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Abstract
In this study, silver nanoparticles on chabazite, clinoptilolite, and clinoptilolite-stilbite natural zeolites were synthesized. 
The nanomaterials were incorporated into commercial coatings and afterward, the antibacterial activity was carried out. 
The zeolites were exposed to the activation step before the ion-exchange process with the precursor. The optical properties 
of the nanoparticles were studied through UV–Vis and FT-IR spectroscopy. Morphological and structural parameters were 
analyzed through TEM microscopy. The particle size of about 2–20 nm with spherical approach morphologies was obtained. 
Using XPS spectroscopy, the silver oxidation state was determined. The obtained nanomaterials showed antibacterial activity 
after their incorporation into the coatings. For this analysis, the Kirby-Bauer method was performed, studying the material 
against E. coli ATCC 25,922, K. pneumoniae ATCC 25,955, and K. pneumoniae ESBL + bacteria.
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1  Introduction

The nanostructured systems have modified the functional 
perspective of materials used in different domains of appli-
cation. This has improved biosensors such as biomarkers, 
drug delivery, and theranostics applications [1–5]. The zeo-
lites have been used as templates or mediums to synthesize 

nanoparticles. These have grown considerably in the last 
few years, increasing their use in the application of nano-
materials, and providing them greater stability [6]. The 
ion-exchange capacity means that these aluminosilicates 
are highly attractive for the synthesis and stabilization of 
nanostructured and sub-nanostructured materials [7]. In 
such templates, several structures with different applications 
and morphologies have been obtained, such as nanowires, 
nanostars, hollow nanospheres, and ultra-small clusters 
[8–11]. The use of natural zeolites to obtain nanostruc-
tures has been increasing in recent years. Among these are 
chabazite, clinoptilolite, heulandite, mordenite, etc. [12–15]. 
As some types of zeolites have antibacterial properties, this 
usually represents a great synergy with nanostructured mate-
rials, enhancing such applications [16].

The synthetic zeolites in relation to natural zeolites are 
most used for nanoparticles obtaining. Using natural zeolites 
promotes the sustainable utilization of natural resources. The 
chabazite, clinoptilolite, and clinoptilolite-stilbite zeolites 
have been selected since these are natural zeolites obtained 
from regional deposits. With the results achieved in this 
work, we intend to enhance its application. Concerning other 
types of zeolite, those indicated in this work symbolize a 
representatively lower cost.
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Additionally, it has been reported that Ag NPs are 
obtained in a zeolite matrix such as the mordenite, 4A, 
and ZSM-5, with spherical geometry, regularly [17–19]. 
In some cases, the antibacterial capacity of Ag NPs in the 
zeolite matrix has been analyzed [20, 21]. On the other 
hand, metallic nanoparticles exhibit the optical property 
known as the surface plasmon resonance (SPR) easily 
tunable and directly dependent on the morphological 
and dimensional parameters [22]. This property has been 
related to the antibacterial properties, allowing the iden-
tification of structural parameters that increase the anti-
microbial effect [23]. Due to this, metallic nanoparticles 
obtaining especially silver, in a template that previously 
exhibited an antibacterial effect, enhances its properties 
[24]. Additionally, up-conversion nanoparticles (UCNPs) 
and carbon dots have provided applications in cancer 
therapy [25, 26]. Zeolite-stabilized nanoparticles can be a 
suitable medium for immersion in other coating types, pre-
serving the antibacterial properties of the nanoparticles. In 
the case of clinoptilolite-stilbite and heulandite, the appli-
cation, deposition, and subsequent characterization studies 
in coatings have not been entirely addressed [27]. There 
are nanostructured materials incorporated in coatings that 
achieve an acceptable antibacterial effect [28]. However, 
usually the methodology for their incorporation requires 
the use of sophisticated equipment and time-consuming 
synthesis processes.

Recently, Duangkamon Jiraroj et al. have evaluated the 
bactericidal activity in coatings with Ag+ ions and Ag NP, 
achieving the optimal combination of these to enhance the 
above applications using synthetic zeolite A [29]. The bacte-
ricide efficiency of zeolite coatings with silver nanoparticles 
has been evaluated by Mpenyana-Monyatsi et al. removing 
bacteria from groundwater using low concentrations and 
reaching 100% efficiency [30]. Galeano et al. obtained a 
coating based on paint zinc incorporated nanoparticles for 
application on steel surfaces. Achieving a bactericidal effect 
on Bacillus anthracis, B. cereus, and B. subtilis bacteria. In 
the previously mentioned cases, the study focuses only on 
standardized bacterial strains [31].

The present investigation addresses the comparative 
study of stabilized nanoparticles in chabazite, clinoptilo-
lite, and clinoptilolite-stilbite natural zeolites including both 
standardized and extended-spectrum β-lactamases-positive 
(ESBL +) bacterial cultures. We consider the analysis of its 
antibacterial property after the incorporation in commercial 
coatings. Additionally, the proposed method represents an 
agreement with the green chemistry philosophy and means 
an extremely low cost for nanomaterials application.

2 � Materials and methods

2.1 � Ag NPs synthesis and incorporation 
into coatings

Three types of natural zeolite were used as a matrix 
(chabazite, clinoptilolite-stilbite, and clinoptilolite) for 
hosting the Ag NPs. The activation and cleaning process of 
the zeolite was carried out as reported by J. F. Román. [32] 
The Ag NPs synthesis was carried out employing the ion-
exchange property of the zeolites and based on the method 
previously proposed by M. Flores and coworkers [33–35]. 
A detailed description of this process has been included in 
the Supplemental information.

For the coatings, we use the classic white commercial 
paint from the Osel company. A portion of zeolite-Ag NPs 
of 0.25 g was combined with 20 ml of paint. The mixture 
was magnetically stirred for 20 min. Using the dip-coating 
method a glass slide was employed as a substrate. This was 
kept at 5 s immersion time and it was dried at room tempera-
ture for 24 h. Subsequently, the coated glass slides were sec-
tioned to 1 cm2 to carry out the antibacterial study. This pro-
cedure was done for all zeolite types, as shown in scheme 1.

2.2 � Antibacterial study

The following cultures were used for the antibacterial 
tests: Escherichia coli ATCC 25,922, Klebsiella pneumo-
niae ATCC 25,955, and Klebsiella pneumoniae ESBL +. 

Scheme 1   Process of slide coat-
ing with zeolite-Ag NP
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These were developed in culture media: tryptic soy broth 
and agar for standard methods.

For the inhibition halo measurement by the Kirby-
Bauer method, a bacterial inoculum was performed to 
match the 0.5 (1.5 × 108 UFC/ml) McFarland stand-
ard. This was massively seeded on a plate with culture 
medium, then 1 cm2 glass sections with coating were 
placed. It was incubated for 24 h at 37 °C, then the inhi-
bition halo was measured.

3 � Results and discussion

The low-resolution XPS spectra are included in Fig. 1 and 
were obtained using a Mg source. These spectra corre-
spond to clinoptilolite-stilbite, clinoptilolite, and chabazite, 
Fig. 1a–c, respectively. In all cases the high-resolution spec-
trum on the silver region is shown in the inset. The signals 
associated with oxygen, silicon, and aluminum, which rep-
resent the framework of the zeolite, are observed. In the 
low-resolution XPS spectrum, it is also possible to observe 
Auger transitions are located at 990, 902, and 745  eV 
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Fig. 1   Low-resolution XPS spectra and high-resolution spectrum at 3d silver region (inset): a clinoptilolite-stilbite, b clinoptilolite, and c 
chabazite
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approximately. Which, according to Moulder et al., can be 
associated with Carbon (KVV), Silver (MVV), and Oxygen 
(KLL) [36].

Similarly, it is possible to observe the carbon 1 s signal. 
Analyzing the high-resolution spectrum in the 364–378 eV 
region, it is observed that this adjustment closely presents a 
good match to the signal obtained experimentally. Here, two 
signals with peaks at 374.3 eV and 368.3 eV with an energy 
difference between them of 6 eV, corresponding to the 3d3/2 
(374.3 eV) and 3d5/2 (368.3 eV) associated to silver [36–38].

Figure 2 displays the optical absorption spectra, cor-
responding to Ag NPs stabilized in the different zeolite 
types. For all cases, a molarity of 0.07 M of AgNO3 was 
considered. The experimental signal is produced by the 
contribution of 4 bands, located at 206, 282, 364, and 

496 nm for the case of clinoptilolite-stilbite (Fig. 2a). For 
clinoptilolite (Fig. 2b), these bands are located at 200, 
259, 362, and 516 nm, and for chabazite (Fig. 2c) at 203, 
277, 474, and 625 nm. Figure 2d provides a comparison 
of Ag NPs optical absorption in the three zeolites types. 
The absorption bands in the range of 200–259 nm have 
been associated with the presence of silver ions by other 
systems. [39] However, in some reports there are associ-
ated bands between 277 and 282 nm to the presence of 
Ag147 clusters with cube-octahedral morphology. [40] The 
SPR in Ag NPs with spherical type geometry is regularly 
observed between 400 and 530 nm. [41] The absorption 
bands obtained between the region of 496–516 in Fig. 2 
represent such a case.

(a) (b)

(c) (d)

Fig. 2   Optical absorption of Ag NPs and deconvolutions in a clinoptilolite-stilbite, b clinoptilolite, c chabazite, and d absorption spectra of the 
three types of zeolite hosting Ag NPs
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In other templates, nanoparticles with triangular geom-
etries, plates, and cubes have been obtained. These have 
exhibited SPR in near red regions [42, 43].

In addition, Fig. 2d shows that the absorption maxima 
(SPR) have slight shifts. This suggests that different types of 
zeolite can influence on particle size, even considering the 
same parameters of the synthesis method. With a particular 
feature for different types of applications [34, 38, 44–46].

On the other hand, the (black line) in Fig. 3 indicates the 
result of activated zeolite types and the b (red line) indicates 
the result of zeolite with Ag NP (0.07 M). In the spectra, 
absorption peaks are observed around 3300 and 1630 cm−1, 
these are associated to water molecules interacting with Na+ 
and Ca+ at the channels and cages of the zeolite skeletal 

structure [47]. In the vibrational spectrum regions, it is pos-
sible to observe behaviors or modifications associated with 
the trend of metallic species to form aqua-complexes and 
hydration in aqueous media [48]. Featuring slight alterations 
in bands located on the 3700–3100 range cm−1 (OH− groups 
present in the zeolite structure). As well as regions from 
800 to 500 cm−1 affected by metal cations sorption. In this 
work, for the varieties of zeolite involved, slight modifica-
tions are observed on these vibrational regions. However, 
for clinoptilolite zeolite, a stronger modification is observed 
on the 3700–3100 cm−1 and 800–500 cm−1 region. Mean-
ing that it is a representation of the silver species [48]. 
Other bands emerge around 1020, 770, 535, and 458 cm−1. 
The band in 1020 cm−1 corresponds to vibration modes of 
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Fig. 3   FT-IR spectra of individual activated zeolite types (black line) and hosting Ag NPs (red line): a Clinoptilolite-Stilbite, b Clinoptilolite, 
and c Chabazite
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asymmetric stretching of Si–O and Al–O bonds [49]. The 
band at 770 cm−1 is assigned to stretching vibration modes 
of the O–Si–O and O–Al–O groups. Whereas the band found 
in 535 cm−1 is assigned to the torsional vibrations of the 
Al–O–Si bonds. [50] Finally, the 458 cm−1 band is associ-
ated with the bending vibrations of the Si–O and Al-O bonds 
[51–53].

The morphology and structural parameters of the nano-
particles were obtained by TEM (Fig. 4). Figure 4a shows 
the micrographs for the nanoparticles synthesized using 
clinoptilolite-stilbite. The interplanar distance (inset) is 
1.45 Å, which can be associated with the plane (1 1 0) [54]. 
The particle size histogram in Fig. 4b represents the distri-
bution of the particles in Fig. 4a. It is observed that the size 
range is between 2 and 13 nm, with two prominent popula-
tions of 5 and 8 nm. Moreover, using the Clinoptilolite as a 
template, a decrease in the particle size has been obtained 
(Fig. 4c). In this matrix, the predominant size is between 4 
and 6 nm. Likewise, the interplanar distance found is asso-
ciated with the plane (1 1 0) corresponding to the hexago-
nal silver space group P63/mmc. Although the size range 
is wider, it is limited by parameters of 2–20 nm as shown 
in Fig. 4d. In the Chabazite study, as in the previous cases, 
nanoparticles with spherical morphologies were obtained 
as shown in Fig. 4e. However, the size range has a better 
delimitation between 3 and 8.5 nm. Similarly, the predomi-
nant nanoparticle population is located between 4.5 and 
5 nm as shown in Fig. 4f. Once again, the (1 1 0) plane was 
identified.

Using the three zeolite types with the same parameters 
of the proposed synthesis method, slight shifts in the size 
range of the nanoparticles have been obtained. This behavior 
may depend on the size of the zeolite crystal and some-
times on the silicon/aluminum ratio [55, 56]. In other zeolite 
species, particles with sizes ranging from 50 nm have been 
obtained [57]. Since the predominant size of the nanoparti-
cles obtained in this work is less than 30 nm, it is attractive 
for drug delivery applications. Because they can be easily 
removed from the bloodstream [58]. Nanoparticles with 
well-defined regions of size have promoted their applica-
tion for theragnostic purposes [59].

In addition, theoretical studies using DFT, Monte Carlo 
simulation, molecular dynamics, etc., have indicated that 
small clusters (below 1 nm) are confined to the zeolite 
channels and exhibit interaction with oxygen atoms within 
2.88 ± 0.02 Å [60]. Sub-nanometric particles confined to the 
zeolite structure represent an application field on catalysis, 
achieving selective characteristics in specific reactions [61].

Table 1 shows the elemental analysis by EDS for zeolites 
with Ag NPs. The amount of oxygen, aluminum, and silicon 
is higher than the amount of potassium, iron, magnesium, 
calcium, sulfur, and silver. Since these elements consti-
tute the skeletal structure of the zeolite. Additionally, it is 

observed that the amount of silver after treatment was vari-
able according to the zeolite type. In this case, the clinop-
tilolite-stilbite achieved the highest amount of silver with 
14.43 wt%, compared to 4.21 wt% and 3.90 wt% obtained 
for clinoptilolite and chabazite, respectively.

For the inhibition halo study by the Kirby-Bauer method, 
the control cultures were tested with a 10 µg Gentamicin 
disk used as positive control. Whereas an activated zeolite 
coating and a zeolite coating from deposit were used as a 
negative control.

Figure  5 provides a schematic representation of the 
results obtained. The horizontal axis represents the Ag NPs 
zeolite samples obtained from 0.07 M AgNO3 aqueous solu-
tions and the corresponding controls. On the vertical axis, 
the inhibition halo measurement is presented in millimeter 
(mm) units. As observed in the case of Chabazite-Ag NPs, 
for E. Coli a higher inhibition was shown with a diameter of 
17 mm, better than the 15 mm obtained by Clinoptilolite-
stilbite and Clinoptilolite. The zeolites extracted from the 
deposit, as well as the ones activated later, provided a better 
antibacterial effect than the positive control. In the case of 
K. pneumoniae ATCC, the antibacterial effect of zeolites by 
incorporating nanoparticles did not increase significantly. 
With the clinoptilolite-stilbite, it was possible to increase 
the inhibition radius by only 1 mm. In other cases, the radius 
was increased up to 2 mm.

Additionally, against K. pneumoniae ESBL + bacteria, 
clinoptilolite showed an enhanced inhibition radius of up to 
19 mm. Other authors have reported Ag NPs stabilized in 
zeolite ZSM-5 against E. coli and P. aeruginosa, reaching 
inhibition radii up to 10 mm [62]. As zeolites are powders 
and have micro-pores, their application in coatings is attrac-
tive. The results reported in this work suggest that using only 
these types of natural zeolite in combination with commer-
cial paint, a superior antibacterial effect to the positive con-
trol is obtained. This combined antibacterial effect, between 
zeolites and Ag NPs, is not commonly associated between 
the stabilizer and the precursor [63]. This behavior has 
been observed in some plant extracts when these are used 
as reducing agents/stabilizers of metallic nanoparticles [64].

In general, in this work the Ag NPs supported in 
chabazite, obtained a prominent antibacterial activity against 
the studied cultures. According to TEM analysis, chabazite-
hosted Ag NPs have the smallest nanoparticle size distri-
bution (3—8.5 nm), which is a factor that contributes to 
antibacterial capacity [65]. According to the EDS analysis, 
this behavior could be due to the chabazite contain a lower 
amount of silver (3.90 wt%).

The most susceptible bacteria to Ag NPs were Escheri-
chia coli, although the K. pneumoniae ESBL + variant 
showed slightly higher resistance to Ag NPs. This can be 
attributed to the fact that bacteria of this genre possess a 
protective polysaccharide capsule [66].
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4 � Conclusions

From this study, it is confirmed that a material with antibac-
terial properties based on Ag NPs and natural zeolites was 
obtained. The Zeolite- Ag NPs systems exhibited features to 
be incorporated into commercial paint and still retain their 
antibacterial properties. The use of different zeolite types is 
indicated without a rigorous cleaning process. In the zeolite 
types, the surface plasmon resonance located in the UV–Vis 
region was observed in a different position than the silver bulk 
absorption bands.

In the test of the antibacterial activity after the incorpora-
tion of the nanoparticles in commercial coatings, the effect of 

Table 1   Elemental analysis for zeolite types with Ag NPs

* Excluded from the sample

Element Clinoptilolite-
stilbite (%)

Clinoptilolite (%) Chabazite (%)

Oxygen 39.10 42.50 42.08
Aluminum 9.08 8.28 11.29
Silicon 33.96 42.70 40.33
Potassium * 1.02 *
Iron 0.47 0.53 1.28
Magnesium 0.82 0.25 0.72
Calcium 1.14 0.52 *
Sulfur 1.00 * 0.40
Silver 14.43 4.21 3.90
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the material on the cultures Escherichia coli, Klebsiella pneu-
moniae ATCC 25,955, and Klebsiella pneumoniae ESBL + was 
confirmed. A higher inhibition halo was observed compared 
to the positive control used. The nanoparticles obtained in the 
Chabazite were smaller in size, between 2 and 8.5 nm. These 
presented prominent antibacterial activity. Clinoptilolite-
stilbite was able to host higher amounts of silver, achieving 
a quantity of 14.43 wt%. In all cases, the nanoparticles were 
smaller than 20 nm.

The results obtained can be generalized and applied on 
different coatings such as resins, natural oils, sealants, and 
ceramic paste, to prevent bacterial growth on several surfaces.
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