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Abstract
Physical and mechanical properties of nanosized materials and structures are strongly affected by surface effects. In this 
paper, a self-consistent theoretical scheme for describing the elastic properties of nanofilms was proposed. The Young’s 
modulus, biaxial modulus and Poisson’s ratio of nanofilms were obtained analytically with considerations of symmetry lower-
ing, surface elasticity, elastic parameter splitting and additional elastic coefficient. Applications of present theory to elastic 
systems such as Si nanofilm Young’s modulus, Cu nanofilm biaxial modulus and Poisson’s ratio yield good agreement with 
previous calculated results. We found that Young’s modulus and Poisson’s ratio were split due to symmetry lowering, and 
this splitting confirms the symmetry lowering. For a nanofilm with a given thickness, Young’s modulus and biaxial modu-
lus increase with surface elastic coefficients increase except c�,s

12
 . The larger positive c�,s

12
 drives Young’s modulus towards 

smaller abnormally. The present study in this paper is envisaged to provide useful insights for the design and application of 
nanofilm-based devices.

1 Introduction

Over the past decade, the mechanics of nanostructures has 
attracted a lot of attention due to their widely proposed 
applications in nanoelectromechanical systems (NEMS) 

[1–6]. As a result of large surface-to-volume ratio, mechani-
cal properties including Young’s modulus, biaxial modulus 
as well as Poisson’s ratio of nanostructures are very differ-
ent from their bulk counterparts [7–12]. And the role of the 
surface energy on the statics, buckling, postbuckling, and 
vibrations of metallic nanowires used for carrying electrical 
current have been displayed by Kiani [13–17].There are a 
great amount of works focused on the nanostructure elastic 
characters including experimental measurements, simulated 
calculations, and theoretical analyses [12, 18, 19]. Experi-
mentally, researchers studied the size-dependent Young’s 
modulus of Silicon (Si) nanofilms and confirmed decrease 
trend with decreasing film thickness [19]. The similar trend 
is also found in chromium (Cr) and gallium nitride (GaN) 
nanostructures [19–21]. While for some other nanostruc-
tures, Young’s modulus has trend to increase with decreasing 
structure size, such as cupric oxide (CuO), zinc oxide (ZnO), 
silver (Ag) and tellurium (Te) [22–25]. Simulated calcula-
tion is another method for researching elasticity of nano-
structures. Si Young’s modulus was studied using molecular 
dynamics (MD) calculation [10]. Embedded-atom-method 
(EAM) was used for calculating FCC aluminium (Al) and 
Stillinger–Weber model was used for Si [26]. Copper (Cu) 
Young’s modulus and Poisson’s ratio were also studied by 
molecular dynamics (MD) calculation [12, 27].

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s0033 9-018-2231-z) contains 
supplementary material, which is available to authorized users.

 * Jiangang Li 
 lijiangang1127@163.com

 * Zhixiang Gao 
 674496407@qq.com

1 School of Physics and Electronic Science, Shanxi 
Datong University and Shanxi Province Key Laboratory 
of Microstructure Electromagnetic Functional Materials, 
037009 Datong, People’s Republic of China

2 College of Physics and Electronic Information, Inner 
Mongolia Normal University and Inner Mongolia Key 
Laboratory of Physics and Chemistry of Functional 
Materials, 010022 Hohhot, People’s Republic of China

3 Inner Mongolia Key Lab of Nanoscience 
and Nanotechnology and School of Physical Science 
and Technology, Inner Mongolia University, 010021 Hohhot, 
People’s Republic of China

4 Committee of the Communist Youth League, Shanxi Datong 
University, 037009 Datong, People’s Republic of China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00339-018-2231-z&domain=pdf
https://doi.org/10.1007/s00339-018-2231-z


 J. Li et al.

1 3

813 Page 2 of 7

Theoretically, a popular surface elastic theoretical scheme 
was to invent a surface elasticity concept in which the sur-
face area was treated as a two-dimensional slice without 
thickness but with elastic characters. Miller and Shenoy 
studied size-dependent elasticity of nanostructures using 
this concept [26]. This surface elasticity theory gave the 
basic rule of surface effect on the elastic properties of 
nanofilms, i.e., surface modification and size dependence 
of nanofilm elasticity. A lot of works modeled mechanics 
of nanostructures within this scheme [28, 29]. Under this 
scheme, a nanostructure was seen as a hybrid structure, and 
was divided into a surface slice which is bonded on the bulk 
like core phenomenologically. This scheme was called as 
core-surface model. Chen et al. and Stan et al. developed 
core-surface model by introducing surface slice thickness 
[25, 30]. The developed hybrid structural surface elastic-
ity model (hybrid model) was called as core–shell model. 
The core–shell model was modified by Yao et al. In modi-
fied core–shell model, a concept of mechanics inhomoge-
neity within surface slice was introduced to model surface 
elastic and piezoelectric properties [31, 32]. Following the 
hybrid scheme mentioned above, the size-dependent elas-
ticity (Young’s modulus) of nanostructure can be modeled 
via Yeff = Ybulk + Ys/t [18], here Yeff, Ybulk and Ys are effec-
tive Young’s modulus, bulk Young’s modulus and surface 
Young’s modulus of nanofilms, respectively. But for a 
nanofilm, besides surface elastic constants, the semi-two-
dimensional structure makes crystallographic symmetry of 
the film reduce to lower one (the spherical symmetry reduces 
to cylindrical one for the case of isotropic hypothesis) [23]. 
Furthermore, the broken bond at surface relaxes and charge 
redistributes. This surface effect leads to overall structural 
relaxation in the film plane. On condition that the film plane 
is expanded, the vertical direction should be shrunk via Pois-
son’s effect. In other words, the rotation symmetry of nano-
film is broken and translational symmetry along thickness 
direction is absent. Surface relaxation as well as symmetry 
lowering lead to differences of mechanical response between 
in-plane direction and vertical direction. Therefore, Young’s 
modulus along vertical direction should be different from 
the in-plane direction counterpart. In addition, Poisson’s 
effect should be also different for the case related to vertical 
direction. The surface modification of elasticity should be on 
elastic constants but rather than Young’s modulus directly 
as hybrid model addressed. Then, a complex size-dependent 
Young’s modulus appears. The symmetry lowering and sur-
face relaxation, as well as surface elastic constants make the 
isotropic mechanical properties of isotropic materials be ani-
sotropic and size dependent. The direct effects of symmetry 
lowering and surface relaxation are the split of the elastic 
coefficient C� and the appearance of an additional elastic 
constant c�,s

12
 which is no bulk counterpart. This additional 

elastic constant accounts for the interaction between volume 
expansion and vertical lattice relaxation. It is very impor-
tant to reckon in the elastic constant splitting as well as the 
additional elastic constant when modeling size-dependent 
elasticity of nanofilms [18, 33–35]. And these symmetry 
lowering effects finally induce anisotropic mechanical char-
acters and split of Young’s modulus and Poisson’s ratio.

In this paper, we gave a universal elasticity strategy for 
mechanical properties of nanofilms. In the present theory, 
size-dependent Young’s modulus, biaxial modulus and Pois-
son’s ratio was deduced mathematically. The anisotropy of 
Young’s modulus and Poisson’s ratio was discussed in this 
work. The present elasticity theory strategy which includes 
Young’s modulus, biaxial modulus and Poisson’s ratio was 
established in this paper. As well as surface elasticity effect, 
symmetry lowering effect on nanofilm elastic property was 
discussed systematically. The present theory was applied to 
Si nanofilm Young’s modulus, Cu nanofilm biaxial modulus 
and Poisson’s ratio for the evidence of validity of the cylin-
drical theory in this paper.

2  Theory and models

2.1  The elastic free energy density of nanofilm

The elastic free energy density of a nanofilm with (001) sur-
face under any deformations can be given by the following 
form according to du trémolet de lachersserie [33]

The strains ��
i
(µ = α, γ, δ and i = 1, 2) are defined as fol-

lows [18, 34],

where εij (i, j = x, y, z) are strain components in Cartesian 
coordinate. The film is assumed to be elastically isotropic for 
the case of the corresponding bulk material (i.e., 2 c� = c44 
in Voigt notation). For a nanofilm with several nanometer 
thickness, the surface relaxation as well as symmetry lower-
ing make the mechanical response along vertical direction 
be different from the in-plane direction counterpart. And 
as a result of this symmetry lowering effect, following five 
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elastic constants are needed to fully describe the mechanical 
properties of nanofilms [18, 33],

where tf is thickness of the film, and the elastic parameters 
Cα=c11 + c12, Cγ=c11-c12. In Eq. (3), one can find that Cα is 
simply modified by surface elastic parameter and film thick-
ness while Cγ is split into three different elastic parameters. 
The additional elastic parameter c�,s

12
 appears due to sym-

metry lowering (Fig. 1).

2.2  The in‑plane direction Young’s modulus 
and the corresponding Poisson’s ratio

The nanofilms are stress-free in their vertical direction in 
that they are always grown on a substrate. Hence, we have a 
relation that σyz = σzx = σzz = 0. The strains εyz, εzx and εzz were 
given by Eqs. (A.2). Substituting εyz, εzx and εzz into Eq. (1), 
the elastic free energy can be written under the deformations 
parallel to the film plane (in-plane deformations) as

Where,

is biaxial modulus of nanofilms.
According to the Taylor series expanded form of biax-

ial modulus Eqs. (B.1) and (B.2), one can easily find that 
Y′(0) = Y/(1 − v) is biaxial modulus of bulk material from 
the definition given above. Here Y = (c11 + 2c12)(c11 − c12)/
(c11 + c12) and v = c12/(c11 + c12) stand for Young’s modulus 
and Poisson’s ratio of bulk material. To the first order of 1/t, 

(3)
c�
11

= C� +
2

tf
c
�,s

11
, c�

12
=

2

tf
c
�,s

12
, c�

22
= C� +

2

tf
c
�,s

22
,

c� = C� +
2

tf
c� ,s, c� = C� +

2

tf
c�,s.

(4)Eel =
1

4
Y �(�xx + �yy)

2 +
1

4
c� (�xx − �yy)

2 + c��2
xy
.

(5)Y � = 3
c�
11
c�
22
−
�
c�
12

�2

c�
11
+ 2

√
2c�

12
+ 2c�

22

,

the biaxial modulus is Y′(t) ≈ Y′(0) + Y′(1)/t. This first order 
approximation is similar to hybrid surface model addressed. 
Hence the hybrid surface model can be seen as the first-order 
approximation of our theory.

To get Young’s modulus and Poisson’s ratio, we assume 
the stress is applied along x direction while keeping y direc-
tion stress free, i.e., σyy = 0. One can obtain

And then, the perpendicular direction strain εzz can be 
given using Eq. (A.2b) and Eq. (6a) as

In the above equations, coefficients vxy, vxz and Y are 
Poisson’s ratio of x-to-y direction, Poisson’s ratio of x-to-z 
direction, and Young’s modulus along in-plane direction, 
respectively. They are defined as

The vxy has the physical significance reads, that y direc-
tion strain is induced by x direction stress via Poisson’s 
effect, the corresponding Poisson’s ratio is just vxy, and the 
ratio between y and x direction strains is − vxy. The similar 
physical significance of vxz relates to z instead of y direction.

According to the Taylor series expanded form of Young’s 
modulus Eqs. (B.3) and (B.4), one can find that the Young’s 
modulus of nanofilms is not simply 1/t size dependent. The 
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Fig. 1  (color online) Schematic 
of the nanofilm structure. The z 
direction is fixed perpendicular 
to the film plane and x–y plane 
is parallel to film plane
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higher order (at least second order) terms are always impor-
tant for ultrathin nanofilms with several nanometer thick-
ness [18]. Equation (B.4) indicate that the surface elastic 
modification terms are structured by coupling surface and 
bulk elastic constants. Actually, the symmetry lowering and 
the construction of elastic constants but not Young’s modu-
lus inevitably introduce the complex coupling between sur-
face and bulk elastic constants. This size-dependent trend 
is very different from simple 1/t dependence of the hybrid 
model.

2.3  The perpendicular direction of Young’s modulus 
and the corresponding Poisson’s ratio

If the stress is applied along z direction, i.e., perpendicu-
lar direction while keeping in-plane directions stress free, 
for a free-standing film, one can obtain the perpendicular 
direction Young’s modulus and the corresponding Poisson’s 
ratio. In this condition, the in-plane strains and stresses are 
isotropic because of that the isotropic property is still kept 
along in-plane directions while the symmetry is broken 
down along the perpendicular direction. The z direction 
stress σzz was given by Eq. (A.4).

The relation between perpendicular and in-plane direction 
strains can be obtained from Eq. (A.6) as

where vzx is Poisson’s ratio relates to the Poisson’s effect 
from perpendicular to in-plane directions. It should be men-
tioned that vzx is different from the Poisson’ ratio vxz as was 
discussed above, while vxz is related to the Poisson’s effect 
from in-plane direction to perpendicular direction. Substi-
tuting Eq. (11) into Eq. (A.5), one can obtain the relation 
between stress and strain along z direction as

where Yzz is Young’s modulus along z direction. The elastic 
characters along perpendicular direction behave differently 
from in-plane directions due to symmetry lowering and sur-
face relaxation. Hence, there are two Young’s modulus and 
three Poisson’s ratio coefficients to interpret the different 
elastic properties along perpendicular and in-plane direc-
tions elastic response. When comparing a nanofilm with 
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its bulk counterpart, one observed that biaxial modulus is 
simply modified by surface elastic constants while uniaxial 
Young’s modulus is split into two and Poisson’s ratio is split 
into three different coefficients due to surface relaxation and 
symmetry lowering.

3  Results and discussions

The relative number of atoms that are bonded surface or 
interface increases with film thickness decreasing. And 
then surface elastic constants strongly affect the over-
all mechanical properties of nanofilms [36]. The broken 
bond at surface relaxes and the dangling bonds combine 
together. This effect induces atoms to move and depart 
from their customary position. Lattice structure and inter-
atomic forces near the surface are changed. This surface 
reconstruction changes the elastic constant and Young’s 
modulus at surface. Furthermore, the movement of surface 
atoms leads to surface stress and expands (or shrinks) the 
film in the film-plane. The film relaxes inward (or outward) 
along vertical direction due to Poisson’s effect. The overall 
film is relaxed by the whole procedure of surface relaxa-
tion and surface reconstruction. And then, the symmetry 
of the film is broken and reduced. Therefore, Young’s 
modulus and Poisson’s ratio are strongly size-dependent 
when film thickness shrinks to several nanometers to 
form a nanofilm. Surface relaxation and symmetry lower-
ing enhance the surface effect and make elastic proper-
ties of nanofilms be different from the corresponding bulk 
materials. The validity should be examined by comparing 
our theoretical solutions with relevant numerical compu-
tations as well as previous continuity theoretical work. 
Imitate the bulk elastic parameter relations Cα = c11 + 2c12, 
Cγ = c11 − c12, the surface elastic parameter relations may 
be similar as

but not exactly. Here ‘≈’ instead of ‘=’ is used in the 
equations due to symmetry lowering of nanofilms. For a 
nanofilm, bulk modulus Cα is simply modulated by surface 
elasticity and film size (thickness exactly) while tetrago-
nal modulus Cγ is split into two different parameters, i.e., 
tetragonal shear moduli along vertical direction c�

22
and in 

film plane cγ (there are no shear strains for the case of simple 
epitaxy in this paper and the corresponding rhombohedral 
parameter cδ is neglected here). If ignored the lowered sym-
metry, there should be relationship c�

22
= c�about the elastic 

coefficients like bulk materials. But the lowered symmetry 
induces the discrepancy between c�

22
 and cγ. This effect may 

result in different trends of size dependency between these 
two tetragonal shear moduli. Another symmetry lowering 

c
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≈ cs
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effect is the additional elastic parameter c�
12

 which is no bulk 
counterpart. This additional elastic parameter is along with 
the coupling between isotropic volume expansion and ver-
tical lattice relaxation. This coupling means minus energy 
term in total elastic energy when the stress is applied along 
in-plane direction. And the minus energy term causes larger 
strain induced by the stress. Hence, the larger positive c�,s

12
 

drives Young’s modulus towards smaller. The same pro-
cedure of c�,s

12
 dependence also suits biaxial modulus. For 

example, Si film is softened by surface effect and surface 
elastic constant c�,s

12
 is 27 N  m−1 is shown in Table 1. Table 2 

listed Si and Cu surface elastic parameters from simulated 
calculations in references [37, 38] for comparison. The sym-
metry lowering was not considered in references [37, 38] 
hence the notation of the surface elastic is different from 
present theory in this paper.

Normalized effective Young’s modulus of Si nanofilm 
is shown in Fig. 2. The theoretically calculated line using 
Eq. (10) shows excellent agreement with molecular dynam-
ics (MD) simulation data. For silicon, bulk elastic coeffi-
cients are c11 = 165 GPa, c12 = 63 GPa [36], and surface elas-
tic coefficients are shown in Table 1. The hybrid model, i.e., 
Yeff = Ybulk + Ys/t, result is also shown in Fig. 2. The surface 
Young’s modulus in hybrid model was set as − 20 N m− 1 for 
comparison (see dashed line in Fig. 2). For hybrid model, 
larger (minus) surface Young’s modulus induces obvious 
discrepancy between theory and simulated calculation for 
relatively thicker film (t > 3 nm), and on the other hand, 
smaller (minus) surface Young’s modulus induces obvious 
discrepancy between theory and simulated calculation for 
relatively thinner film (t < 3 nm). The hybrid model holds 
different dependency (slope) on thickness compared with 
simulation. This difference originates from the lack of con-
sideration of symmetry lowering for nanofilms. Generally 
speaking for a nanofilm with a certain thickness, Young’s 
modulus increases with the larger positive surface elastic 
coefficients except c�,s

12
 . To clarify the c�,s

12
 effect on nano-

film elastic characters, we plotted Si film c�,s
12

 dependence of 

Young’s modulus with different film thickness in Fig. 3. The 
obvious trend of the lines in Fig. 3 is that Young’s modu-
lus decreases with larger positive c�,s

12
 and this influence is 

enhanced by smaller film thickness.
In Fig. 4, we plotted Cu nanofilm biaxial modulus versus 

film thickness t and compared our theory with previous the-
ory in reference [11]. Bulk elastic coefficients of Cu film are 
c11 = 176.2 GPa, c12 = 124.9 GPa, respectively [35, 39], and 
surface elastic coefficients were shown in Table 1. Solid line 
in Fig. 4 was plotted using Eq. (5), and continuum mechan-
ics calculated data of other group from reference [11] was 
also shown in the figure for comparison (square symbol). 
Our theoretical calculation excellently agrees with the result 
from reference [11]. Follow Si nanofilm Young’s modulus, 

Table 1  Surface elastic parameters in N  m− 1 of Si and Cu nanofilms 
in this paper

System c
�,s

11
c
�,s

22
c
�,s

12
c
� ,s

Si − 15 − 30 27 18
Cu 20 15 − 16 − 5

Table 2  Surface elastic parameters in N m− 1 of Si and Cu nanofilms 
in references [37, 38]

Films c
s

11
(cs

22
) c

s

12
c
�,s

12

Si − 7.13 ± 4.17 − 4.93 ± 0.42 –
Cu − 4.16 4.30 –

Fig. 2  (color online) Normalized Young’s modulus of Si nanofilms. 
The red (dark grey) solid line is current theoretical calculation from 
Eq. (10). The dark dashed line is hybrid theoretical calculation. The 
molecular dynamics simulation (MD) data were from reference [10]

Fig. 3  (color online) Normalized Young’s modulus of Si nanofilms as 
c
�,s

12
 function. Young’s modulus decreases with the larger positive c�,s

12
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we plotted Cu nanofilm biaxial modulus as c�,s
12

 function with 
different film thicknesses in Fig. 5. One can find that the 
dependence of c�,s

12
 for Cu nanofilm biaxial modulus is very 

similar to Si film Young’s modulus.
As well as Young’s modulus and biaxial modulus, Pois-

son’s ratio of nanofilm is also surface modulated and size 
dependent. Figure 6 plotted Cu nanofilm Poisson’s ratio 
as function of film thickness using Eqs. (8), (9) and (12). 
Figure 6 shows that Poisson’s ratio is split into three dif-
ferent parameters, vxy, vxz and vzx. Symmetry lowering 
induced the different trends between three Poisson’s ratio 
parameters as shown in Fig. 6. In film plane, Poisson’s 
effect vxy is enhanced by surface effect while the Poisson’s 
effects relate to vertical direction vxz and vzx are weakened 

by surface effect. The molecular dynamics (MD) simulations 
were brought into comparison with our present theoretical 
model. The dark square symbol is embedded-atom-method 
(EAM) potential calculation and red (dark grey) round 
symbol is Lennard-Jones (L-J) potential calculation. Both 
MD simulations in Fig. 6 were performed at 0 K [12]. This 
extreme temperature condition is the origin of the discrep-
ancy between MD results and our present model calculation 
from Eq. (8).

4  Conclusions

In summary, the surface elastic coefficients affect the over-
all elastic response of nanofilms, while relaxation of broken 
bond and redistribution of charge at surface lowered the sym-
metry of nanofilms. This symmetry lowering splits elastic 
coefficient Cγ and introduces additional elastic coefficient c�

12
 

without bulk counterpart. The surface elasticity effect and 
symmetry lowering effect were reckoned in our model calcu-
lations. The applications of our model to Si and Cu nanofilms 
implied that the present model works well on the ultrathin 
nanofilms with several nanometers. To reveal the symmetry 
lowering effect and the additional surface elastic coefficient 
c
�,s

12
 effect on nanofilm elastic properties, this paper calculated 

curves of Young’s modulus and biaxial modulus versus c�,s
12

 
with different film thicknesses. We found that larger posi-
tive c�,s

12
 of nanofilm, not only Si but also Cu (actually any 

nanofilm material), driving Young’s modulus (as well as 
biaxial modulus) towards smaller. The symmetry lowering 
induces the split of Young’s modulus and Poisson’s ratio. 
And the other way round, the split of Young’s modulus and 
Poisson’s ratio proved the lowered symmetry of nanofilms. 

Fig. 4  (color online) Normalized biaxial modulus of Cu nanofilms 
versus film thickness. The square symbol data were from reference 
[11]

Fig. 5  (color online) Normalized biaxial modulus of Cu nanofilms 
versus c�,s

12
 . Biaxial modulus decreases with the larger positive c�,s

12

Fig. 6  (color online) Poisson’s ratio of Cu nanofilms versus Cu mon-
olayers. The embedded-atom-method (EAM) and Lennard-Jones 
(L-J) data were from reference [12]
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While core-surface model as well as core–shell model cannot 
present the symmetry lowering and the corresponding effects.
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