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Abstract
The main purpose of this research work is to develop the single domain magnetic particles of M-type barium hexaferrite 
 (BaFe12O19) using oxide precursors employing conventional powder metallurgy technique. The phase formation and mag-
netic performance of the powders and magnets will be optimized by adjusting calcination and sintering temperatures. The 
synthesis of M-type barium hexaferrite was carried out in two sections. A series of four samples have been prepared by initial 
wet mixed powders calcined at different temperatures, i.e., 750, 850, 950 and 1050 °C. On the basis of structural analysis, 
the sample calcined at 950 °C has been selected and further divided into four parts to sintered them at 1100, 1150, 1200 and 
1250 °C. The structural measurements depict the confirmation of M-type barium hexaferrite structure. SEM micrographs 
show the hexagonal-shaped grains. The abrupt decrease in coercivity for the sample sintered at 1250 °C has been seen which 
may be due to high sintering temperature, at which the particles have multi-domain properties.

1 Introduction

M-type hexaferrites having chemical composition  MFe12O19, 
where (M = Ba, Sr or Pb), are widely used in magnetic 
recording media, microwave devices and electromagnetic 
shielding fields [1, 2]. They have magnetoplumbite struc-
ture and are magnetically hard ceramic materials. Barium 
ferrites possess relatively high Curie temperature, coercive 
force and magnetic anisotropy field as well as its chemical 
stability and corrosion resistivity [3, 4]. Because of many 
unique properties, they have been a lot of interest in syn-
thesis and characterization of different derivatives of these 
materials, especially in nano-scale in order to tune their 
great magneto-optical properties. The magnetic properties 
of hexaferrites such as saturation magnetization, coercivity 
and anisotropy field are strongly dependent on M-type phase 

[5, 18]. Consider pure barium hexaferrite  BaFe12O19 (BaM) 
which has relatively high saturation magnetization, high 
magnetic anisotropy, high Curie temperature. These excel-
lent magnetic properties in addition to corrosion resistance 
and affordable price account for bulk production of BaM 
[6, 17]. The challenge that interests most of the researchers 
is how to boost the electromagnetic character barium ferrite 
[7, 20]. Larger coercivity makes difficult to erase and record 
new data, so by optimizing the intrinsic magnetic proper-
ties, tuned electromagnetic character will be developed [8, 
19]. Low saturation magnetization and coercivity Hc make 
the data storage and re-recordable property easy, whereas 
chemical inertness and longevity of the ferrite should be 
maintained [8–10].

Until now, barium ferrites having M-type hexagonal 
structure have only been used as permanent magnets and for 
high-density information magnetic storage [11–13]. How-
ever, a new third application of M-type hard ferrites has been 
discovered as a multi-ferroic material [14, 15]. These types 
of materials possess significant coupling between dielectric 
and magnetic properties. Multi-ferroic materials will widely 
be used in a new field of microelectronics which is known as 
spintronics. Spintronics uses electrically controlled magnets 
which require multi-ferroics with higher values of coercive 
field and magnetization at room temperature [16].

Multi-ferroics, which are also known as ferroelec-
trics, exhibit dual ferroic properties like spontaneous 
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magnetization and specific magnetization [17, 18]. Mate-
rials having dual ferroic properties are classified by the 
physical origin, e.g., geometric structural transition, 
magnetic ordering and charge ordering [19]. The practi-
cal problems of spintronics are to design electrically con-
trolled magnets which require multi-ferroics having higher 
magnetization and coercive force at room temperature. 
 BiFeO3 is the most extensively used multi-ferroic mate-
rial [20]. It has low magnetic properties at higher tempera-
ture, which is the major disadvantage of this material [21]. 
Because of this, hexagonal ferrite-based multi-ferroics are 
the most promising candidates at room temperature.

BaFe12O19 provides a wide range of potential applica-
tions such as novel memory media, multiple-state memory 
elements, new functional sensors and transducers [22]. The 
 BaFe12O19 having hexagonal magnetoplumbite structure 
was determined by Adelskold [23]. The unit cell contains 
two formula units, having 38 oxygen ions, 24 iron ions 
and 2 barium ions. The ions of iron occupy nine sixfold 
octahedral sites, one fivefold trigonal sites and two four-
fold tetrahedral sites. Barium ions occupy 2d sites [24]. 
Because barium ferrites have large magneto-crystalline 
anisotropy, large magnetization, high curie temperature 
and excellent chemical stability so their anisotropy energy 
constant exceeds the values of garnet ferrites by a 100 
times more. Materials which possess both properties of 
ferro-elctricity and ferromagnetism are rare. They mostly 
provide weak ferromagnetism. Therefore, large ferro-
electricity and ferromagnetism provide a new direction 
for potential multi-ferroic candidate.  BaFe12O19 is one of 
these candidates having hexagonal crystal structure [25]. 
The magneto-electric characteristics are more advanced in 
 BaFe12O19 than  BiFeO3 multi-ferroic material. By apply-
ing the external electric field, the magnetization will be 
increases up to 9%. This suggests a big practical potential 
application of M-type hexaferrite ceramics as devices with 
strong magneto-electric coupling [26]. The combination 
of high coercive force with rather high residual induction 
allows to receive permanent magnets with satisfactory 
specific magnetic energy. Their low conductivity allows 
to apply hexaferrite magnets in the presence of high fre-
quency magnetic fields [27].

Several synthesis methods have been developed to obtain 
low production cost of barium ferrite particles [28, 29]. 
Among the available chemical processes, sol gel method and 
solid-state reaction method, the solid state reaction method 
is known to be a simple and cost effective way to prepare 
barium ferrites with low coercive fields [2, 30–33]. Ferro-
magnetic nature of BaM originates from its  24F3+ ions in a 
unit cell, and these ferric ions exist in three crystallographi-
cally different lattices: tetrahedral  (2f1), trigonal (2b) and 
octahedral (12k, 2a and  4f2). 16Fe have their spin direction 
parallel to the crystallographic c axis forming the majority 

↑ (12k, 2a and 2b) while 8Fe resides in the reverse direction 
and thus minority sub lattices ↓  (4f1 and  4f2) [34, 35].

The aim of this research work is to see the effect of dif-
ferent synthesis parameters on nano-structured M-type 
 BaFe12O19 powder in order to tune the magnetic properties.

2  Experimental setup

2.1  Sample preparation

M-type hexagonal barium ferrite  (BaFe12O19) powder is 
synthesized using raw materials of iron oxide  (Fe2O3) and 
barium carbonate  (BaCO3) using powder metallurgy route.

The experimental setup was carried out in two steps as 
shown in Fig. 1. First step is the confirmation of phase and 
the second one is optimization of sintering temperature to 
produce good magnetic performance.

The first step of the experiment is stoichiometric amounts 
of barium carbonate  (BaCO3) and iron oxide  (Fe2O3) are 
taken and mixed in a ball mill using wet mill process. For 
wet milling, some amount of organic fluid acetone is added 
to get the fine homogeneous mixture. The milling process 
has been carried out for 1 h. The powder to ball mass ratio 
is taken as 1:8. After grinding, mixture was taken out into 
a beaker and then placed in an oven at 60 °C for 1 h. The 
grinding mixture is divided into four equal parts and heat 
treated in an electric furnace in the temperature range (750, 
850, 950 and 1050 °C) to obtain the required crystallo-
graphic phase under specific conditions of time and tem-
perature. The  BaFe12O19 phase is confirmed at 950 °C, after 
the confirmation of the phase all of the remaining powder 
was annealed at 950 °C.

Second step of this experiment is the optimization of 
sintering temperatures. The basic purpose of this step is to 
prepare cylindrical magnets having enhanced magnetic prop-
erties. In this step first of all, the phase confirmed powder is 
further divided equally into four parts and made four pellets 
and then again heat treated at different sintering tempera-
tures from 1100, 1150, 1200 and 1250 °C. Then, the final 
cylindrical magnets are ready to use in different characteri-
zations. Figure 1 shows the flow chart for the preparation of 
Barium hexa-ferrites.

3  Results and discussion

3.1  DSC/TGA analysis

The M-type barium hexaferrites have been prepared using 
two starting materials  Fe2O3 and  BaCO3. The DSC of 
barium carbonate has been carried out to check its ther-
mal behavior and phase transition temperature. The study 
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of phase transition temperature is necessary because it 
is the pre-investigation method to find the optimum 
temperature for the synthesis of the single domain par-
ticles. The  BaCO3 powder actually shows three crystallo-
graphic phases: these are rhombohedral, β-hexagonal and 
α-cubic. The two endothermic peaks at temperature 812 °C 
(1085 K) and 981 °C (2235 K) have been seen through 
DSC micrograph as shown in Fig. 2. These peaks might 
be correspond to the phase transition from γ–β and then 
β–α. The  BaCO3 thermally decomposes and, as a result, 

gives metal oxide and carbon dioxide  (CO2) gas. Ther-
mal decomposition is the process in which compounds are 
splits by heating. Barium carbonate is thermally stable and 
reduced to  BaCO2 which is unstable [36, 37]:

Then,  BaCO2 further breaks down and gives BaO 
plus  CO2. The DSC micrograph exhibits that  BaCO3 first 
reduces to unstable  BaCO2 at 812 °C and then further 
decomposes to BaO at 981 °C, so latter is the temperature 

BaCo
3
+ CO → BaCO

2
+ CO

2
.

Fig. 1  Flow chart for the prepa-
ration of  BaFe12O19 BaCO3
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where M-type barium hexaferrite phase first starts to 
appear, which is also further confirmed by XRD.

The variation of weight loss (%) of  BaCO3 with tem-
perature is shown in Fig. 3. There is initially a sluggish 
trend in mass drop with temperature but at above 871 °C 
the sudden change in mass is observed which might be due 
to the decomposition of  BaCO3 into BaO with the release 
of  CO2 gas.

3.2  Section I

3.2.1  XRD analysis

The structural analysis of M-type barium hexaferrites 
annealed at different temperatures, i.e., 750, 850C, 950 and 
1050 °C has been carried out using XRD machine. The com-
parative XRD micrograph is shown in Fig. 4.

It is observed from the comparative XRD micrograph 
that there is a drastic change in structure and peak intensi-
ties of the sample as the annealing temperature increases. 
The as-milled mixture exhibits the separate peaks of  BaCO3 
and  Fe2O3 mentioned on the graph. The sample sintered at 
750 °C shows the amorphous-like structure and exhibits the 
peaks of barium mono-ferrite  (BaFe2O4), barium carbon-
ate  (BaCO3) and iron oxide  (Fe2O3). These are the second-
ary phases which are confirmed by standard JCPD cards 
of  BaFe2O4 (70-2468),  BaCO3 (045-1471) and  Fe2O3 (01-
1053). It might be that this temperature may not be suit-
able for the formation of M-type barium hexaferrite. The 
sample annealed at 850 °C exhibits the first appearance of 
M-type barium hexaferrite phase but some secondary phases 
of  BaFe2O4 (70-2468),  BaCO3 (045-1471) and  Fe2O3 (01-
1053) are also still observed. At 950 and 1050 °C, all the 
secondary phases disappear and single M-type barium hexa-
ferrite phase has been obtained which is not in accordance 
with the previous literature [38]. It is concluded that as the 
annealing temperature increases, secondary phases of  Fe2O3, 
 BaCO3 and  BaFe2O4 (barium ferrite mono phase) gradually 
decrease leading to the formation of single phase M-type 
barium hexaferrite having the composition  BaFe12O19. The 
XRD micrographs confirmed the structure of M-type barium 
hexaferrite, annealed at 950 and 1050 °C. The lattice con-
stants are calculated using the given formula [39];

0 200 400 600 800 1000

-1.2

-0.8

-0.4

0.0

0.4

981oC

812oC

H
ea

t F
lo

w
(W

/g
)

Temperature (°C)

Fig. 2  DSC micrograph of  BaCO3

0 200 400 600 800 1000

99.4

99.6

99.8

100.0

871oC

W
ei

gh
t l

os
s(

%
)

Temperature(oC)

Fig. 3  TGA micrograph of  BaCO3

20 40 60 80
0

2000

4000

6000

8000

10000

12000

14000

16000

(2
20

)

(2
01

1)

(1
14

)
(1

07
)

(1
10

)

10500C

9500C

8500C

7500C

As milled

*: BaCo3 o: Fe2O3 b: BaFe2O4

*b*
ooooo*

*oo
oo

*

stnuo
C

Fig. 4  Comparative XRD pattern of  BaFe12O19 annealed at different 
temperatures



Enhancement of structural and magnetic properties of M-type hexaferrite permanent magnet…

1 3

Page 5 of 11 49

The lattice constants a and c along with the unit cell volume 
of these samples are listed in Table 1. The diamond software 
is used for the 3-D visualization of structure. The XRD struc-
ture is visualized with the help of diamond structure in which 
Wyckoff sites and x, y, z values of each element present in the 
composition are needed.

3.2.2  Diamond structure

The 3-D structural view of M-type barium hexaferrites 
annealed at 950 and 1050 °C is shown in Fig. 5a, b, respec-
tively. The XRD study of M-type barium hexaferrites annealed 
at 950 and 1050 °C shows that the peak intensities are well 
indexed with the hexagonal cell having space group P 63/m 
m c (no. 194). There are 24  Fe+3 ions in five symmetry sites in 
which three are in octahedral site, two in tetrahedral site and 
one in bipyramidal site. The wykoff sites and x, y, z values for 
all the elements used in M-type barium hexaferrites composi-
tion are listed in Table 2.

The cell volumes of M-type barium hexaferrites annealed at 
950 and 1050 °C are calculated using the formula given below. 
These cell volume values are then further confirmed with the 
help of diamond software [29, 30].

(1)
1

d
2

hkl

=
4

3

(

h2 + hk + k2

a2

)

+
l2

c2
.

(2)V = a
2
c
√

3∕2.

The wyckoff sites and x, y, z values for all the elements 
present in  BaFe12O19 composition are listed in Table 2.

These micrographs show that there is a slight difference 
in both structures because of the small variation in lattice 
parameters of the samples annealed at 950 and 1050 °C. It 
is observed from Table 1 that lattice parameter a decreases 
whereas c increases; hence as a result the cell volume of the 
sample annealed at 1050 °C is slightly greater than that of 
950 °C.

3.2.3  SEM analysis

The SEM micrographs of M-type barium hexaferrites 
annealed at different temperatures, i.e., 750, 850, 950 and 
1050 °C, are shown in Fig. 6a–d, respectively.

It is observed from the Fig. 6a for the sample annealed 
at 750 °C that there is an amorphous-like structure with 
the very small particles of the order of few nanometers, 
with no definite shape distributed in a random fashion. 
The second sample annealed at 850 °C is shown in Fig. 6b, 
it is observed that the grain size has been increased due 
to more diffusion at comparatively high temperature. The 

Table 1  XRD data for barium ferrite

Annealing tem-
perature T (°C)

Lattice param-
eter a  (A0)

Lattice param-
eter c  (A0)

Volume V  (A03)

950 5.8866 23.1371 694.33
1050 5.8793 23.1986 694.45

Fig. 5  3-D structure of 
 BaFe12O19 annealed at a 950 °C 
and b 1050 °C

(a) (b)

Table 2  Atomic coordinates of  BaFe12O19

Atom Oxidation no. Wyckoff site x y z

O − 2 12k 0.5 1.00 0.15
O − 2 12k 0.16 0.33 0.05
O − 2 6h 0.5 1.00 0.25
O − 2 4f 0.33 0.66 − 0.05
O − 2 4e 0 0 0.15
Fe + 3 12k 0.16 0.33 − 0.10
Fe + 3 4f 0.33 0.66 0.02
Fe + 3 2b 0 0 0.25
Fe + 3 2a 0 0 0
Ba + 2 2d 0.66 0.33 0.25
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well-defined spherical and elongated shaped grains have 
been seen in the SEM micrograph of the M-type barium 
ferrite annealed at 950 °C as shown in Fig. 6c. The devel-
opment of definite shape and well-defined boundary of 
these partial hexaferrite grains might be due to the proper 
annealing of temperature. This is also evident from XRD 
micrographs that barium hexagonal ferrite phase first 
appears at 950 °C. The small hexagonal-shaped grains 
with definite arrangement have been observed in Fig. 6d 
for the samples annealed at 1050 °C. The increment in 
annealing temperature results in pure phase of M-type bar-
ium hexaferrite with better demonstration of grain shape 
and boundary. After the formation of single phase M-type 
barium ferrite at 950 °C, the sample is further distributed 
into four equal parts and then optimizes the sintering tem-
perature ranges from 1100, 1150, 1200 and 1250 °C. The 
prepared samples are then characterized through XRD, 
FTIR, SEM and DC-magnetometer. These are explained 
further in detail in section II below:

Fig. 6  SEM micrographs of  BaFe12O19 annealed at a 750 °C, b 850 °C, c 950 °C and d 1050 °C

Fig. 7  Comparative XRD micrographs of  BaFe12O19 sintered at dif-
ferent temperature
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Fig. 8  FTIR micrograph of 
 BaFe12O19 sintered at 1250 °C
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Fig. 9  SEM micrographs of  BaFe12O19 sintered at a 1100 °C, b 1150 °C, c 1200 °C and d 1250 °C
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3.3  Section II

3.3.1  XRD analysis

The XRD micrographs of  BaFe12O19 sintered at 1100, 1150, 
1200 and 1250 °C are shown in Fig. 7. These XRD micro-
graphs exhibit that as the sintering temperature increases, 
the grain size increases. At high sintering temperature, the 
thermal energy of the particles increases significantly, which 
force to diffuse the particles to make a bigger grain. It may 
also be due to the alignment of more planes in their specific 
directions and, as a result, the intensity of peaks becomes 
sharper.

3.3.2  FTIR analysis

The structural verification of M-type barium hexaferrite 
sintered at 1250 °C is again carried out through FTIR. 
The IR spectra for the M-type barium hexaferrites have 
been recorded between 500 and 4000 cm−1 as shown in 
Fig. 8. The typical metal–oxide vibration band verifies 
the hexagonal structure which is generally in the range 
450–600 cm−1. The band at 592 cm−1 in Fig. 8 suggests 
the intrinsic stretching vibrations of metal (Fe ← – → O) 
which confirms the hexagonal structure BaM. It verifies 
that the precursors are fully decomposed and form barium 
hexagonal ferrite (BaM). It is in good agreement with the 
reported literature [40]. The absorption band located at 

Fig. 10  Comparative DC magnetometer micrographs of  BaFe12O19 sintered at a 1100, b 1150, c 1200 and d 1250 °C
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1661 cm−1 is of C=C. This bond might be due to  CO2 in 
air and most probably due to the burning of gasses in the 
furnace. The band located at 2371 cm−1 may be attributed 
to the symmetric vibration of –OH groups. It may be due 
to the presence of KBr which is used for the preparation 
of FTIR pellet.

3.3.3  SEM analysis

The SEM micrographs of M-type barium hexaferrites sin-
tered at different temperatures, i.e., 1100, 1150, 1200 and 
1250 °C, are shown in Fig. 9a–d, respectively.

It is observed from SEM micrographs for the samples 
sintered at 1100, 1150 and 1200 °C that it exhibits a lot of 
small hexagonal-shaped particles with definite grain bounda-
ries, having grain size 625–375 nm. The remarkable feature 
is observed in the SEM micrograph for the sample sintered 
at 1250 °C that shows larger grains of about 950 nm with 
plate-like structure. It is concluded that at 1250 °C sintering 
temperature or above this temperature, the grain size notice-
ably increases which is also evident from XRD analysis.

3.3.4  Magnetic properties

DC-magnetometer is used to determine magnetic properties 
of the sample. The hysteresis loops of M-type barium hexa-
ferrites sintered at different temperatures such as 1100, 1150, 
1200 and 1250 °C are shown in Fig. 10a–d, respectively. 
The parameters extracted from hysteresis loops are tabu-
lated in Table 3. These micrographs show both MH (black) 
and BH (red) curves of M-type barium hexaferrites. These 
curves depict the broad MH loop, which is the confirma-
tion of the hard hexagonal barium ferrite. It is observed that 
as the sintering temperature increases up to 1150 °C, the 
coercivity also increases, which might be due to the single 
domain particles. In single domain particles, the coerciv-
ity has remarkable relation with grain size [41–46]. But as 
the sintering temperature reaches 1250 °C, the coercivity 
decreases slightly due to the multi-domain properties of par-
ticles. The relationship between the coercivity and grain size 
as a function of sintering temperature is shown in Fig. 11 
which is also in good agreement with the literature [47]. It 

is also noticed that the energy density of M-type hexaferrites 
increases at elevated temperature which is also the confirma-
tion of the formation of stronger magnets as compared to the 
magnet at low sintering temperature.

4  Conclusion

A series of M-type barium hexaferrites have been synthe-
sized at different annealing temperatures from 750, 850, 950 
and 1050 °C in section I and then again sintered them at 
1100, 1150, 1200 and 1250 °C to study the effect of tem-
perature on structural and magnetic properties. The struc-
tural analysis revealed that as the sintering temperature goes 
towards the elevated temperature the intensity of the peaks 
becomes more intense and sharp; as a result, the perfect 
single phase hexagonal structure is achieved. FTIR analysis 
confirmed the single phase of M-type barium hexaferrite 
with the major band at 592 cm−1, which might be due to 
the stretching vibrations of metal–oxide bond. The magnetic 
properties confirm the formation of stronger magnets due to 
the high energy density and coercivity. So we may suggest 
that these M-type hexaferrites are the potential candidate 
used as a core in transformer and for storage devices.
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