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Abstract
Electroactive polymers (EAPs) have emerged as a strong contender for use in low-cost efficient actuators in multiple appli-
cations especially related to biomimetic and mobile-assistive devices. Dielectric elastomers (DE), a subcategory of these 
smart materials, have been of particular interest due to their large achievable deformation and favourable mechanical and 
electro-mechanical properties. Previous work has been completed to understand the behaviour of these materials; however, 
their properties require further investigation to properly integrate them into real-world applications. In this study, a biaxial 
tensile experimental evaluation of 3M™ VHB 4905 and VHB 4910 is presented with the purpose of illustrating the elas-
tomers’ transversely isotropic mechanical behaviours. These tests were applied to both tapes for equibiaxial stretch rates 
ranging between 0.025 and 0.300 s−1. Subsequently, a dynamic planar biaxial visco-hyperelastic constitutive relationship 
was derived from a Kelvin–Voigt rheological model and the general Hooke’s law for transversely isotropic materials. The 
model was then fitted to the experimental data to obtain three general material parameters for either tapes. The model’s 
ability to predict tensile stress response and internal energy dissipation, with respect to experimental data, is evaluated with 
good agreement. The model’s ability to predict variations in mechanical behaviour due to changes in kinematic variables is 
then illustrated for different conditions.

1 Introduction

Over the last two decades, technological advancements have 
allowed researchers to develop many novel self-independent 
mobile systems such as human mobility assistive devices. 
Powered by electrical motors and/or hydraulic and pneu-
matic cylinders, they provide a considerable improvement 
to human physical abilities. Their development is not, how-
ever, without its limitations. The success of these devices is 
greatly restricted by the operational times currently achiev-
able, as well as their unfavourable weight and volume [1, 
2]. This has led to new interests in the application of smart 
materials to produce novel types of actuation. As part of this 

newer class of materials, electroactive polymers (EAP) have 
emerged as a strong contender for use in low-cost efficient 
actuators. Among their many appealing properties, they 
have proven particularly useful for soft robotic and assistive 
device applications due to their similar mechanical behav-
iour to human muscle [1, 3]. A subcategory of these poly-
mers, namely dielectric elastomers (DE), has shown very 
promising properties for these types of applications. Their 
structures have revealed large achievable deformation while 
their material composition has demonstrated high dielectric 
strength [4–7].

As to be expected by any rubber-like material, DE dem-
onstrate a proportional sensitivity to strain rate, as well as 
a clear dissipation of internal energy during a load–unload 
tensile test. For this reason, their mechanical (uniaxial) ten-
sile behaviours have required investigation to adequately 
design, predict, and optimize DE-based actuators [8, 9]. No 
multi-axis experimental results have been found in the lit-
erature to demonstrate the materials’ behaviour under com-
plex tensile loading. In most cases, the material behaviour 
is assumed to be isotropic based on its elastomeric struc-
ture. Acrylic-based DE are typically always pre-stretched for 
their use as an EAP. In most cases, this stretching is applied 
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biaxially. It is, therefore, of particular interest to quantify the 
materials’ behaviour from a biaxial perspective, to validate 
its mechanical properties under these conditions.

Researchers have also proposed several constitutive 
models to characterize the behaviour of these materials. To 
predict the electro-mechanically coupled behaviour of an 
actuator, the mechanical constitutive behaviour must first 
be studied. This relationship between the stress and stretch 
ratio provides the foundation to all further design and analy-
sis of DE-based actuators. Being rubber-like materials, the 
elastic response of acrylic-based DE are highly nonlinear, 
and therefore necessitate more complex stress–stretch ratio 
characterization. Several hyperelastic strain energy functions 
have been proposed to characterize these types of materials, 
from both phenomenological and micro-mechanical consid-
erations. Steinmann [10] and Hossain [11] have reviewed 
and compared 25 of these models. Among the surveyed 
candidates, they have demonstrated the accuracies of Neo-
Hooke [12], Ogden [13], and Yeoh [14] models, which have 
been used by various research groups [15–20] to model the 
mechanical and electro-mechanical response of DE films 
and actuators.

Although hyperelastic models provide good insight of 
the material’s elastic behaviour in tension, they unfortu-
nately neglect its time-dependent viscoelastic properties. 
To include these behaviours as part of the constitutive mod-
els, several groups [21–25] have adapted both hyper- and 
visco-hyperelastic models such as Mooney-Rivlin [12], Gent 
[26], and Bergström-Boyce [27] to predict the DE films/
actuator mechanical behaviour. Viscoelastic constitutive 
models yield high accuracy when describing static time-
dependent responses such as stress relaxation and creep. 
They are also very effective in precise analysis applications 
such as computational finite element modelling. Such alter-
natives are not, however, as practical for design purposes due 
to their high complexity, and lack of ability to effectively 
model continuous/alternating loading conditions. This is in-
part due to the fact that the damping aspect of elastomers, 
particularly VHB tapes, is highly nonlinear and, therefore, 
difficult to represent analytically. For this reason, certain 
groups have adopted other approaches, based on rheologi-
cal models [28–31] or quasi-linear viscoelasticity [32, 33], 
to provide a more intuitive physical representation. Further 
developments, such as the works of Sabran et al. [34] and 
Zhang et al. [35] have implemented rheological approaches 
for dynamic applications, which demonstrates their potential 
for high-frequency applications such as DE actuators.

One such approach has been proposed by Lochmatter 
et al. [28], to provide a more straightforward method for 
DE-based planar actuator design and analysis. This alter-
native makes use of a three-dimensional network of fluid-
filled cuboids, where their frame-segments are comprised of 
enhanced Kelvin–Voigt rheological model (also known as a 

Standard Linear Solid model). The model aimed to describe 
the mechanical behaviour of visco-hyperelastic elastomers to 
provide an investigative tool for actuators under continuous 
cyclical electro-mechanical activation.

Further development by Wang et al. [29] re-expressed 
this model with a dynamic energy dissipation parameter. 
The group introduced a rate-dependent frequency to the 
equivalent (lumped) modulus of the aforementioned Kel-
vin–Voigt segments. As the polymer’s stress response is also 
dependent on stretch rate, this allowed the model to reflect 
the variations in mechanical response due to changes in rate 
of deformation. Wang’s new approach has proven successful 
in agreeing with experimental values. It has also demon-
strated the ability to represent variations in energy loss and 
changes in peak stresses due to the effects of changing the 
kinematic parameters. The model’s mathematical structure 
is also more illustrative of mechanical behaviour, which is 
advantageous for the design and evaluation of DE actuators. 
The aforementioned models have not, however, taken into 
consideration the behaviour of the DE under biaxial loading. 
This type of modelling would seem nonetheless imperative 
to both the assembly and subsequent actuation modelling of 
several DE-based actuator configurations. In particular, con-
figurations such as the bow-tie [36] or diamond-shape [37], 
where both planar axes are coupled by a rigid outer-frame.

This study firstly provides a comprehensive experimental 
evaluation of 3M™ VHB polyacrylic dielectric elastomer 
under biaxial tensile loading which, to the author’s knowl-
edge, is the first of its kind. The viscoelastic rate- and time-
dependent responses of the polymer are studied for different 
loading conditions at various stretch rates. The study then 
proposes a novel modification to the rheological constitu-
tive model to characterize the material’s tensile response in 
biaxial conditions. The model is fitted to experimental data 
and then evaluated based on modifying kinematic variables.

2  Methods

2.1  Equipment and experimental protocol

To characterize the transversely isotropic tensile behaviour 
of 3M™ VHB tape, a series of biaxial tests were performed. 
To achieve these experiments, CellScale’s BioTester (CellS-
cale, Waterloo) was used. The BioTester machine makes 
use of tungsten rakes to mount samples to its 23-N load 
cells. The rakes used for all experiments had a tine diameter 
of 305 µm, tine spacing of 1.0 mm and puncture depth of 
1.9 mm [38].

Samples for VHB 4905 and 4910 tapes were cut down to 
a 10-mm square specimen and mounted to the rakes for ten-
sile tests. The load–unload tensile testing was performed at 
six different synchronous stretch rates: 0.025, 0.050, 0.075, 
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0.100, 0.200, and 0.300 s−1. These tests consisted of a con-
stant stretch rate elongation phase to a peak stretch ratio 
of � = 2 (i.e. 100% strain), followed by a mirrored release 
phase. In all cases, experiments were set to equibiaxial con-
ditions (i.e. stretch ratios �1 = �2 = �). Each experimental 
stretch rate was repeated for five different samples. The data 
in the current work are reflective of a single loading cycle, 
which represents the material’s initial response. It should 
be noted that cyclical loading of highly viscous elastomers, 
such as VHB tape, results in the eventual convergence of its 
mechanical behaviour and will produce a stable, reproduc-
ible stress–stretch curve [39, 40]. This should thus be taken 
into account for the context of actuator modelling, as the 
current study does not reflect the steady-state properties of 
VHB tape.

CellScale’s LabJoy image tracking software was used 
to evaluate the specimen’s true stretch ratio for the biaxial 
load–unload tests. This additional step was taken as precau-
tion due to possible inaccurate representation of the mate-
rial’s deformation based on grip displacements [41, 42].

To track the specimen’s true displacement, methods 
similar to the ones reported by Labrosse et al. [41] were 
used, where a 9 by 9 node square grid was manually selected 
within the central portion of its surface. After running the 
tracking software, the localized stretch ratios were observed 
for each of the 64 square elements and a single element was 
selected based on the region’s most relatively homogeneous 
strain. The displacement of all four nodes forming the cho-
sen square element are then exported in terms of the planar 
axes coordinates for further processing.

To determine the displacement of the element along 
either axis, a method of iso-parametric mapping was uti-
lized. Similar to the method described by Humphrey [43] 
and Labrosse et al. [41, 44], this involves transformations 
between a quadrilateral element’s nodal coordinates and a 
set of natural coordinates, based on the reference coordinate 
system of its analogous parent geometry.

Following displacement tracking and calculations, the 
true stress acting on both axes of the specimen were calcu-
lated by introducing the Cauchy Stress tensor. A MATLAB 
code was written to process these calculations, as well as 
plot the final data.

2.2  Analytical model

The model proposed by Wang et al. [29] is a visco-hypere-
lastic constitutive model based on an enhanced Kelvin–Voigt 
model, as shown in Fig. 1. The spring-damper element 
model was first proposed by Lochmatter et al. [28] as a suit-
able general description of VHB tape’s characteristic viscoe-
lastic mechanical behaviour.

It can be seen that the polymer is analyzed within a three-
dimensional micro-level framework. The film is divided into 

cuboid elements, each consisting of individual segments 
comprised of an enhanced Kelvin–Voigt element. This ele-
ment is comprised of a serial spring of stiffness ks , and a 
parallel spring-damper element with coefficients of kp and 
dp , respectively. The cuboids are further described as being 
filled with an incompressible fluid that exerts a hydrostatic 
pressure p on their walls when deformed. The combina-
tion of the segments’ spring-damper configuration and the 
incompressible fluidic cuboid cores ensure that the model 
represents VHB’s visco-hyperelastic properties in all three 
principal directions. It additionally ensures the mechanical 
coupling of the spatial deformation due to incompressibility. 
Three main assumptions are made for this model:

• The segments of the cuboid elements are mass-free, 
which implies a neglection of internal wave propagation 
(i.e. effects of inertia)

• The cuboid geometry is maintained under deformation, 
which is a requirement for laterally compliant boundary 
conditions

• Only uniformly distributed normal loads are considered, 
discounting all shearing effects

The film is broken up into a large number of Ni segments 
(i.e., Ni ≫ 1), where i = 1, 2, 3 (or x, y, z). The sample’s 
global dimensions are represented by L(0)

i
 and Li , as the ini-

tial (undeformed) and final deformed lengths, respectively, 
in all three directions of space. Similarly, each cuboid’s 
dimensions are also represented as initial and deformed 
lengths s(0)

i
 and si , respectively. When loaded, the net true 

stresses exerted on the film can be expressed as: 

where �i is the stretch ratio of the deformed geometry, 
defined by �i = Li∕L

(0)

i
 . Under the assumption that deforma-

tion of coaxial segments of all cuboids is equal, this implies 
that �i = si∕s

(0)

i
 as well. �systemi

 are the nominal stresses of the 
spring-damper segments of the uncoupled frameworks, and 
p is the previously mentioned hydrostatic pressure exerted 
on the cuboid walls.

(1)�i = �i�systemi
− p, i = 1, 2, 3

Fig. 1  Representation of dielectric elastomer model and enhanced 
Kelvin–Voigt element
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Based on the enhanced Kelvin–Voigt model, the spring-
damper element’s modulus can be expressed as a single equiv-
alent parameter in terms of the serial modulus of elasticity, par-
allel moduli of elasticity and viscosity loss are Esi

= ksi∕s
(0)

i
 , 

Epi
= kpi∕s

(0)

i
 , and Dpi

= dpi∕s
(0)

i
 , respectively. To provide a 

more explicit physical representation of the material’s dynamic 
response, the model is expressed in the frequency domain as 
a complex modulus: 

where �i is the angular frequency of the alternating stress 
(or strain) applied to the system, in direction i.

To simplify the experimental conditions, the material was 
tested through a rudimentary ramp load–unload tensile test, at 
a constant stretch rate. This uniform motion is then approxi-
mated to be the first half-cycle of the harmonic motion. Based 
on this approximation, the experimental angular frequency can 
be expressed as: 

where �̇�i = d𝜆i∕dt is the stretch rate, and �mi
 is the maximum 

achieved stretch ratio during the cycle. Finally, the system’s 
nominal stress �systemi

 in each direction can be represented 
as: 

where �i is the strain in direction i.
For the case where the strains are both periodically and 

dynamically changing based on time and angular frequency, �i 
can be expressed as �i = �mi

ej�t (or �i = �mi
sin(�t) ) where �mi

 
is the strain amplitude. Applying this relationship to (4), under 
the assumption that the stresses and strains vary at the same 
frequency, with a certain phase shift �i , the nominal stresses 
can then be expressed as: 

where |||E∗
eqi

||| is the magnitude of the complex modulus (i.e. 

the absolute modulus), and �i denotes the lag angle of the 
strain relative to the stress. Through general conventions for 
complex numbers, the absolute modulus can be expressed 
as: 

(2)E*
eqi

=
Esi

(
Epi

+ j�iDpi

)
(
Esi

+ Epi

)
+ j�iDpi

, i = 1, 2, 3

(3)𝜔i =
2𝜋

Ti
≈

𝜋�̇�i

2
(
𝜆mi

− 1
) , i = 1, 2, 3

(4)�systemi
= E*

eqi
�i = E*

eqi

(
�i − 1

)
, i = 1, 2, 3

(5)�systemi
=
|||E

*
eqi

|||�mi
ej(�it+�i), i = 1, 2, 3

(6)|||E
∗
eqi

||| =
Esi

√(
E2
pi
+ �2

i
D2

pi

)

√(
Esi

+ Epi

)2
+ �2

i
D2

pi

, i = 1, 2, 3

The variable � is a measure of a viscoelastic material’s 
intrinsic damping property, which is defined by the ratio 
between the imaginary and real parts of the complex modu-
lus [45]. This value can be used to illustrate the internal 
energy dissipation of the elastomer. From this, the lag angle 
is derived as: 

The lag angle �i creates a phase shift between the stress 
and the strain of the system. This shift will create the 
enclosed hysteresis curve (as demonstrated in [29]), which 
will represent the expected internal energy dissipation of 
the elastomer.

Under biaxial tensile loading, the film is being elongated 
along both �1 and �2 axes, implying a free boundary condi-
tion only along its thickness ( �3). Due to the loads applied 
on axes i = 1, 2 , the moduli for either axes will be processed 
independently. An assumption of isotropy will need to be 
introduced for the biaxial model, to allow mathematical deri-
vations with a solvable number of unknown variables. In 
other words, the complex modulus E∗

eqi
∶= E∗

eq
 for 

i = 1, 2, 3 . Taking an ideal biaxial tension along directions 
i = 1, 2 , the true stress can be expressed as: 

where �exti are the external stresses applied to the system, 
at stretch ratios of �1 and �2 . The thickness will have free 
boundary conditions, and its true stress will necessarily be 
zero ( �3 = 0). It follows that the net normal stress equation 
is: 

From the incompressibility condition, a relation-
ship between the three stretch ratios can be drawn, as 
�3 = 1∕(�1�2) . Knowing that the hydrostatic pressures will 
be equal along all axes, and recalling the value of nominal 
stress for a free boundary from (4), p can be expressed as: 

Due to the change in loading conditions, the currently 
proposed model will make use of the generalized Hooke’s 
law for biaxial loading to express nominal stresses along 
i = 1, 2 . This will allow the nominal stresses to reflect the 

�i = arctan �i = arctan

Im
[
E∗
eqi

]

Re
[
E∗
eqi

]

(7)

�i = arctan

(
E2
si
Dpi

�i

E2
si
Epi

+ Esi
E2
pi
+ Esi

D2
pi
�2
i

)
, i = 1, 2, 3

(8)�i = �i�systemi
− p = �exti , i = 1, 2

(9)�3 = �3�system3
− p = 0

(10)p = E∗
eq
[
(
�1�2

)−2
−
(
�1�2

)−1
]
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overall deformation of the elastomer in terms of both �1 
and �2 . Neglecting the effects of shear, the system nominal 
stresses for an isotropic material is, therefore, by convention: 

where Poisson’s ratio � = 0.49 for both VHB 4905 and 
VHB 4910 tapes [46]. Inserting (11) to (8), and equating 
the hydrostatic pressures will give the final expression for 
normal stress along axes of deformation: 

The strain of the system, in both directions of deforma-
tion, will change over time, and can thus be expressed as: 

Then, (12) can be expressed in terms of time: to correlate 
the experimental values to the time-dependent equation, only 
the variables’ sizes are considered, such that: 

Having derived the equation for |||E∗
eq

||| in (6), the parame-

ters can be determined by fitting the model to experimental 
data. It will then be possible to analyze the dynamic behav-
iour of the DE film quantitatively, at various stretch rates.

3  Results and discussion

3.1  Experimental stress–strain plots

An example of the experimental results achieved for this 
study are displayed in the following section. Figure  2 
depicts the data for VHB 4910 tape, being stretched at 
a rate of � = 0.300 s−1 . The graph shows a clear hyster-
esis loop, demonstrating the expected energy loss within 
the material during its elongation. Further analysis of 
the superimposed curves also shows an almost parallel 
behaviour of the stress versus stretch ratio on both axes of 

(11)
{

�system1

�system2

}
=

1

1 − �2

[
E*
eq

�E*
eq

�E*
eq

E*
eq

]{
(�1 − 1)

(�2 − 1)

}

p = E∗
eq

[(
�i�j

)−2
−
(
�i�j

)−1]
=

�iE
∗
eq

1 − �2

[(
�i − 1

)
+ �

(
�j − 1

)]
− �i

(12)

⎧
⎪⎨⎪⎩

�1 =
�1E

∗
eq

1−�2

��
�1 − 1

�
+ �

�
�2 − 1

��
+ E∗

eq

��
�1�2

�−1
−
�
�1�2

�−2�

�2 =
�2E

∗
eq

1−�2

��
�2 − 1

�
+ �

�
�1 − 1

��
+ E∗

eq

��
�2�1

�−1
−
�
�2�1

�−2�

(13)�i(t) = �i(t) − 1 = �mi
ej�it, i = 1, 2

(14)
⎧⎪⎨⎪⎩

���1�� = ���E∗
eq

���
�

�1

1−�2

��
�1 − 1

�
+ �

�
�2 − 1

��
+
��

�1�2
�−1

−
�
�1�2

�−2��

���2�� = ���E∗
eq

���
�

�2

1−�2

��
�2 − 1

�
+ �

�
�1 − 1

��
+
��

�1�2
�−1

−
�
�1�2

�−2��

tension. This similarity of the normal stresses confirms that 
the material behaves in a transversely isotropic manner.

The material’s tensile response also exhibited rate-
dependent behaviour between tests. It can be seen that the 
stretch rate has a proportional influence on the energy loss, 
as the samples with greater rates all exhibited larger overall 
hysteresis. The peak stress increases by almost 60%, based 
on the variation of stretch rate. In all cases, for both tape 
types, the peak stress exerted on the sample increased as the 
strain rate was accelerated. For VHB 4905 tape, the peak 
stresses ranged from 0.22 to 0.42 MPa, whereas for VHB 
4910 tape, their values increased from 0.19 to 0.37 MPa.

Fig. 2  Comparison of biaxial tensile load–unload curves for VHB 
4910 tape at �̇� = 0.300 s−1

It can be noted that none of the experiments achieved 
a peak stretch ratio of � = 2 , enforced during the experi-
mental protocol. Due to the polymer’s high viscosity, and 
deformation around rake attachments, samples achieved 
peak elongations of �max ≈ 1.7 − 1.8 . These relatively 
smaller total elongations resulted in experimental curves 
not reaching expected exponential behaviour typical of 
elastomers at high stretch ratios. This is because the mate-
rial has not reached a point of strain-hardening.

Certain inconsistencies can also be noticed with respect 
to a portion of the experiments, and can be attributed to a 
variety of factors. These include noise during experimen-
tation, accuracy of image tracking, the apparatus’ tensile 
fixtures, and overall material deformation relative to the 
attachment points. Post-experiment data smoothing did 
provide sufficient filtering to present consistent data in 
most cases.
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3.2  Theoretical material constants

Using the equations previously derived in (14), the experi-
mental data were fitted to the biaxial model in MATLAB 
using the Levenberg–Marquardt (L–M) method through a 
two-step approach similar to that of [29]. The first round of 
optimizations provided the individual experiments’ dynamic 
moduli with respect to their independent angular frequen-
cies. The second optimization was then run to find global 
parameters for the materials. In this step, the individual 
angular frequencies were related to their respective com-
plex moduli by finding a set of constants for all cases. This 
yielded a set of final parameters that apply to all stretch rates 
for the materials.

The complex modulus is obtained for either axis indepen-
dently, despite the assumption that the material is isotropic. 
Achieving this allowed the results for both axes to be com-
pared to verify whether the assumption is in fact supportable 
from a transverse perspective.

An example of these curve fittings is illustrated in Fig. 3. 
It can be seen that the curve fitting yielded values of reason-
ably high precision. It should be noted that due to limitations 
brought on by the experimental instrumentation, the material 
was unable to be elongated to a biaxial stretch ratio sufficient 
to demonstrate a discernable exponential behaviour. This 
affected the overall accuracy of the model parameter fitting, 
as it is of exponential nature.

The goodness of fit was calculated through the R2 coef-
ficient. The averaged values for the results of the first param-
eter fitting, along with the standard deviations for both the 
angular frequency and complex modulus, are displayed 
in Tables 2 and 3 of Appendix. It can be noted that, in all 
cases, a clear proportional increase in dynamic modulus was 
observed with respect to the stretch rate of the experiment. 
This correlation was expected, as it is reflective of the vis-
coelastic response of the elastomer.

The standard deviation for all angular frequencies is neg-
ligible. This level of accuracy illustrates the consistency in 

experimental results for the stretch ratio and stretch rates 
achieved. The equivalent values of deviation between �1 
and �2 axes in most cases also demonstrate the experiments’ 
ability to maintain equibiaxial stretch ratio, despite sample 
deformation due to experimental fixation techniques. The 
values for complex moduli among similar experiments were 
found to have slightly higher standard deviations, with val-
ues ranging between 0.01 and 0.02 MPa. These results are 
attributed to the greater fluctuations in experimental stresses. 
Despite these disparities, the overall mechanical trends in 
(averaged) dynamic modulus growth were consistent with 
the actual mechanical response of the material and proved 
very representative during final parameter fitting.

Lastly, the goodness of fit for the stress–stretch ratio 
curves all averaged above 0.82 (or 82% accuracy). This sig-
nifies that the polynomial fitting has a good accuracy and 
reliability.

As with the dynamic modulus fitting, the overall param-
eters for the model were fitted to either axes separately to 
provide distinct values for comparison. A depiction of the 
optimizations can be seen in Fig. 4, which demonstrates the 
averaged dynamic moduli, including standard deviations, 
plotted against their respective angular frequencies. The 
optimized theoretical curve based on these values is drawn 
in the figure.

It can be seen that the nonlinear optimizer was able to fit 
the final parameters of the model with accuracy. The curves 
of the optimized values fell within good agreement to the 
dynamic moduli obtained for each stretch rate. The values 
obtained from the final parameter fitting of both tapes can 
be found in Table 1.

3.3  Reproducibility of equibiaxial results

To evaluate the model’s accuracy when simulating visco-
hyperelastic response, the final averaged parameters for both 
VHB tapes were used to plot load–unload curves under vari-
ous conditions.

Fig. 3  Example of curve fitting for individual biaxial experiments at 
�̇�1 = 0.100 s−1 for VHB 4910 tape trial

Fig. 4  Curve fitting for averaged dynamic moduli and angular fre-
quencies under biaxial loading for VBH 4910 tape along λ1 axis
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That is to say that, for VHB 4905 tape Es = 0.1304 MPa , 
Ep = 0.2421 MPa  ,  and Dp = 1.9575 MPa  .  For VHB 
4910 tape, Es = 0.1163 MPa , Ep = 0.2054 MPa , and 
Dp = 1.4708 MPa . Data for experiments possessing similar 
stretch rate were averaged for each axis independently, and 
then plotted next to a theoretical curve of the same stretch 
rate. In either case, the stretch rate and maximum stretch 
ratio were calculated to reflect the experimental defor-
mation, and the stresses for either axis was subsequently 
plotted using these values. Due to the phase shift applied 
to create the hysteresis loop, the data calculated from the 
model parameters were zeroed prior to plotting. Figure 5 
illustrates a comparison for VHB 4910 tape at �̇�1,2 = 0.025 
and 0.200 s−1 , respectively.

It can be seen that peak stresses for both axes are pre-
dicted with good qualitative agreement. Due to the experi-
ments’ lack of demonstrable exponential growth, the model 
has difficulty replicating exact experimental behaviour for 
the current data. Behaviours deviating from a purely expo-
nential progression will be misrepresented owing to the 
mathematical simplicity of the current model. It can also 
be seen that the theoretical data exhibit the same variation 
in energy loss prediction as the uniaxial model introduced 
in [29].

3.4  Variation of kinematic variables

The change in loss factor with respect to angular frequency 
can be seen in Fig. 6 for VHB 4910 tape. The trend reflects 
those expected from previous findings in [29]. The thresh-
olds of internal dissipation are � = 0.217 and 0.226 for VHB 
4905 and VHB 4910 tapes, respectively. This peak in value 
is explained through the physical principles at a macroscopic 
level. At lower angular frequencies, the polymeric chains 
within the elastomer are able to adjust to the elongation of 
the film. As the frequency is increased, these chains will 
gradually lose their ability to comply with the deformation, 
thus increasing the loss factor, and resulting in a viscoelastic 
response. At a certain peak value, the frequency will reach a 
threshold where the internal macrostructure will no longer 
be capable of adapting to the elongation, which will lead 
the polymer to exhibit behaviour similar to its properties in 
glassy state. This will cause the loss factor to decrease, as 
the polymer’s internal dissipation will be minimized [29, 
47].

The model was plotted while modifying one of two kin-
ematic experimental variables to demonstrate the changes 
in internal dissipation and visco-hyperelastic response. 
Figure 7 provides an example of the model elongated to 
�1,2(max) = 1.3, 1.5, and 1.7 , at a constant stretch rate of 
�̇� = 0.025 s−1 . It can be seen that it manages to portray 
the effects of percent-elongation on the behaviour of the 

Table 1  Final optimized spring and damper moduli for VHB 4905 
and VHB 4910 tapes under biaxial tensile consideration

Model constants VHB 4905 VHB 4910

�1 �2 �1 �2

Serial spring modulus Es (MPa) 0.1323 0.1285 0.1177 0.1142
Parallel spring modulus Ep (MPa) 0.2550 0.2293 0.2036 0.2070
Parallel damper modulus Dp (MPa 

 s−1)
1.765 2.150 1.350 1.597

Fig. 5  Theoretical and experimental plots for biaxial tensile tests of 
VHB 4910 tape at a �̇�1,2 = 0.025 s−1 and b �̇�1,2 = 0.200 s−1 (where 
black curves represent �1 axis, and grey represents �2 axes)

Fig. 6  Distribution of loss factor variation with respect to angular fre-
quency for VHB 4910 tape
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material. For both tapes, a beginning of exponential mechan-
ical behaviour starts to show as the stretch ratio increases. 
The VHB 4905 tape also reaches higher peak stresses due to 
its stiffer overall behaviour. The change in internal dissipa-
tion is reflected in the plots as well.

An additional simulation for VHB 4910 tape was plot-
ted at stretch ratios well above the achieved experimental 
results. Figure 8 represents the model’s ability to still dem-
onstrate proportionally increasing nonlinear response with 
respect to maximum elongation. This illustrates the model’s 
capacity to provide an accurate portrayal of the elastomer’s 
mechanical response, with parameters optimized to a greater 
value of experimental stretch ratios.

The next plot (Fig. 9) represents the model under vary-
ing stretch rates of �̇�1,2 = 0.030, 0.060, and 0.090 s−1 . For 
both tapes, a clear correlation between the stretch rate and 
peak stresses is observed. This demonstrates the model’s 
ability to predict the elastomer’s viscoelastic response to an 
increase in rate of elongation. It can be seen that the varia-
tion in loss factor is also demonstrated with respect to the 
change in angular frequency.

Other general errors in the model’s behaviour can be 
attributed in part to the approximation of harmonic motion 

based on linear ramp-type experimental data. In addition 
to this, the model was fit to a smaller spectrum of stretch 
ratios. Although this provided the model with a good range 
of angular frequencies for fitting purposes, the experimen-
tal data did not illustrate the elastomer’s intrinsic nonlin-
ear exponential response. This decreased the model’s abil-
ity to give accurate stress curve trends for various loading 
conditions.

A last series of tests was performed to evaluate the 
model under non-equibiaxial tension. The model was then 
applied to this experimental data to evaluate its abilities of 
simulating kinematic parameters that maybe more repre-
sentative of true DE-based actuator configuration. The tests 
were arranged for two stretch ratios along �1 . Specifically, 
�̇�1 = 0.025 and 0.300 s−1 . Three cases for each stretch rate 
were applied; the maximum stretch ratios for either axes 
were set to �1(max) × �2(max) = 2 × 1.25 , 2 × 1.50 , and 
2 × 1.75 . The stretch rate �̇�2 was calculated to ensure a par-
alleled motion between the two axes. An example can be 
found in Fig. 10.

The model demonstrates the ability to adjust the axes 
stresses according to the change in parameters for both 

Fig. 7  Theoretical plot of biaxial tensile test at various maximum 
stretch ratios (�̇�1,2 = 0.025 s−1) for VHB 4905 tape

Fig. 8  Theoretical plot of biaxial tensile test at various large maxi-
mum stretch ratios for VHB 4910 tape (�̇�1,2 = 0.050 s−1)

Fig. 9  Theoretical plot of biaxial tensile test for various stretch rates 
at �max = 1.7 for VHB 4905

Fig. 10  Theoretical plot of biaxial tensile test for various non-
equibiaxial stretch rates for VHB 4910 tape at �̇�1 = 0.025 s−1 and 
�max = 2 × 1.25
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stretch rates. Unlike the equibiaxial conditions, the theoreti-
cal stresses undershoot the peak experimental stress values, 
particularly for the higher stretch rate. The energy dissipa-
tion is also less accurate to that of the experimental data. 
This ability to predict such behaviour is greatly valuable for 
design purposes. In many cases, DE will not be stretched to 
equibiaxial configurations for applications in actuators. It 
is, therefore, important to understand their behaviour under 
uneven tensile loading.

4  Conclusion

4.1  Experimental results

The results of the biaxial load–unload tensile testing fall in 
line with the expected trends for this type of material, and 
illustrated a transversely isotropic tensile behaviour within 
agreeable limits. Despite the fact that the samples did not 
reach maximum stretch ratio of the experimental protocol, 
the VHB tapes still demonstrated viscoelastic response to a 
biaxial tensile load–unload cycle. They exhibited a propor-
tional sensitivity to stretch-rate through both their achieved 
peak stresses as well as their distinguishable energy loss. 
The viscoelastic behaviours observed in these tests agree 
with the previous uniaxial results in literature, and are all 
typical of rubber-like materials.

4.2  Biaxial visco‑hyperelastic model

The newly developed biaxial visco-hyperelastic model has 
demonstrated a simple and straightforward approach to 

analytically characterize the mechanical behaviour of an 
acrylic-based dielectric elastomer. Through the use of a sim-
ple mathematical structure based on the generalized Hooke’s 
law (for isotropic materials) under biaxial tensile loading, it 
has proven effective at anticipating the material’s mechani-
cal response variations relative to changes in stretch rate and 
maximum elongation. The model maintained expected peak 
stress values for the variations of kinematic parameters. It 
has also proven effective at providing general mechanical 
response for non-equibiaxial tension. This, along with the 
aforementioned predictive abilities, proves promising for 
design considerations. The model also provides the founda-
tion for a biaxial electro-mechanical model, which would 
enable the forecasting of dielectric elastomer behaviour 
under electro-mechanical coupling.

Future work will consist of the development of newer 
fixation methods for tensile tests, to allow greater maximum 
stretch ratios. The model will also be expanded to consider 
effects of inertia, to provide a more suitable foundation for 
high-frequency applications.
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Appendix: Parameter fitting values

See Tables 2 and 3.

Table 2  VHB 4905 tape averaged angular frequencies and optimized dynamic complex moduli for biaxial tensile experiments

Experimental stretch 
ratio �̇�  (s−1)

�
i

Averaged angular 
frequency
�1 (rad  s−1)

Standard deviation
(rad  s−1)

Averaged complex 
modulus
E∗
eq

 (MPa)

Standard deviation 
(MPa)

Average R2 value

0.025 1 0.03927 3.469 × 10−18 0.08698 0.003556 0.88451
2 0.03927 4.907 × 10−18 0.08385 0.006671 0.90473

0.050 1 0.07854 6.939 × 10−18 0.09558 0.005517 0.8628
2 0.07854 9.813 × 10−18 0.09515 0.01017 0.8768

0.075 1 0.1178 6.939 × 10−18 0.09999 0.008179 0.88605
2 0.1178 6.939 × 10−18 0.1001 0.008720 0.89378

0.100 1 0.1571 1.963 × 10−17 0.1037 0.01275 0.87343
2 0.1571 1.388 × 10−17 0.1057 0.01014 0.88373

0.200 1 0.3142 3.925 × 10−17 0.1179 0.01286 0.8524
2 0.3142 3.925 × 10−17 0.1182 0.008920 0.82113

0.300 1 0.4717 6.206 × 10−17 0.1266 0.01231 0.82418
2 0.4717 6.206 × 10−17 0.1258 0.01543 0.84715
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