

Synthesis and properties of BaWO₄ nanocrystals prepared using a reverse microemulsion method

Guojun Zha^{1,2} · Naigen Hu² · Minhua Jiang^{1,2} · Xiangming Zeng² · Haoqing Hou¹

Received: 6 December 2018 / Accepted: 6 February 2019 / Published online: 23 February 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

Barium tungstate (BaWO₄) nanocrystals were successfully synthesized using a reverse microemulsion method. The effects of the molar ratio of water to surfactant (ω_0), reactant concentration, and aging time on the size and morphology of the BaWO₄ nanocrystals were investigated. The obtained products were characterized by scanning electron microscopy and X-ray diffraction (XRD). The experimental results showed that the morphology and size of the as-prepared BaWO₄ nanocrystals were greatly affected by the ω_0 and the initial concentration, but no obvious effect by the aging time. XRD analysis showed that the BaWO₄ nanocrystals synthesized had the high purity under conditions of initial reactant concentration of 0.2 mol/L, ω_0 of 40, at temperature of 50 °C and aging time of 24 h. Photoluminescent spectra revealed that BaWO₄ crystallites displayed a very strong peak at 351 nm under different aging time.

1 Introduction

Recently, micro- and nanoluminescent materials have attracted wide attention and interest, BaWO₄ nanomaterials with a white tungsten appearance has interesting properties such as photoluminescence, thermoluminescence and stimulated Raman scattering, and show potential application in fields such as optoelectronics, medicine, and spectroscopy [1-3], especially as fluorescent material, it has good application potential in optical field [4–6]. Various $BaWO_4$ nanomaterials with different morphologies have been prepared using a range of methods, such as reverse micelle [4], solution route [5, 6], template-free precipitation [7], chemical bath deposition [8], co-precipitation [9–11], hydrothermal [12, 13], and template techniques [14, 15]. These methods usually require high temperature or complex equipment, and relatively long reaction time, which hinders the application of BaWO₄ to some extent.

As an important method for the synthesis of nanomaterials, microemulsion method has been widely used for the synthesis of $BaWO_4$ nanomaterials. The microemulsion

Guojun Zha zhaguojun_8@163.com could be classified to two kinds: positive-phase (O/W) and reverse-phase (W/O) microemulsion. He et al. [3] reported the synthesis of BaWO₄ nanocrystals with hedgehog-shaped, bundle-like, and rod-like scheelite structures using a positive-phase microemulsion method through controlling the concentration of surfactants. The reverse-phase microemulsion method can be widely used as a microreactor for the purpose of controlling the size and shape of particles conveniently through controlling ω_0 (ω_0 is the molar ratio of water to surfactant), reactant concentration [16, 17]. Zhang et al. [17] reported fishbone-like nanoassembled $BaWO_4$ structures which could be prepared using a reverse-phase microemulsion method. However, there is no study on the effect of ω_{0} , reactant concentration, and aging time on the size and morphology of the BaWO₄ nanocrystals. In this study, we report the synthesis of BaWO₄ nanocrystals by reverse microemulsion method. The effects of ω_0 , reactant concentration, and aging time on the size and morphology of the BaWO₄ nanocrystals were investigated and high optical quality was confirmed by testing them in photoluminescent spectra.

¹ College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China

² School of New Energy Science and Engineering, Xinyu University, Xinyu, China

2 Experimental

2.1 Preparation of inverse microemulsion A

Preparation of Na₂WO₄ reverse microemulsion A: 25 mL cyclohexane, 6.78 mL surfactants (Triton X-100), and 2 mL 0.2 mol/L Na₂WO₄ solution were added to a round-bottom flask sequentially under continuously magnetic stirring (500 rpm). Then, 2.78 mL cosurfactant (1-hexanol) was added to the mixture and was stirred for 15 min via strong magnetic stirring (1000 rpm), until a transparent and reverse microemulsion was obtained. In that case, the molar ratio of water to surfactant (P) was calculated, which is the optimal value, it is 2.01, the inverse microemulsion A with ω_0 value of 20, 30, 40, and 50 was prepared under the same conditions (Table 1).

Preparation of $Ba(NO_3)_2$ reverse microemulsion B: the Na_2WO_4 solution was changed to $Ba(NO_3)_2$ solution, and the reverse microemulsion B was prepared using the same methodology as that of the microemulsion A.

2.2 Preparation of BaWO₄

 Table 1
 Calculate the amount

 of surfactants and cosurfactant

based on P = 2.01

 $BaWO_4$ nanocrystals were prepared using a reverse microemulsion route, as shown in Fig. 1. The $Ba(NO_3)_2$ reverse microemulsion B was slowly mixed with the Na_2WO_4 reverse microemulsion A and gentle magnetically agitated for 1 h to let the system white and turbid.

Then, the mixture reverse microemulsion was aged at 50 °C for 24 h and a white precipitate was obtained. After separating the white precipitate by centrifugation and removing the adsorbed surface-active agent and other organic solvents by ultrasonically washing for five times using absolute ethanol, the BaWO₄ product was obtained.

2.3 Characterization of the nanocrystals BaWO4

To avoid conglomeration and aggregation, the BaWO₄ nanocrystals were dispersed in an anhydrous ethanol under the assistance of ultrasonic for 15 min. Then, a small amount of the dispersion was dropped on to a conductive glass slide and dried in a drying oven for 1 h to prepare samples for characterization. These samples were characterized using scanning electron microscopy (SEM; JEOL JSM-6300) and X-ray diffraction (XRD; D8 ADVANCE X'pertPro diffractometer). The room-temperature photoluminescent (PL; perkin-elmer LS55) spectra of the samples were obtained on a fluorescence spectrometer.

ω_0	$V_{\text{cyclohexane}} (\text{mL})$	$V_{\text{surfactants}}$ (mL)	$V_{\text{cosurfactant}}$ (mL)	$V_{\rm sodium}$ tungstate or barium nitrate solution (mL)
10	25	6.78	2.78	2
20	25	3.39	1.38	2
30	25	2.26	0.93	2
40	25	1.70	0.70	2
50	25	1.36	0.56	2

Characterization of the nanocrystals BaWO₄

Fig. 1 Schematic diagram of BaWO₄ nanocrystals using a reverse microemulsion route

3 Results and discussion

Figure 2 shows that the length and diameter of the obtained BaWO₄ nanocrystals varied with ω_o under a concentration of Ba(NO₃)₂ solution of 0.2 mol/L, a temperature of 50 °C, and an aging time of 24 h. The length of the BaWO₄ nanocrystals varies approximately, such as 250 nm in Fig. 2a, 750 nm in Fig. 2b, 3100 nm in Fig. 2c, and 4200 nm in Fig. 2d. The diameters of the BaWO₄ nanocrystals increased with ω_o , which are approximately 20, 70, 260, and 420 nm with ω_o of 20, 30, 40, and 50, respectively.

With the increase of ω_0 , the amount of water is 2 ml and the amount of surfactants is relatively insufficient, so the water core is prone to deformation and changes from a regular spherical shape to a rod shape. When the microemulsion (A) and the microemulsion (B) were mixed and stirred, the water nuclei of the rod-shaped reverse micelles in the microemulsion collided with each other, which leads to the fusion and self-assembly of two water nuclei into a rod-shaped water nucleus containing Ba^{2+} and WO_4^{2-} , and $BaWO_4$ is nucleated and grown in this water nucleus, forming several nanoparticles, which are restricted by the template of the rod-shaped water nucleus, and, thus, are clustered and arranged into the rod-shaped morphology [18, 19].

Figure 2 also shows that the morphology of BaWO₄ nanocrystals with ω_0 of 40 is the best, the morphology is the most regular, the rod size and the length are uniform, but ω_0 is 50, the shape of some rods becomes irregular or massive, both the rod size and the length are uneven, indicating that the water core has been deformed. The experimental results show that, when ω_0 is 60, the product is no longer available, indicating that ω_0 of 50 is in a transition state that cannot form a water–nucleus interface membrane well.

Figure 3 shows that the average length of the BaWO₄ nanocrystals is 2100 nm in Fig. 3a, 2900 nm in Fig. 3b, 3200 nm in Fig. 3c, and the average diameters are 120, 210, and 280 nm, respectively, when $\omega_0 = 40$, the aging

Fig. 2 SEM morphology of BaWO₄ under different ω_0 values

ω₀=20

ω₀=40

ω₀=30

ω₀=50

c=0.2 mol/L

c=0.3mol/L

time is 24 h, the temperature is 50 °C, and the Ba(NO₃)₂ concentrations are 0.05, 0.1, 0.20, and 0.3 mol/L, respectively. The length and diameter of the BaWO₄ nanocrystals increase with the concentration of the Ba(NO₃)₂ solution, it is because the amount of reactant contained in water core increases with the concentration of the Ba(NO₃)₂ solution. Thus, this leads to the increase of the length and diameter of BaWO₄ nanocrystals.

In addition, Fig. 3d shows that when the concentration of $Ba(NO_3)_2$ solution reaches 0.30 mol/L, the prepared microemulsion system becomes turbid and cannot form a uniform and stable microemulsion system, resulting in the formation of the $BaWO_4$ agglomeration phenomenon. This is due to the concentration of the solution being higher and with more charges present, and thus, the particles become extremely unstable and form agglomeration.

Figure 4 shows the SEM photographs of BaWO₄ nanocrystals under Ba(NO₃)₂ concentration which is 0.2 mol/L, t=50 °C, $\omega_0=40$, and aging time of 24, 48,

and 72 h, respectively. The average length of the $BaWO_4$ nanocrystals is about 4100 nm in Fig. 4a, 4200 nm in Fig. 4b, and 4000 nm in Fig. 4c, respectively, the average diameters are about 220, 240, and 230 nm, in turn, illustrating that aging time has no obvious effect on the length and the diameters of the $BaWO_4$ nanocrystals, this is because crystallization and dissolution form a balance.

Figure 4 also shows that photographs of $BaWO_4$ nanocrystals are rod shape, it is because that Triton X-100 is a non-ionic surfactant and its micelles have a little effect on the confinement of $BaWO_4$ nanocrystals. When $Ba(NO_3)_2$ and Na_2WO_4 aqueous droplets are added to the Triton X-100 solution, Ba^{2+} and WO_4^{2-} are ionized, respectively, and then, the concentration products of $Ba(NO_3)_2$ and Na_2WO_4 reach the concentration product constant of $BaWO_4$, which form fine $BaWO_4$ nuclei and the solution becomes supersaturated. During the subsequent crystal growth process, larger particles swallow smaller particles to grow the $BaWO_4$ nanocrystals [20].

aging time=24h

aging time=48h

aging time=72h

Fig. 4 SEM morphology of BaWO₄ under different aging time

Fig. 5 XRD spectra of BaWO₄

Figure 5 shows the XRD spectra of BaWO₄ nanocrystals synthesized by hydrothermal reaction at 50 °C during an aging time of 24 h, Ba(NO₃)₂ concentration of 0.2 mol/L, and $\omega_0 = 40$ under the action of surfactant Triton X-100. It can be calculated by the lattice parameters a=b=0.5610 nm and c=1.2681 nm and observed that the main diffraction peaks of the sample are consistent with the standard cards of tetragonal BaWO₄ (JCPDS, NO. 43–0646, a=b=0.5612 nm and c=1.2706 nm), which indicates that the synthesized BaWO₄ nanocrystals have good high crystallinity. No other impurity peaks can be observed in Fig. 5, indicating that the products were pure tetragonal BaWO₄ nanocrystals.

PL properties of the as-prepared $BaWO_4$ samples at different aging time (24, 48, and 72 h) were also investigated. As shown in Fig. 6, three samples show emission peaks at 351 nm, which have a certain blue shift compared with references [17, 19], indicating that the fluorescence properties of nanomaterials are greatly affected by their size and morphology. However, besides the dominant peak at 351 nm,

Fig. 6 PL spectrum of BaWO₄ under different aging time

some weak peaks at the positions around 440 nm, 465 nm, and 275 nm; it is because that the fluorescence emission of BaWO₄ powder was caused by its structural defects [21]. Furthermore, PL spectra of three samples have no obvious difference with an aging time, illustrating that aging time has no obvious effect on the length and the diameters of the BaWO₄ nanocrystals.

4 Conclusions

BaWO₄ nanocrystals were synthesized using a reverse microemulsion method and is provided with an easy way to operate. The particle size and shape of the BaWO₄ nanocrystals increased with ω_0 . The length of the BaWO₄ nanocrystals ranged from 250 to 4200 nm and the diameter from 20 to 420 nm. The initial concentration of the reactants greatly influenced the morphology of the materials. The length of the BaWO₄ nanocrystals ranged from 2100 to 3200 nm, and the diameters ranged from 120 to 280 nm. The aging time

was found to have no obvious effect on the size and shape of the particles, and the crystallinity of the BaWO₄ crystals synthesized was found to be high under conditions of a 50 °C temperature, an aging time of 24 h, Ba(NO₃)₂ concentration of 0.2 mol/L, and a ω_0 value of 40. It exhibits an excellent PL property and that their emission peak locates at 351 nm.

Acknowledgements This work was supported by the Natural Science Foundation of China (51664047) and the Foundations from the Department of Education in Jiangxi Province (GJJ161187, JY1577, and GJJ151209).

References

- L.I. Ivleva, I.S. Voronina, P.A. Lykov et al., Growth of optically homogeneous BaWO₄ single crystals for Raman lasers. J Cryst. Growth **304**(1), 108 (2007)
- M. Tyagi, S.C. Sabharwal et al., Luminescence properties of BaWO₄ single crystal. J. Lumin. **128**(9), 1528 (2008)
- J.H. He, M. Han, X.P. Shen, Crystal hierarchically splitting in growth of BaWO₄ in positive cat-anionic microemulsion. J Cryst. Growth **310**(21), 4581 (2008)
- H.T. Shi, L.M. Qi, J.M. Ma et al., Polymer-directed synthesis of penniform BaWO₄ nanostructures in reverse Micelles. J. Am. Chem. Soc. **125**(3), 450 (2003)
- Y. Shen, W. Li, T. Li, Microwave-assisted synthesis of BaWO₄ nanoparticles and its photoluminescence properties. Mater. Lett. 65, 2956 (2011)
- Y.K. Yin, Z.B. Gan, Y.Z. Sun et al., Controlled synthesis and photoluminescence properties of BaXO₄ (X = W, Mo) hierarchical nanostructures via a facile solution route. Mater. Lett. 64, 789 (2010)
- X.M. Wang, H.Y. Xu, H. Wang et al., Morphology-controlled BaWO₄ powders via a template—free precipitation technique. J. Cryst. Growth 28(41), 254 (2005)
- R. Wang, C. Liu, J. Zeng et al., Fabrication and morphology control of BaWO₄ thin films by microwave assisted chemical bath deposition. J Solid State Chem. **182**, 677 (2009)
- F.M. Pontes, M.A.M.A. Maurera, A.G. Souza et al., structural and optical characterization of BaWO₄ and PbWO₄ thin films prepared by a chemical route. J.Eur. Ceram. Soc 2, 3001 (2003)

- M.C. Oliveira, L. Gracia, I.C. Nogueira et al., Synthesis and morphological transformation of BaWO₄ crystals: experimental and theoretical insights. Ceram. Int. **42**(9), 10913 (2016)
- L.S. Cavalcante, F.M.C. Batista, M.A.P. Almeida et al., Structural refinement, growth process, photoluminescence and photocatalytic properties of (Ba_{1-x}Pr_{2x/3})WO₄ crystals synthesized by the coprecipitation method. RSC Adv. 2, 6438 (2012)
- G. Jia, D.B. Dong, C. Song et al., Synthesis, formation process, and luminescence properties of monodisperse barium tungstate hierarchical ellipsoidal particles. Sci. Adv. Mater. 6(4), 808 (2014)
- B. Sun, Y. Liu, W. Zhao, J. Wu et al., Hydrothermal preparation and whitelight-controlled resistive switching behavior of BaWO₄ nanospheres. NanoMicro Lett. 7, 80 (2015)
- Z.J. Luo, H.M. Li, J.X. Xia et al., Microwave-assisted synthesis of barium tungstate nanosheets and nanobelts by using polymer PVP micelle as templates. Mater. Lett. 61(8–9), 1845 (2007)
- J.K. Liu, Q.S. Wu, Y.P. Ding, Controlled synthesis of different morphologies of BaWO₄ crystals through biomembrane/organicaddition supramolecule templates. Cryst. Growth Des. 5(2), 445 (2005)
- L.P. Chen, Y.H. Gao, J.L. Zhu, Luminescent properties of BaWO₄ films prepared by cell electrochemical technique. Mater. Lett. 62, 3434 (2008)
- X. Zhang, Y. Xie, F. Xu et al., Growth of BaWO₄ fishbone like Nanostructures in w/o microemulsion. J. Colloid Interface Sci. 274, 118 (2004)
- Y.D. Yin, G.Y. Hong, Morphology control of lanthanum hydroxide nanorods synthesized by hydrothermal microemulsion method. Chem. J. Chin. Univ. 26(10), 1795 (2005)
- Z.W. Song, J.F. Ma, X.Y. Li et al., Electrochemical synthesis and characterization of barium tungstate crystallites. J. Am. Ceram. Soc. 92(6), 1 354 (2009)
- Y. Wang, W. Mahler, Degenerate four-wave mixing of CdS/polymer composite. Opt. Commun. 61, 233 (1987)
- L.S. Cavalcante, J.C. Sczancoski, L.F. Lima et al., Synthesis, characterization, anisotropic growth and photoluminescence of BaWO₄. Cryst. Growth Des. 9(2), 1002–1012 (2009)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.