb(Mg0.067Nb0.133Zr0.8)
O3 [45]. Figure 6 shows the variation of ΔCP,E as a function 
of the temperatures for different electric fields from 5 to 
30 kV  cm−1, based on Eq. (12). In this figure, we can see that 
ΔCP,E changed strongly from a negative to a positive value 
around  TC, which confirms FE behavior in our sample [40]. 
The obtained ΔCmin

P,E
 and ΔCmax

P,E
 values of our sample, under 

different electric fields, are listed in Table 2.
Using Eq. (13), Fig. 7a shows the experimental and theo-

retical curves of ΔT for our sample. It is obvious that the 
results of calculation are in good agreement with the experi-
mental results. Also, it is clear that ΔT practically maintains 
the same behavior of ΔSE . A maximum of ΔT was observed 
at around TC, which is due to the great change in P with 
increasing T [46].

Furthermore, the EC strength (ξ = ΔT/ΔE) is generally 
used to predict the heating/cooling capacity of a material [44, 
47]. The influence of the electric field and temperature on 
ξ for our samples shown in Fig. 7b. The variation of ξ ver-
sus T, under different electric fields, is similar to that of ΔT 
(Fig. 7a). Around room temperature, ξ reached a maximum 

value (ξRT = 0.12 K mm/kV) under an applied electric field 
equal to 5 kV/cm, which is higher than that of pure PZT 
(ξRT = 0.02 K mm/kV) [16]. Around TC, the maximum of EC 
strength (ξmax = 0.171 K mm/kV) of BST ceramic is signifi-
cantly higher than other lead-free ferroelectrics such as SBT 
(ξmax = 0.083) [48] and NBT (ξmax = 0.05) [49].

The different obtained EC parameters for our sample are 
summarized in Table 3. We can note that our sample can be 
considered as potential candidate in the field of refrigeration 
thanks to its important ΔT and ξ values, compared to those 
observed in other materials [48, 50–62].

In general, to determinate the nature of the magnetic phase 
transition, the plots of the magnetic entropy change (ΔSM) as 
function of T, under different applied magnetic fields, should 
collapse on a single curve with a second-order phase transi-
tion, which is suggested by Franco et al. [63, 64]. So by anal-
ogy with the MCE, the universal phenomenological ΔS� curve 
can be determined by the normalization of ΔSE[65, 66]:

(14)ΔS� = ΔSE(T ,E)
/
ΔSE

max

Fig. 5  ΔSE as a function of temperature at different electric field, for 
 BaTi0.91Sn0.09O3 sample. The red line curves represent the modeled 
data results by Eq. (7) and symbols are the experimental data

Table 2  Different values of EC properties for several applied electric fields of 5–30 kV/cm−1

Sample ∆E (kV  cm−1) TC
(°C)

δTFWHM
(K)

ΔSE
max

(J  kg−1  K−1)
RCP (J  kg−1) ΔCmin

P,E

(J  kg−1  K−1)
ΔCmax

P,E

(J  kg−1  K−1)

BaTi0.91Sn0.09O3 5 49.13 50.4657 0.104679 7.40786  − 0.7755 0.7514486
10 53.50 44.49342 0.20140 8.96097  − 1.439 1.531595
15 53.92 47.223 0.2963 13.99127  − 2.0462 2.194335
20 54.12 45.98149 0.3856 17.73046  − 2.7283 2.91578
25 54.16 47.5222 0.4866 23.1243  − 3.59047 3.817341
30 54.33 46.8823 0.56 26.25409  − 3.9928 4.39306

Fig. 6  Heat capacity changes versus temperature for  BaTi0.91Sn0.09O3 
sample, obtained by Eq. (12) at different electric field
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Therefore, to construct the universal curve, it is important 
to resize the temperature axis, below and above TC, by a new 
parameter on two clearly separated reference temperatures, 
represented by the following equation:

where θ, Tr1 and Tr2 are, respectively, the rescaled tempera-
ture and the temperatures lower and higher than TC of each 
c u r ve  w h i ch  s h o u l d  s a t i s f y  t h e  r e l a t i o n 
ΔSE

(
Tr1,2

)
= ΔSE

max
∕2.

The curves of ΔS′ (θ) for the different applied electric 
fields are shown in Fig. 8. It is worth noting that all the data 
are dispersed on a single universal curve, which indicates 
that the transition in our sample is of a second order [67].

4  Conclusion

To sum up,  BaTi0.91Sn0.09O3 sample was prepared by solid-
state method. XRD patterns showed that our sample crys-
tallized in tetragonal structure with P4mm space group at 
room temperature. Based on mapping image, the sensitiv-
ity and spatial resolution of the different elements in our 
sample were improved. P versus T curves were adjusted at 
different electric fields and were used to calculate EC prop-
erties. Experimental and theoretical approaches were used 
to determine the EC properties. A good agreement of this 
model with the experimental data specifies the validity of 
this model under a variety of applied electric fields. Near 
room temperature,  BaTi0.91Sn0.09O3 sample displayed an 
important entropy change. The relative cooling power RCP 
was also analyzed. In addition, the maximum of EC strength 
(ξmax) was found to be 0.171 K mm/kV around TC, which is 
comparable to those obtained in the literature. These make 
our sample potential non-toxic candidate for cooling sys-
tems. According to the universal curve, we confirmed that 
the PE–FE phase transition observed for our sample is of 
second order.

(15)� =

⎧
⎪⎪⎨⎪⎪⎩

T − TC

TC − Tr1

T ≤ TC

T − TC

Tr2 − TC
T ≥ TC

Fig. 7  a ΔT plotted as a function of temperature at different electric 
field, for  BaTi0.91Sn0.09O3 sample. The red line curves represent the 
modeled data results by Eq.  (13) and symbols are the experimental 
data. b The temperature dependence of the electrocaloric strength ξ at 
different electric fields in the  BaTi0.91Sn0.09O3
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Fig. 8  ΔS′ versus Θ for  BaTi0.91Sn0.09O3 sample, under different elec-
tric field
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