

Near‑infrared optical sensor based on band‑to‑band tunnel FET

Vandana Devi Wangkheirakpam¹ [·](http://orcid.org/0000-0002-1104-993X) Brinda Bhowmick1 · Puspa Devi Pukhrambam1

Received: 4 March 2019 / Accepted: 13 April 2019 / Published online: 20 April 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

In this work, three diferent device structures based on the band-to-band tunnel feld efect transistor (TFET) have been proposed for near-infrared optical sensing application. Comparison has been made on their spectral response to diferent wavelengths $(0.7-1 \mu m)$. The device with Ge $n+$ pocket at the source-channel junction outperforms the other two with a better ON current I_{ON} (63.4 µA) and steeper subthreshold swing SS (28 mV/dec). Further optimization of this device is done showing infuence of source doping and high-*k* dielectric material on its transfer characteristics. It is found that the threshold voltage V_T and I_{ON} are sensitive to wavelength variations. V_T increases by ~ 10–20 mV and I_{ON} decreases by 35% in the considered wavelength range at a gate doping of 1×10^{18} /cm³. The sensitivity of these proposed devices are determined relative to the change in current corresponding to the change in illumination wavelength. With the utilization of Ge n+ pocket, high-*k* gate dielectric the peak spectral sensitivity increases to 10.53 at the illumination intensity of 0.5 W/cm² and also it can determine frmly separated spectral lines (100 nm) in the near infrared range because of its steep sub-threshold swing.

1 Introduction

The applications of near infrared sensors are innumerable in the felds of defense, life sciences as well as homeland security. In defense, they are mostly used for surveillance target detection, target tracking and discrimination. These functions are performed from satellites, aircraft platforms, fxed locations or inceptors [\[1](#page-7-0)]. Molecular detection utilizing near infrared light between 0.7 and 1.4 µm has imperative biomedical applications in view of more noteworthy tissue penetration and reduced auto-fuorescent background in the thick tissue or entire blood-media [\[2](#page-7-1)]. To make such kind of detection, the photo detectors should be able to diferentiate closely spaced wavelengths (-100 nm) even if the intensity of illuminated light is less (e.g., $<$ 1 W/cm²). Both theoretical and experimental studies have been performed on metal oxide semiconductor feld efect transistors (MOSFETs) for diferent types of optically control applications [[3](#page-7-2)]. The MOSFETs based photo detectors are found to be more benefcial in comparison with avalanche photo diodes. The carriers generated in the gate due to incident light modulate the current in the device [\[4\]](#page-7-3). Detection of frmly separated spectral lines at lesser illumination intensity of the incident light requires the FET sensors to show current variation with the variation in the effect of gate caused by varying the wavelength of incident light. This is determined by the subthreshold swing (SS) and hence it controls the sensitivity of the FET-based sensors [[2](#page-7-1)]. Unlike avalanche photodiodes, which require greater electric fields $(20 V/\mu m)$ to acquire desired rate of ionization, the MOSFETs based detectors have separate absorbing and conducting regions. These type of sensors also have high compatibility for integrated circuit, low power operation and higher noise performance leading to an increase in their sensing capabilities to a greater extend [[5\]](#page-7-4), [\[6](#page-7-5)]. However, the minimum achievable sub-threshold swing for conventional MOSFETs is limited to 60 mV/dec at room temperature. In this regard, tunnel field effect transistor (TFET) has become a device of interest as it possesses the potential to replace MOSFETs [[7](#page-7-6)]. The band-to-band tunnelling (BTBT) mechanism on which the TFET operates allows it to exhibit low sub-threshold swing and low leakage current [[8–](#page-7-7)[10\]](#page-8-0). Such characteristics of the TFET makes it a promising emerging device not only for low power applications but also for bio-sensing and light sensing applications [[11–](#page-8-1)[14\]](#page-8-2).

This work presents a three different structural designs and simulation of optoelectronic band-to-band tunnel field effect transistor (TFET) for near-infrared

 \boxtimes Vandana Devi Wangkheirakpam vannawang46@gmail.com

¹ Department of Electronics and Communication Engineering, National Institute of Technology, Silchar, Silchar, Assam 788010, India

light sensing application in the wavelength (*λ*) range of 700 nm–1 μm. This work also reports the behaviour of the device structure under illumination and dark condition. The device performance is analysed using Synopsys Sentaurus Device TCAD tool [[15](#page-8-3)]. Although TFETs have good SS, concerns are still there regarding its low ON current [[16\]](#page-8-4). To improve the ON current of the device and make it a reliable device for commercial usage, a slight modification is made in the geometry of the device [\[17–](#page-8-5)[19](#page-8-6)]. The source is replaced with a Germanium source and a Germanium pocket is included on the source side of the proposed device structure allowing a vertical tunnelling normal to the gate-oxide thickness, in addition to the lateral one [\[20\]](#page-8-7). In addition, comparison has been made on the spectral response of these devices. Moreover, the influence of different device parameters such as doping, high-*k* dielectric on the device characteristic has been studied in this work. Furthermore, the performance of the device is analysed in terms of spectral sensing capacity using TCAD simulation.

2 Device structure and principle of operation

Figure [1a](#page-1-0)–c show the schematics of the proposed devices. All the three devices have highly a doped n-type silicon gate along with band-to-band TFET structure. The photons get absorbed in these photon sensing regions of the gate and optical generation takes place in this region. The illumination windows in the proposed device structures are defned in the region,

$$
\{- (W_{\rm g} + t_{\rm ox}) \le x \le (-t_{\rm ox}) \}.
$$

The device considered in Fig. [1a](#page-1-0) is a silicon n-type TFET. It comprises of a silicon n-type photon absorbing gate, p-type Si source, intrinsic Si channel and an n-type Si drain. The proposed device is basically a band-to-band tunnel FET where carrier transitions are taking place from the valence band of the p-type Si source (p-Si) to the conduction band of the intrinsic Si channel (i-Si). Table [1](#page-2-0) summarizes the structural parameters used in this work.

Fig. 1 Schematic of the proposed TFET device structures **a** Si source (conventional), **b** with Germanium p-type source, **c** Si source with Germanium pocket at the source side allowing both vertical and lateral tunnelling. **d** A 3D illustration for the device proposed in **c**

At the illuminated condition, when incident light arrives normal to the illumination window, generation of excess electron–hole pairs (EHPs) takes place in the gate region. Photons having energy higher than the forbidden bandgap energy of Si will get absorbed and as a result photo-generation took place. The applied gate bias (V_{GS}) along with the band bending in the gate region is reason behind the process of the photo-generated carriers fow inside the gate region. When a positive gate voltage V_{GS} is applied to the device, photo-generated electrons inside the gate will attract towards the electrode, whereas the excess holes get accumulated near the gate/gate-oxide interface. This process disturbs the equilibrium in the gate region resulting in the separation of quasi-Fermi energy levels of electron (Efn) and hole (Efp) giving rise to a net photo-voltage (V_{OP}) across it. Figure [2a](#page-2-1) shows this separation of quasi-Fermi energy levels taken along the cutline AA′ inside the gate region, in the ON state $(V_{GS} = 1.5$ V and $V_{DS} = 1$ V) energy band diagram, at the illumination intensity of 0.5 W/cm² (λ = 0.7 μ m). However, Efn and Efp overlap with each other under the dark condition, as shown in Fig. [2b](#page-2-1). This proves that the under dark condition the equilibrium is not disturbed.

In addition to the applied gate bias V_{GS} , the photo-voltage also contributes as another gate bias lowering the turn ON voltage (V_{ONSET}) required for band-to-band tunneling to take place between the source and the channel region. Consequently, at the illumination condition the tunneling current increases. Another gate at the back of the device is used to increase the gate control over the device. A good ON current is required to increase the speed of the device which in turn increases the device sensitivity. Further increment in the ON current is found by introducing a Germanium p-type source and the modifed structure is

Fig. 2 a Energy band diagram taken along the cutline AA′ for ON state (V_{GS} =1.5 V and V_{DS} =1 V) obtained at illumination intensity $I=0.5$ W/cm² and $\lambda=0.7$ μ m (Fig. [1](#page-1-0)c), showing the Efn and Efp in the gate region. **b** Band diagram along cutline AA′ observed at the dark condition

shown in Fig. [1b](#page-1-0). Use of lower band gap materials such as Ge in the source side ofers higher BTBT leading to an improvement in the ON state current (I_{ON}) . We also proposed an improved structure where, an *n* + Ge pocket is included creating a hetero-junction at the source–channel junction of the device as shown in Fig. [1c](#page-1-0). Since Ge has a lower band gap, tunneling increases at the sourcepocket junction parallel to the gate-oxide. This tunnelling is referred to as the lateral tunnelling. Besides this lateral tunnelling, an additional tunnelling is observed perpendicular to the gate-oxide referred to as the vertical tunnelling. Complex refractive index model is used for the optical generation on the device. The optical generation and intensity plots are depicted in Fig. [3](#page-3-0)a, b. Schenk model is used to account for intrinsic carrier concentration required in SRH (Shockley–Read–Hall) expressions. The effects of high doping are simulated using band gap narrowing model. The characteristics of these devices are studied from 2-D numerical simulations results which are obtained by using TCAD simulator Sentaurus-device tool. However, for better understanding of the device structure, a 3D illustration of the proposed device with *n*+Ge pocket (Fig. [1c](#page-1-0)) is given in Fig. [1d](#page-1-0).

Fig. 3 a Optical generation occurring at the gate region due to the illuminated light ($I = 0.5$ W/cm² and $\lambda = 0.7$ μ m), **b** corresponding optical intensity

3 Results and discussion

The BTBT parameters for Si are provided in the simulation tool. Experimentally calibrated optical parameters for Ge, reported in Ref. [[22\]](#page-8-8), are used to simulate the device structures in Fig. [1b](#page-1-0), c. The sub-threshold swing of the device is calculated using the formula

$$
SS = \left(\frac{d \log I_{\rm D}}{dV_{\rm GS}}\right)^{-1}.\tag{1}
$$

The spectral sensitivity (Sn) of the device depends on the drain current I_{DS} and it can defined as the ratio of difference in drain current I_{DS} , when illumination wavelength reduces from λ_2 to λ_1 , to the drain current of the initial wavelength I_{DS} . This is given by Eq. ([2\)](#page-3-1) below.

$$
Sn = \frac{I_{DS}(\lambda_1)}{I_{DS}(\lambda_2)} - 1.
$$
\n(2)

The work does not consider the non-ideal effects such as defect assisted tunneling.

3.1 Spectral response of the device

Figure [4](#page-3-2) shows the spectral response of the three device structures. Comparison has been made based on their I_D-V_{GS} characteristics. These characteristics are obtained under illumination condition i.e. $I = 0.5$ W/cm² for different values of wavelength λ where V_{DS} is fixed at 1 V and V_{GS} is varying from 0 to 2 V. These simulated plots exhibit similar trend of reduction in I_{ON} and a slight increment in V_{ONSET} . In case

Fig. 4 Spectral response of the three proposed devices obtained at $I=0.5$ W/cm² for different values of wavelength at $V_{DS}=1$ V and V_{GS} =2 V

of the conventional device, the I_{ON} extracted from these transfer characteristics curves increases from 3.41×10^{-11} to 5.74 \times 10⁻¹¹ A when wavelength λ decreases from 1 to 0.7 µm. This is because as *λ* decreases, the photo-generation in the gate region increases [[21\]](#page-8-9). Consequently, the optical voltage V_{OP} increases, which in turn reduces the V_{ONSET} . Using Ge p-type source the response shows the increase of ON current from 6.7×10^{-8} to 9.4×10^{-8} A and finally the third device proposed with Ge n+ pocket gives an increment from 1.12×10^{-8} to 6.4×10^{-8} A in the considered wavelength range.

Figure [5](#page-4-0) shows the comparative plots of the simulated transfer characteristics of the three diferent structure given in Fig. [1a](#page-1-0)–c at $V_{GS} = 1.5$ V, $V_{DS} = 1$ V and $\lambda = 0.7$ µm. The conventional device structure with Si source shows comparatively lower ON current I_{ON} due to its large band gap nature, by introducing Ge p-type source which has a lower bandgap, the on state current of the device can be improved which is shown in Fig. 5 . This structural modification increases the current from 8.74×10^{-12} to 9.2×10^{-9} A/µm. Doping concentration of 1×10^{19} /cm³ Germanium p-type source is included with i-Si channel, n-Si drain and n-Si gate (Fig. [1](#page-1-0)b). However, the subthreshold swing increases from 47 (conventional) to 62 mV/dec. The third curve shows the transfer characteristics of the device which has a Si source with Ge pocket (Fig. [1c](#page-1-0)). This structure gives comparatively good result with improved current as well as the SS. In this structure, the inclusion of $n + Ge$ pocket at the source-channel junction provides an extra tunnelling path normal to the gate-oxide thickness. The channel, drain and gate remain same for all the proposed device structures. Hence, both lateral and vertical tunnelling in this device enables more

electrons to reach the drain side. This provides an improvement in the on state current and SS $(I_{ON}$ of 58 nA/ μ m and SS of 36 mV/dec).

Figure [6](#page-4-1) depicts the $Sn-V_{GS}$ characteristics plots corresponding to λ values (1 μ m and 0.7 μ m). Spectral sensitivity in this plot is calculated using Eq. ([2](#page-3-1)) utilizing the appropriate pair of simulated transfer characteristic curves. It can be seen from the fgure that for conventional structure Sn reaches the peak value 0.511 at $V_{GS} = 1.1$ V and starts decreasing with V_{GS} beyond that.

This is due to the gradual saturation of the I_D-V_{GS} curve leading to the increase in SS. For the case of Ge p-type source, the peak response of 0.567 is obtained at $V_{GS} = 1.3$ V. The gate voltage required to reach the peak spectral response increases due to its higher SS. The device using Ge n+pocket reaches its peak value of 0.45 at V_{GS} =0.9 V. Because of its steeper SS and lower threshold voltage V_T in comparison with the other two, the change in drain current with the change in wavelength (Eq. [2\)](#page-3-1) for this device is more at the lower gate voltage. So, it reaches the peak sensitivity at lesser V_{GS} Moreover, due to its high ON current and better I_{ON}/I_{OFF} , the speed of this Silicon source Germanium pocket device will be more than the other two. Hence, the latter device outperforms the other two in terms of ON current and SS.

However, the sensitivity obtained is less. This is not only because of the insignificant increase in V_T with wavelength but also the low ON current I_{ON} (58 nA/µm) obtained for this device which is a disadvantage of conventional tunnel FET. To improve this I_{ON} and the device sensitivity, optimization of the device structures using inclusion of hetero-junction, use of lower band-gap materials, high-*k* dielectric materials,

Fig. 5 The transfer characteristics comparison for the three diferent structures at $\lambda = 0.7 \,\mu m$

Fig. 6 Variation of spectral sensitivity, Sn with applied gate voltage V_{GS} at illuminated condition when $V_{GS}=2$ V, $V_{DS}=1$ V and λ changes from 1 to 0.7 μm

vertical TFET, etc. can be done. These are illustrated in the following sections.

3.2 Optimization of the Ge n+pocket TFET sensor

The proposed Ge pocket structure is optimized by considering the infuence of source doping and high-*k* gate dielectric.

3.2.1 Infuence of source doping

Increasing source doping concentration of the device can increase ON current I_{ON} to a greater extend with lesser subthreshold swing. Figure [7](#page-5-0) demonstrates the TCAD simulation results of I_D-V_{GS} characteristics of the device with various doping concentrations of source, fxing channel, pocket and drain doping concentrations at 1×10^{15} /cm³, 1×10^{19} / cm³ and 1×10^{18} /cm³, respectively, at $V_{GS} = 2$ V, $V_{DS} = 1$ V and $\lambda = 0.7$ µm. The ON current I_{ON} shoots up-to 54 µA/µm when source doping is 2×10^{19} /cm³.

The electric feld at source and channel junction increases with the increase in source doping. Because of this, there is an improvement in the ON current I_{ON} which can be seen from the transfer characteristics. Tunneling barrier width also reduces with higher source doping resulting in an enhancement of I_{ON} .

3.2.2 Efect of high‑*k* **dielectric**

Furthermore, the oxide material $SiO₂$ of the device is replaced with high- k dielectric material HfO₂ with the dielectric constant of 22. Careful choice of dielectric materials can also improve the ON current of the device. I_{ON} can also

be improved by scaling the oxide thickness. However, scaling down the thickness of the gate dielectric $SiO₂$ beyond 1–1.5 nm leads to the enhancement of gate leakage current. Using high-*k* dielectric materials, the gate control on the device can be improved. In Fig. [8](#page-5-1), it is observed that a better current and a steeper SS (28 mV/dec) are achieved by utilizing HfO₂. Here, the oxide thickness tox of 2 nm is taken in both the case.

3.2.3 Spectral response of the device

Figure [9](#page-6-0) shows the plots of spectral response of the device in terms of its I_{DS} – V_{GS} characteristics with an SS of 28 mV/ dec. The transfer characteristics are obtained at $V_{DS}=1$ V for $Ng = 4 \times 10^{19} / \text{cm}^3$ and V_{GS} is varying from 0 to 1.5 V. The spectral response is observed at the illuminated condition where the wavelength is varying from 0.7 to 1 μ m. The nature of the plots shows slow saturation of drain current. This is because of the variation in electron quasi-Fermi potential caused by the potential drop at the channel region and the gradual change of its tunneling probability.

Figure [10](#page-6-1) shows the plots of threshold voltage V_T and I_{ON} with the wavelength of incident photon which is varying from 0.7 to 1 μ m. V_T is plotted from the I_D-V_{GS} characteristic curves shown in Fig. [9](#page-6-0) at $V_{DS} = 1$ V using constant current method (10^{-7} A/μm). I_{ON} is also taken out from the corresponding I_D-V_{GS} curves at $V_{GS}=1.5$ V, $V_{DS} = 1$ V and $I = 0.5$ W/cm². Increasing the illumination wavelength *λ* causes a reduction in the absorption coefficient (α) per unit length of the region where photon sensing took place. This reduces the optical generation

Fig. 7 Effect of acceptor source doping concentration on the device structure 3 at V_{GS} =2 V, V_{DS} =1 V and λ =0.7 μ m

Fig. 8 Transfer characteristic plots using $SiO₂$ and high-*k* dielectric material $(k=22)$ for structure 3 at $V_{GS}=2$ V, $V_{DS}=1$ V and *λ*=0.7 μm

Fig. 9 Plots showing simulated transfer characteristics for the device structure with Ge n+pocket (structure 3 Fig. [1c](#page-1-0)) obtained at $I=0.5$ W/cm² for different values of wavelength at $V_{DS}=1$ V and V_{GS} =1.5 V

Fig. 10 Plots of variation of V_T and I_{ON} with incident photon wavelength λ . Both V_T and I_{ON} are obtained from the TCAD simulation results of I_{D} – V_{GS} characteristic plots at $V_{DS}=1$ V, $V_{GS}=1.5$ V and $I = 0.5$ W/cm². Ng is chosen to be 1×10^{18} /cm³

in that particular region of the gate when the values of *λ* are increased. Consequently, the optical voltage *V*_{op} in the gate region reduces which causes an increase of V_T and reduction in I_{ON} , as can be observed from Fig. [10](#page-6-1). V_T increases by ∼ 10–20 mV for the illumination wavelength λ_1 = 0.7 μ m and λ_2 = 1 μ m. Similarly, a decrement of about 35% of I_{ON} has been depicted from the graph. This reduction in the current can be seen from the band diagram

Fig. 11 a Energy band diagram at illumination condition obtained for *λ*=0.7 μm and *λ*=1 μm taken along OB. **b** Energy band diagram obtained for dark and illumination condition taken at lateral direction. **c** Corresponding band diagram along the vertical direction AA′ for *λ*=0.7 μm and *λ*=1 μm

Fig. 12 Variation of spectral sensitivity, Sn with the applied gate voltage V_{GS} at the $I = 0.5$ W/cm² (for $\lambda_1 = 0.7$ µm and $\lambda_2 = 1$ µm)

given in Fig. [11](#page-6-2) which shows the comparison of the BTBT tunnelling occurring at the source side at $\lambda = 0.7$ μm and $\lambda = 1$ μm. It is observed from Fig. [11](#page-6-2)a that the lateral BTBT width is more narrow for $\lambda = 0.7$ μm which causes more I_{ON} in this case. Figure [11b](#page-6-2) shows the band diagrams in the lateral direction OB for dark and illumination condition. The tunnelling width is more in the dark condition as compared to the illuminated condition, and hence, fewer electrons can tunnel from the valence band of the source to the conduction band of the channel thereby giving less current. Similarly, the diference in the vertical tunnelling across the line AA', at wavelengths 0.7 μ m and $\lambda = 1 \mu$ m is presented in Fig. [11](#page-6-2)c. Figure [11a](#page-6-2), c show more tunnelling for lower values of wavelengths.

Spectral sensitivity (Sn) of the device with source doping 5×10^{19} /cm³, HfO₂ as gate dielectric, is calculated using Eq. [\(2\)](#page-3-1) for the change of wavelength from λ_2 to λ_1 .

Figure [12](#page-7-8) shows the variation of Sn with V_{GS} , obtained from the corresponding I_{DS} – V_{GS} characteristic (*I* = 0.5 W/ cm^2). The result is obtained at the illuminated condition for λ_1 = 0.7 µm and λ_2 = 1 µm, and it is observed that Sn first increases and then decreases signifcantly at higher values of V_{GS} . This decrease is because of the steady increase in SS when the device operates from the sub-threshold region to the super-threshold region with increase in V_{GS} . The peak spectral sensitivity is found to be 10.53 for the optimized proposed Ge pocket device, for the wavelength pairs considered in the observation.

4 Conclusion

In this work, three diferent structures of photosensitive TFETs are presented for near—infrared optical sensing applications. The structures are designed for band-to-band tunnelling from the valence band of the source to the conduction band of the channel causing transfer of electron from source to drain at the illuminated condition $(I=0.5 \text{ W/cm}^2)$. The device structure proposed with Ge n+pocket outperforms the other two in terms of ON current and SS. It provides comparatively higher ON current of 63.4 μA with a steeper SS of 28 mV/dec. This work also shows an improvement of peak spectral sensitivity, Snm to 10.53 by optimizing the Ge n+pocket TFET device parameters in the wavelength range 0.7–1 μm. The spectral sensitivity decays with applied gate voltage V_{GS} due to the gradual saturation of the transfer characteristics curve. TCAD simulation results of the device shows an improved I_{ON} with the utilization of high-*k* dielectric material and increase in the source doping. Thus, this device can be a promising emerging device for near-infrared sensing and imaging applications.

Acknowledgements The authors acknowledge the Project CSIR EMR-II, sanction no. 22(0737)/17/EMR-II for providing necessary facilities to carry out the research work.

References

- 1. S. Pleasants, Exploiting the infrared. Nat. Photon. **8**, 351 (2014)
- 2. J.H. Correia, G. de Graaf, M. Bartek, R.F. Wolfenbuttel, A singlechip CMOS optical micro spectrometer with light-to-frequency converter and bus interface. IEEE J. Solid State Circuits **37**, 1344–1347 (2002)
- 3. E. Lee, D. Moon, J. Yang, K.S. Lim, Y. Choi, Transparent zinc oxide gate metal–oxide–semiconductor feld-efect transistor for high-responsivity photodetector. IEEE Electron Device Lett. **30**, 493–495 (2009).<https://doi.org/10.1109/LED.2009.2016765>
- 4. H. Eltoukhy, K. Salama, A. El Gamal, A 0.18-μm CMOS bioluminescence detection lab-on-chip. IEEE J. Solid State Circuits **41**, 651–662 (2006)
- 5. L. Colace, G. Masini, G. Assanto, Ge-on-Si approaches to the detection of near-infrared light. IEEE J. Quantum Electron **35**, 1843–1852 (1999)
- 6. A.K. Okyay, D. Kuzum, S. Latif, D.A.B. Miller, K.C. Saraswat, Silicon germanium CMOS optoelectronic switching device: bringing light to latch. IEEE Trans. Electron Devices **54**, 3252–3259 (2007)
- 7. W.Y. Choi, B. Park, J.D. Lee, T.K. Liu, Tunneling feld-efect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/ dec. IEEE Electron Device Lett. **28**, 743–745 (2007). [https://doi.](https://doi.org/10.1109/LED.2007.901273) [org/10.1109/LED.2007.901273](https://doi.org/10.1109/LED.2007.901273)
- 8. K.K. Bhuwalka, S. Sedlmaier, A.K. Ludsteck, C. Toksdorf, J. Schulzeand, I. Eisele, Vertical tunnel feld-efect transistor. IEEE Trans. Electron Devices **51**, 279–282 (2004). [https://doi.](https://doi.org/10.1109/ted.2003.821575) [org/10.1109/ted.2003.821575](https://doi.org/10.1109/ted.2003.821575)
- 9. S. Wirths, A.T. Tiedemann, S. Trellenkamp, D. Buca, Q.T. Zhao, S. Mantl, Novel SiGe/Si line tunneling TFET with high I_{ON} at low

 V_{DD} and constant SS, in Proc. IEDM 608–611 (2015). [https://doi.](https://doi.org/10.1109/iedm.2015.7409757) [org/10.1109/iedm.2015.7409757](https://doi.org/10.1109/iedm.2015.7409757)

- 10. Q. Huang, R. Huang, C. Wu, H. Zhu, C. Chen, J. Wang, L. Guo, R. Wang, L. Ye, Y. Wang, Comprehensive performance reassessment of TFETs with a novel design by gate and source engineering from device/circuit perspective, in Proc. IEDM 335–338 (2014). [https](https://doi.org/10.1109/iedm.2014.7047044) [://doi.org/10.1109/iedm.2014.7047044](https://doi.org/10.1109/iedm.2014.7047044)
- 11. G. Zhou, R. Li, T. Vasen, M. Qi, S. Chae, Y. Lu, Q. Zhang, H. Zhu, J.-M. Kuo, T. Kosel, M. Wistey, P. Fay, A. Seabaugh, H. Xing, Novel gate-recessed vertical InAs/GaSb TFETs with record high I_{ON} of 180 μA/μm at V_{DS} =0.5 V, in Proc. IEDM, 777–780 (2012).<https://doi.org/10.1109/iedm.2012.6479154>
- 12. R. Narang, M. Saxena, R.S. Gupta, M. Gupta, Dielectric modulated tunnel feld-efect transistor—a biomolecule sensor. IEEE Electron Device Lett. **33**, 266–268 (2012)
- 13. D. Sarkar, K. Banerjee, Proposal for tunnel-feld-efect-transistor as ultra-sensitive and label-free biosensors. Appl. Phys. Lett. **100**, 143108 (2012)
- 14. M. Verma, S. Tirkey, S. Yadav, D. Sharma, D.S. Yadav, Performance assessment of a novel vertical dielectrically modulated TFET-based biosensor. IEEE Trans. Electron Devices **64**, 3841– 3848 (2017)
- 15. Sentaurus Device User Guide, *Version G-2012.06* (Synopsys, Inc., Mountain View, 2012)
- 16. R. Goswami, B. Bhowmick, An algorithm for extraction of threshold voltage in heterojunction TFETs. IEEE Trans. Nanotechnol. **78**, 92 (2017). <https://doi.org/10.1109/tnano.2016.262877>
- 17. W.V. Devi, B. Bhowmick, Optimisation of pocket doped junctionless TFET and its application in digital inverter. Micro Nano Lett. (2018).<https://doi.org/10.1049/mnl.2018.5086>
- 18. F. Chen, H. Ilatikhameneh, Y. Tan, G. Klimeck, R. Rahman, Switching mechanism and the scalability of vertical-TFETs. IEEE Trans. Electron Devices **65**, 3065–3068 (2018). [https://doi.](https://doi.org/10.1109/TED.2018.2831688) [org/10.1109/TED.2018.2831688](https://doi.org/10.1109/TED.2018.2831688)
- 19. M.A. Raushan, N. Alam, M.J. Siddiqui, Performance enhancement of junctionless tunnel feld efect transistor using dual-*k* spacers. J. Nanoelectron. Optoelectron. (2018). [https://doi.org/10.1166/](https://doi.org/10.1166/jno.2018.2334) ino.2018.2334
- 20. E. Memisevic, J. Svensson, E. Lind, L. Wernersson, Vertical nanowire TFETs with channel diameter down to 10 nm and point S MIN of 35 mV/decade. IEEE Electron Device Lett. **39**, 1089– 1091 (2018). <https://doi.org/10.1109/LED.2018.2836862>
- 21. P.S. Gupta, S. Chattopadhyay, P. Dasgupta, H. Rahaman, A novel photosensitive tunneling transistor for near-infrared sensing applications: design, modeling, and simulation. IEEE Trans. Electron Devices **62**, 1516–1522 (2015). [https://doi.org/10.1109/](https://doi.org/10.1109/TED.2015.2414172) [TED.2015.2414172](https://doi.org/10.1109/TED.2015.2414172)
- 22. D.E. Aspnes, A.A. Studna, Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs. Phys. Rev. B **27**, 985 (1983)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.