

Surface elasticity and surface slice thickness efects on the elastic properties of nanoflms

Jiangang Li1 · Aoxuan Wang2 · Bai Narsu3 · Guohong Yun4 · Zhixiang Gao1 · Dapeng Liu5

Received: 18 March 2019 / Accepted: 20 May 2019 / Published online: 25 May 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

A formula for size-dependent Young's modulus was obtained by considering surface elasticity efect and surface slice thickness efect. Due to the infuence of surface slice thickness, the second and third surface modifcations, i.e., nonlinear surface modifcations were introduced. The frst surface modifcation, i.e., the linear surface modifcation of Young's modulus is induced by surface elastic coefficient and nonlinear surface modifications are induced by surface slice thickness. For given surface Young's modulus *Y_s*, surface slice thickness strongly enhanced surface effect; while for given surface elastic coefficient *S*, surface slice thickness weakened surface effect. The influence of surface slice thickness effect on nanofilm effective Young's modulus is more obviously in the condition that the surface slice thickness is comparable with flm thickness, the flm with only several nanometers or with oxidated surface for example. The present theoretical scheme is envisaged to provide helpfulness for further research of mechanical properties of nanoflms and useful insights for designing and application of nanoflm-based devices.

1 Introduction

Over the past decade, the mechanics of nanostructures has attracted a great deal of attention due to their widely proposed applications in nanoelectromechanical

 \boxtimes Jiangang Li Lijiangang1127@163.com

 \boxtimes Zhixiang Gao 674496407@qq.com

- ¹ School of Physics and Electronic Science, Shanxi Datong University & Shanxi Province Key Laboratory of Microstructure Electromagnetic Functional Materials, Shanxi Datong University, Datong 037009, People's Republic of China
- ² Committee of the Communist Youth League, Shanxi Datong University, Datong 037009, People's Republic of China
- College of Physics and Electronic Information, Inner Mongolia Normal University & Inner Mongolia Key Laboratory of Physics and Chemistry of Functional Materials, Hohhot 010022, People's Republic of China
- ⁴ Inner Mongolia Key Lab of Nanoscience and Nanotechnology and School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, People's Republic of China
- ⁵ Department of Petroleum Engineering, Chengde Petroleum College, Chengde 067000, People's Republic of China

systems (NEMS) $[1-3]$ $[1-3]$. Nanostructures such as nanowires, nanobeams, and nanoflms difer signifcantly from bulk structures in their mechanical properties [[4–](#page-5-2)[6](#page-5-3)]. The nanostructures were used as nanosensors, nanoactuators, nanogenerators, and nanoresonators which are important components of NEMS [\[7–](#page-5-4)[11\]](#page-5-5). With the rapid development of nanomaterial manufacture, NEMS has been an important research area in nanotechnology and nanoscience [[12,](#page-5-6) [13](#page-5-7)]. Since the nanostructures have large surface-to-volume ratio, their mechanical properties are very diferent from their bulk counterparts [[14–](#page-5-8)[16](#page-5-9)]. The size-dependent and surface-modulated properties of nanostructures are the main mechanical diference from their bulk counterparts [[17](#page-5-10)–[19](#page-5-11)]. Miller and Shenoy gave a continuum mechanics theoretical scheme with efective elasticity for sizedependent and surface-modulated elastic properties of nanoflms [[20](#page-5-12)]. Wang et al. introduced surface slice thickness concept in the natural frequency of nanoflm researching, but they let the surface slice thickness approach zero while keeping surface elasticity as a constant [[21\]](#page-5-13). When the surface slice thickness was neglected, the result of theoretical scheme will be same as surface model [[20](#page-5-12)]. In the surface model, a completely ideal slice with surface elastic coefficient (measured in N/m) but without thickness (i.e., the surface slice thickness is absolutely zero) ideally adheres to the bulk-like core of nanoflms. This

surface model is very useful in solving many surface and mechanics problems of nanostructures [[22,](#page-5-14) [23\]](#page-5-15). But this surface model is a completely ideal model that does not take surface slice thickness into consideration. The absence of surface slice thickness might lead to unrealistic physical images in some cases. And in application, their surface model works only on the condition that the size of nanostructures is relatively large, and the whole thickness of nanoflm is large enough comparing with surface slice thickness. Researchers found that the native oxide at surface may afect overall elastic response strongly and the native oxide layer thicknesses were reported in the literatures, ranging from 2 nm to 5 nm [[24](#page-5-16)[–26\]](#page-6-0). The surface slice is thick enough to infuence overall flm mechanical properties obviously and cannot be neglected. In consideration of the defects in surface model, another model was established to extract the overall mechanical response of nanowires, called as Core–Shell model [[27](#page-6-1), [28](#page-6-2)]. Core–Shell model modified surface model by considering surface slice thickness. Researchers pointed out that elastic constants of crystals are very sensitive to interatomic distance. This property of elastic constants indicates that surface slice elastic properties are strongly affected by surface relaxation effect $[27-30]$ $[27-30]$ $[27-30]$. On the other hand, the absence of bond at surface lowered the symmetry of surface slice. These surface efects extend into inner atomic layers of flms. This extending should be a gradual process and fades off slowly. Surface slice can be seen as a uniform elastic slice for sake of simplicity. In nanowire Core–Shell model, cylindrical core has bulk modulus E_0 , while surface shell has surface modulus E_s . This surface elasticity theoretical route is reasonable in application, but the concept of nanowire Core–Shell model implicates that surface shell seems to be a diferent elastic material compared with bulk-like core [\[28\]](#page-6-2). Actually indeed, surface shell should be the same material as bulk-like core but infuenced by surface efect. Following this train of thought, bulk modulus should work on whole nanostructure area (including surface shell and so called bulk-like core), while surface modulus should work only on surface slice and should be seen as additional modulus.

In this paper, a continuum elasticity theoretical model for nanoflms was established by considering surface slice thickness. The bulk Young's modulus works on whole nanoflm area and surface Young's modulus (surface elastic coefficient) works only on surface slice. The relationship between present theory and surface model was established by distinguishing surface Young's modulus and surface elas-tic coefficient. This paper is organized as follows. In Sect. [2](#page-1-0) the model for effective Young's modulus of nanofilms was established. In Sect. [3,](#page-3-0) our model was applied to Si nanoflm Young's modulus, Au nanoflm biaxial modulus and Cu nanoflm biaxial modulus, and the infuences of surface elastic coefficient and surface slice thickness were discussed. Finally, Sect. [4](#page-5-17) summarized our conclusions.

2 Theory and models

For a freestanding nanoflm with thickness *t*, the relative number of atoms that are bonded at surface of the flm increases with decreasing thickness. The environment of atoms near surface is diferent from that of bulk counterparts. The missed bonding partners of atoms near surface relaxed the flm. Thus, surface slice symmetry might difer from bulk counterpart. There should be additional Young's modulus (or elastic coefficient) due to surface effect. The additional Young's modulus (or elastic coefficient) can be called as surface Young's modulus (or surface elastic coefficient). The surface effect affects the elasticity and symmetry of not only surface atomic layer but also inward near surface atomic layers. Hence, a surface slice with thickness t_s should be reckoned in to interpret the elasticity of nanoflms. The hypothesis that the same thickness of top and bottom surface slices can be proposed for sake of simplicity, $t_{ts} = t_{bs} = t_s$, where t_{ts} and t_{bs} are top and bottom surface slice thicknesses, respectively. The range of top and bottom surface slices in coordinate is $t/2 - t_s \sim t/2$ and $-t/2 + t_s \sim -t/2$, respectively, where *t* is total thickness of the nanofilm. Here we set the reference plane on the mid-plane of the nanoflm as shown in Fig. [1.](#page-1-1) Surface Young's modulus within surface slice can be given by

$$
Y_{s} = \frac{1}{t_{s}} \int_{t_{s}} Y_{s}(z) dz = \frac{1}{t_{s}} S,
$$
\n(1)

where surface elastic coefficient

$$
S = \int_{t_s} Y_s(z) \mathrm{d}z \tag{2}
$$

Equation ([1](#page-1-2)) averaged the surface Young's modulus within surface slice. Where $Y_s(z)$ is surface Young's modulus which varies with position (*z* coordinate actually) within

Fig. 1 Schematics of nanofilm with surface slice thickness t_s and surface Young's modulus Y_s . The blue backdrop part near surface is surface slice with thickness t_s . The reference plane was set on the midplane of the flm (color fgure online)

surface slice; and Y_s is the average of $Y_s(z)$ within surface slice. The unit N/m of surface elastic coefficient S is different from Young's modulus of bulk material (bulk Young's modulus) Pa. While surface Young's modulus Y_s holds the same dimension as bulk Young's modulus Pa. Surface Young's modulus means surface elasticity effect on Young's modulus of flm (within surface slice), but not real or efective Young's modulus within surface slice. Effective Young's modulus within surface slice can be given by the sum of surface Young's modulus and bulk Young's modulus within surface slice via $Y_{\text{eff}}^s = Y + Y_s$ (here surface slice thickness efect is not considered for sake of simplicity), but not pure surface Young's modulus *Y_s*. Bulk Young's modulus works on the whole flm, not only surface slice but also inner core. However, surface Young's modulus works only on surface slice.

This surface elasticity theoretical scheme can be used as calculation programme for the overall elastic response, i.e., the overall efective Young's modulus of nanoflms. Film bending modulus can be given by

$$
G_{\text{bent}} = \int_{-\frac{1}{2}t}^{\frac{1}{2}t} Y(z) z^2 dz.
$$
 (3)

where $Y(z)$ is film Young's modulus varies with *z* coordinate and including bulk Young's modulus and surface Young's modulus. Film bending modulus can be obtained as

$$
G_{\text{bent}} = \frac{1}{12} Yt^3 + \left(\frac{1}{4}t^2 t_s - \frac{1}{2}t_t^2 + \frac{1}{3}t_s^3\right) \left(Y_{\text{ts}} + Y_{\text{bs}}\right). \tag{4}
$$

where Y_{ts} and Y_{bs} are top and bottom surface Young's moduli, respectively. The effective Young's modulus under bending mode of nanoflms can be given by

$$
Y_{\text{bent}} = \frac{G_{\text{bent}}}{\frac{1}{12}t^3} \tag{5}
$$

Submitting Eq. (4) (4) into Eq. (5) (5) (5) , the nanofilm effective Young's modulus under bending mode can be given by

$$
Y_{\text{bent}} = \frac{Yt^3 + (3t^2t_s - 6tt_s^2 + 4t_s^3)(Y_{\text{ts}} + Y_{\text{bs}})}{t^3}.
$$
 (6)

Submitting surface elastic coefficient

$$
S = t_s Y_s \tag{7}
$$

into effective Young's modulus under bending mode Eq. [\(6](#page-2-2)), one can obtain

$$
Y_{\text{bent}} = Y + \frac{3}{t} \left(S_{\text{ts}} + S_{\text{bs}} \right) - \frac{6t_s}{t^2} \left(S_{\text{ts}} + S_{\text{bs}} \right) + \frac{4t_s^2}{t^3} \left(S_{\text{ts}} + S_{\text{bs}} \right). \tag{8a}
$$

One can easily fnd that the frst term is bulk Young's modulus, the second, third and fourth terms are frst-, second- and third-order surface modifcations, respectively. This surface modifcation is similar to Core–Shell model about nanowires [\[27\]](#page-6-1). Compare with nanowire, nanoflm surface elasticity effect will not introduce fifth term (the fourth-order surface modifcation). This showed the difference between present theoretical scheme and nanowire Core–Shell model. In Eq. [\(8a](#page-2-3)), the frst-order surface modifcation is independent from surface slice thickness and only dependent on surface elastic coefficient, and it is proportional to 1/*t*. In other words, the frst-order surface modifcation is linear surface efect on efective Young's modulus. It is a pure surface elastic coefficient modification. While the second- and third-order surface modifcations are dependent on surface elastic coefficient and surface slice thickness. They are surface slice thickness modifications and proportional to $1/t^2$ and $1/t^3$, respectively, in other words, they are nonlinear surface efects on efective Young's modulus. The frst-order surface modifcation (linear surface efect) is same as theoretical scheme (surface model) in Ref. $[20]$ $[20]$. But the two-dimensional surface slice without thickness is just a completely ideal model. The existence of surface slice thickness requires researchers to introduce the second- and third-order surface modifcations (nonlinear surface efects) to model the elastic response of nanoflms.

For the sake of convenient discussion of the higher order surface modifcations, Eq. [\(8a](#page-2-3)) can be simply rewritten as

$$
Y_{\text{bent}} = Y + \frac{S^{(1)}}{t} + \frac{S^{(2)}}{t^2} + \frac{S^{(3)}}{t^3}
$$
 (8b)

where $S^{(1)} = 3(S_{ts} + S_{bs})$, $S^{(2)} = -6t_s (S_{ts} + S_{bs})$, $S^{(3)} = 4t_s^2$ $(S_{ts} + S_{bs})$ are first-, second- and third-order surface modifcations. There is no restriction on orientation of Young's modulus in Eqs. [\(6](#page-2-2)) and (8), hence the limitation of present theoretical scheme covers any orientation. This theory can be used for researching the Young's moduli $Y_{(100)}$, $Y_{(110)}$ and $Y_{(111)}$ of nanofilms with (100), (110) or (111) surface, as well as biaxial modulus under bending mode, respectively, for example.

Equations $(8a)$ $(8a)$ and $(8b)$ $(8b)$ provided the relationship between surface model and present theory. When the flm is relatively thicker or the surface slice is relatively thinner, i.e., t_s can be neglected compared with film thickness *t*, then $t_s \rightarrow 0$. Equation ([8a\)](#page-2-3) or ([8b\)](#page-2-4) reduces to

$$
Y_{\text{bent}} = Y + 3\frac{\Sigma_{\text{s}}}{t},\tag{9}
$$

where \sum_{s} = (S_{ts} + S_{bs}) is the sum of top surface elastic coef-ficient and bottom surface elastic coefficient. Equation ([9\)](#page-2-5) is just efective Young's modulus of nanoflm under bending mode in surface model [\[20,](#page-5-12) [21](#page-5-13)]. Surface model can be treated as frst approximation of the present theory in this paper.

For the extension mode, the overall Young's modulus can be given by

$$
Y_{\text{extension}} = \frac{1}{t} \int_{t} Y(z) \, dz,\tag{10}
$$

The overall Young's modulus under extension mode can be obtained as

$$
Y_{\text{extension}} = Y + \frac{t_s (Y_{ts} + Y_{bs})}{t} = Y + \frac{S_{ts} + S_{bs}}{t},\tag{11}
$$

Equation ([10](#page-3-1)) indicates that, for given surface elastic coefficient *S*, there is no difference between present theory and surface model under extension mode. Surface slice thickness has no contribution to the flm efective Young's modulus under extension mode.

3 Results and discussions

Bulk Young's modulus is 169 GPa for [110] single-crystal silicon [\[24](#page-5-16)]. During fabrication of nanoflms, flm surface will be inevitably afected by oxidation and molecule adsorption. Surface efects make surface slice elasticity to be very different from bulk or inner core counterpart. It is difficult to quantify these surface efects because they are always afected by experiment condition. Surface slice thickness of Si nanoflms under the condition that surface is obviously oxided have been reported by Refs. [[24–](#page-5-16)[26\]](#page-6-0), ranging from 2 nm to 5 nm. And efective Young's modulus within surface

Fig. 2 Si nanoflm efective Young's modulus as function of flm thickness t . For experiment details see Ref. $[23]$ (color figure online)

slice is also varies in the Refs. [[24,](#page-5-16) [31,](#page-6-4) [32](#page-6-5)], ranging from 50 GPa to 75 GPa. Surface Young's modulus induced by surface effect can be obtained here and is also varies, ranging from − 94 to − 119 GPa.

In Fig. [2](#page-3-2), we chose surface slice thickness as 2 nm and 5 nm, and surface Young's modulus as − 94 and − 119 GPa, respectively, to model efective Young's modulus of Si nanoflm with (110) surface. The corresponding surface elastic coefficient *S* can be obtained using Eq. (7) (7) . For example, when surface slice thickness $t_s = 2$ nm, surface Young's modulus $Y_s = -94$ GPa and − 119 GPa, the corresponding surface elastic coefficient *S* = − 188 N/m and − 238 N/m, respectively. When surface slice thickness $t_s = 5$ nm, surface Young's modulus $Y_s = -94$ GPa and − 119 GPa, the corresponding surface elastic coefficient $S = -470$ N/m and − 595 N/m, respectively. When surface slice thickness $t_s=2$ nm, present theory gives good agreement with experimental data for larger film thickness. And when $t_s = 5$ nm, present theory gives good agreement with experimental data for smaller flm thickness. In Fig. [2,](#page-3-2) it is observed that surface elasticity effect along with surface slice thickness efect partially explained the distinctive drops of Si nanofilm effective Young's modulus, but not fully. This shows that there might be more dominant efects infuencing the trend. A possible effect that caught our attention is the overall symmetry breaking of the nanoflm induced by surface relaxation $[13, 33]$ $[13, 33]$ $[13, 33]$ $[13, 33]$.

Figures [3](#page-3-3) and [4](#page-4-0) showed that present theory gives good agreement with simulated results about biaxial moduli of Au and Cu nanoflms. We used surface slice thickness t_s = 0.25 nm to calculate biaxial moduli in Figs. [3](#page-3-3) and [4.](#page-4-0)

Fig. 3 Biaxial modulus of Au nanoflms as function of flm thickness *t*. In the figure, bulk biaxial modulus is given as $Y_0 = 66.75$ GPa by ESM and Y_0 =78.22 GPa by MEAM [[19](#page-5-11)], surface slice thickness t_s =0.25 nm, surface elastic coefficient *S*=25 N/m to conform to EAM and *S* = 8.5 N/m to conform to MEAM, respectively. The calcu-lated data are from Ref. [\[19\]](#page-5-11) (color figure online)

Fig. 4 Biaxial modulus of Cu nanoflms as function of flm thickness *t*. In the figure, bulk biaxial modulus is given as $Y_0 = 107.16$ GPa by ESM and $Y_0 = 116.30$ GPa by MEAM [\[19\]](#page-5-11), surface slice thickness t_s =0.25 nm, surface elastic coefficient *S*=25 N/m to conform to EAM and *S* = 2.5 N/m to conform to MEAM, respectively. The calcu-lated data are from Ref. [\[19\]](#page-5-11) (color figure online)

Bulk biaxial modulus of Au is given as $Y_0 = 66.75$ GPa by embedded-atom method (EAM) while Y_0 = 78.22 GPa by modifed embedded-atom method (MEAM) [\[19\]](#page-5-11). For Cu bulk biaxial modulus, EAM gives the value as $Y_0 = 107.16$ GPa while MEAM gives the value as $Y_0 = 116.30$ GPa [\[19](#page-5-11)]. For surface elastic coefficient, different values are used to calculate biaxial moduli under diferent conditions. For Au nanofilms in Fig. 3 , surface elastic coefficient is chosen as *S*=25 N/m to conform to EAM result and is chosen as *S*=8.5 N/m to conform to MEAM result. And for Cu nanofilms in Fig. 4 , surface elastic coefficient is chosen as *S*=25 N/m to conform to EAM result and is chosen as

Fig. 5 Si nanoflm Young's modulus as function of surface slice thickness t_s . Surface elastic coefficient *S* is given in the figure

S=2.5 N/m to conform to MEAM result. Both Au and Cu nanoflms as well as both EAM and MEAM calculations, present theoretical method can give good agreement with calculated results in Ref. [[19\]](#page-5-11).

In Fig. [5](#page-4-1), one can easily fnd that surface slice thickness increases efective Young's modulus when surface elastic coefficient *S* is given. Minus surface elastic coefficient *S* certainly decreases efective Young's modulus. This fact means that surface slice thickness weakens surface elasticity efect on the overall elastic character. This t_s effect property can be interpreted by Eq. [\(3](#page-2-7)). There is z^2 term in the integral formula of bending modulus, hence the diferent contribution of diferent position of surface elasticity modifcation. Surface elasticity modifcation with larger *z* coordination, i.e., farther from the reference plane (mid-plane of the flm) and closer to flm surface plane, gives larger contribution. For larger surface slice thickness, part of surface elasticity *S* embeds inner atomic layers to be closer to reference plane. This property weakened *S* effect on film effective Young's modulus. Therefore, larger t_s indicates weakened surface effect on film Young's modulus when surface elastic coefficient *S* is given. On the other hand, effective Young's modulus Eq. $(8a)$ contains quadratic term of t_s . Therefore, t_s will enhance *S* effect when t_s satisfies $t_s \geq (3/2)t$. But unfortunately, it is impossible to satisfy this condition. Since surface slice thickness t_s cannot be larger than flm thickness *t*. Figure [6](#page-4-2) showed that efective Young's modulus is strongly affected by surface slice thickness t_s when surface Young's modulus Y_s is given. Larger t_s enhanced surface Young's modulus efect on flm-efective Young's modulus obviously. The relation between surface Young's modulus and surface elastic coefficient Eq. [\(7](#page-2-6)) gives the reasonable commentation on surface slice thickness efect in Fig. 6 . Larger surface slice thickness t_s means larger surface

Fig. 6 Si nanoflm Young's modulus as function of surface slice thickness t_s . Surface Young's modulus Y_s is given in the figure (color figure online)

elastic coefficient *S*. This effect enhanced surface effect obviously despite the weakened t_s effect for given S .

4 Conclusions

This work researched nanoflm Young's modulus (as well as biaxial modulus) by considering surface elasticity and surface slice thickness; and established nanoflm-efective Young's modulus mathematic expression which contains surface elasticity effect as well as surface slice thickness effect. The present theory was used to compare with Si flm experiment, Au and Cu flm simulations. When flm is very thick, surface effect should be neglected and bulk Young's modulus is valid for the description of elastic response of the flm. But when flm thickness turns down nanaometers to form a nanoflm, surface efects become very important and cannot be neglected. Both Surface Young's modulus (surface elastic coefficient) and surface slice thickness affect effective Young's modulus of nanoflms strongly. For given surface Young's modulus, surface slice thickness obviously enhanced surface elasticity effect on overall elastic property of nanofilm. While for given surface elastic coefficient, surface slice thickness weakened surface elasticity effect on overall elastic property. Surface elastic coefficient effect introduces the first-order surface modifcation, i.e., linear surface modifcation as surface model addressed; while surface slice thickness introduces higher terms of surface modifcation, i.e., nonlinear surface modifcations. The efective Young's modulus mathematic expression implied that previous surface model can be seen as the frst approximation of present theoretical scheme. The infuence of surface slice thickness efect is up to the relative thickness comparing with whole thickness of the flm. If surface slice thickness is much smaller than whole thickness of the flm, higher terms of surface modifcation can be neglected. But for ultrathin nanoflm with several nanometers thickness or for the flm with obviously oxided surface, surface slice thickness and the corresponding higher terms of surface modifcation cannot be neglected anymore.

Acknowledgements The authors acknowledge the fnancial support of the National Natural Science Foundation of China under Grant Nos. 11072104, 11464037, 50901039, and 11447122, the Program for Innovative Research Team of Inner Mongolia University under Grant No. 10013-12110605, and the Inner Mongolia Natural Science Foundation under Grant No. 2014BS0102. BN acknowledges support from NJYT-12-B07, and ZG acknowledges support from Higher Innovation Project of Shanxi Province under Grant No. 2015177.

References

1. X. Liang, S. Hu, S. Shen, Nanoscale mechanical energy harvesting using piezoelectricity and fexoelectricity. Smart Meter. Struct. **26**, 035050 (2017)

- 2. M.A. Altaher, M.A. Agwa, F.F. Mahmoud, Nanobeam sensor for measuring a zeptogram mass. Int. J. Mech. Mater. Des. **12**, 211–221 (2016)
- 3. Z. Yan, L. Jiang, Modifed continuum mechanics modeling on size-dependent properties of piezoelectric nanomaterials: A review. Nanomaterials **7**, 27 (2017)
- 4. J. Li, B. Narsu, G. Yun, A. Wang, Z. Gao, Magnetostriction theory of ultrathin freestanding nanoflms. Appl. Phys. A **125**, 246 (2019)
- 5. J. Guo, Y. Zhao, The size-dependent bending elastic properties of nanobeams with surface efects. Nanotechnology **18**, 295701 (2007)
- 6. H. Sadeghian, J.F.L. Goosen, A. Bossche, B.J. Thijsse, F.V. Keulen, Efects of size and surface on the elasticity of silicon nanoplates: molecular dynamics and semi-continuum approaches. Thin Solid Film **520**, 391–399 (2011)
- 7. H.R. Asemi, S.R. Asemi, A. Farajpour, M. Mohammadi, Nanoscale mass detection based on vibrating piezoelectric ultrathin flms under thermo-electro-mechanical loads. Physica E **68**, 112–122 (2015)
- 8. Z. Shao, L. Wen, D. Wu, X. Wang, X. Zhang, S. Chang, A continuum model of piezoelectric potential generated in a bent ZnO nanorod. J. Phys. D Appl. Phys. **43**, 245403 (2010)
- 9. Z. Yan, Modeling of a nanoscale fexoelectric energy harvester with surface efects. Physica E **88**, 125–132 (2017)
- 10. X. Liang, W. Yang, S. Hu, S. Shen, Buckling and vibration of fexoelectric nanoflms subjected to mechanical loads. J. Phys. D Appl. Phys. **49**, 115307 (2016)
- 11. K. Nadaud, F. Morini, A.S. Dahiya, C. Justeau, S. Boubenia, K.P. Rajeev, D. Alquier, P.-V. Guylaine, Double buffer circuit for the characterization of piezoelectric nanogenerators based on ZnO nanowires. Appl. Phys. Lett. **112**, 063901 (2018)
- 12. J. Zang, M. Huang, F. Liu, Mechanism for nanotube formation from self-bending nanoflms driven by atomic-scale surface-stress imbalance. Phys. Rev. Lett. **98**, 146102 (2007)
- 13. J. Li, B. Narsu, G. Yun, A. Wang, Z. Gao, Symmetry lowering and surface elasticity effects on Young's modulus and Poisson's ratio of nanoflms. Appl. Phys. A **124**, 813 (2018)
- 14. M.E. Gurtin, A.I. Murdoch, A continuum theory of elastic material surfaces. Arch. Rat. Mech. Anal. **57**, 291–323 (1975)
- 15. H. Sadeghian, J.F.L. Goosen, A. Bossche, F.V. Keulen, Surface stress-induced change in overall elastic behavior and self-bending of ultrathin cantilever plates. Appl. Phys. Lett. **94**, 231908 (2009)
- 16. D. Sander, The correlation between mechanical stress magnetic anisotropy in ultrathin flms. Rep. Pro. Phys. **62**, 809–858 (1999)
- 17. S.G. Nilsson, X. Borrisé, L. Montelius, Size efect on Young's modulus of thin chromium cantilevers. Appl. Phys. Lett. **85**, 3555–3557 (2004)
- 18. J. Weissmüller, H. Duan, Cantilever bending with rough surfaces. Phys. Rev. Lett. **101**, 146102 (2008)
- 19. T. Zhang, Z. Wang, W. Chan, Eigenstress model for surface stress of solids. Phys. Rev. B **81**, 195427 (2010)
- 20. R.E. Miller, V.B. Shenoy, Size-dependent elastic properties of nanosized structural elements. Nanotechnology **11**, 139–147 (2000)
- 21. G. Wang, X. Feng, Efects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl. Phys. Lett. **90**, 231904 (2007)
- 22. J. Zang, F. Liu, Theory of bending of Si nanocantilevers induced by molecular adsorption: a modifed Stoney formula for the calibration of nanomechanochemical sensors. Nanotechnology **18**, 405501 (2007)
- 23. X. Liang, S. Hu, S. Shen, Surface efects on the post-buckling of piezoelectric nanowires. Physica E **69**, 61–64 (2015)
- 24. H. Sadeghian, C. Yang, J.F.L. Goosen, A. Bossche, U. Staufer, P.J. French, F.V. Keulen, Effects of size and defects on the elasticity

pg silicon nanocantilevers. J. Micromech. Microeng. **20**, 064012 (2010)

- 25. M.J. Gordon, T. Baron, F. Dhalluin, P. Gentile, P. Ferret, Size efects in mechanical deformation and fracture of cantilevered silicon nanowires. Nano Lett. **9**, 525–529 (2009)
- 26. C. Hsin, W. Mai, Y. Gu, Y. Gao, C. Huang, Y. Liu, Elastic properties and buckling of silicon nanowires. Adv. Mater. **20**, 3919–3923 (2008)
- 27. C.Q. Chen, Y. Shi, Y.S. Zhang, J. Zhu, Y.J. Yan, Size dependence of Young's modulus in ZnO nanowires. Phys. Rev. Lett. **96**, 075505 (2006)
- 28. X.P. Zheng, Y.P. Cao, B. Li, X.Q. Feng, G.F. Wang, Surface efects in various bending-based test methods for measuring the elastic property of nanowires. Nanotechnology **21**, 205702 (2010)
- 29. R.E. Newnham, *Structure-property relations* (Springer, Berlin, 1975)
- 30. W. A. Harrison, Electronic structure and the properties of solids freeman, San Francisco pp. 309–317 (1980)
- 31. Z. Wang, Z. Dai, R. Gao, J.L. Gole, Measuring the Young's modulus of solid nanowires by in situ TEM. J. Electron Microsc. **51**, S79–S85 (2002)
- 32. K.Y. Yasumura, T.D. Stowe, E.M. Chow, T. Pfafman, T.W. Kenny, B.C. Stipe, D. Rugar, Quality factors in micron- and submicronthick cantilevers. J. Microelectromech. Syst. **9**, 117–125 (2000)
- 33. J. Li, B. Narsu, G. Yun, H. Yao, Elasticity theory of ultrathin nanoflms. J. Phys. D Appl. Phys. **48**, 285301 (2015)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.