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Abstract The classical theory of electrodynamics is built

upon Maxwell’s equations and the concepts of electro-

magnetic (EM) field, force, energy, and momentum, which

are intimately tied together by Poynting’s theorem and by

the Lorentz force law. Whereas Maxwell’s equations relate

the fields to their material sources, Poynting’s theorem

governs the flow of EM energy and its exchange between

fields and material media, while the Lorentz law regulates

the back-and-forth transfer of momentum between the

media and the fields. An alternative force law, first pro-

posed by Einstein and Laub, exists that is consistent with

Maxwell’s equations and complies with the conservation

laws as well as with the requirements of special relativity.

While the Lorentz law requires the introduction of hidden

energy and hidden momentum in situations where an

electric field acts on a magnetized medium, the Einstein–

Laub (E–L) formulation of EM force and torque does not

invoke hidden entities under such circumstances. More-

over, total force/torque exerted by EM fields on any given

object turns out to be independent of whether the density of

force/torque is evaluated using the law of Lorentz or that of

Einstein and Laub. Hidden entities aside, the two formu-

lations differ only in their predicted force and torque dis-

tributions inside matter. Such differences in distribution are

occasionally measurable, and could serve as a guide in

deciding which formulation, if either, corresponds to

physical reality.

1 Introduction

In the mid 1960s, Shockley discovered a problem with the

classical theory of electromagnetism. Under certain cir-

cumstances involving magnetic matter in the presence of

an electric field, Shockley found that the momentum of the

EM system is not conserved [1–3]. He attributed the

momentum imbalance to a certain amount of ‘‘hidden

momentum’’ residing inside magnetic media subjected to

electric fields. In doing so, Shockley kept Maxwell’s

equations and the Lorentz force law from colliding with the

universal law of momentum conservation. Subsequently,

other authors elaborated on (and provided physical insight

and justification for) the notion of hidden momentum

[4–20].

Had Shockley used an alternative force law proposed in

1908 by Albert Einstein and Jacob Laub [21], he would

have found that the combination of Maxwell’s macroscopic

equations and the Einstein–Laub (E–L) law complies with

the conservation laws without the need for hidden entities.

Moreover, he would have recognized that all known

measurements of force and torque on rigid bodies sup-

porting the Lorentz law also agree with the E–L theory. In

other words, rather than introducing hidden entities into the

electrodynamics of magnetic media, one could as well

adopt the E–L force law without violating the experimen-

tally established facts of physics. The present paper aims to

place the E–L theory in a broader context, countering the

suspicion that perhaps something untrustworthy lurks

beneath the surface of this particular formulation of EM

force and torque.

It must be emphasized at the outset that the advantages

of the E–L formulation vis-a-vis hidden energy and hidden

momentum are limited to those instances where hidden

entities are invoked in conjunction with magnetic media.
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There exist legitimate uses for hidden entities outside the

domain of magnetic materials as, for example, in the case

of a spinning electrically charged shell subjected to an

external electric field, where ‘‘hidden’’ momentum is car-

ried by the internal stresses of the shell material [22].

Similarly, the electro-magneto-static situations examined

in [17], where no magnetic matter is present, provide

excellent examples of the proper role of hidden entities

within the theory of electromagnetism. Generally speaking,

the E–L theory treats the exchanges of energy and

momentum between EM fields and magnetic matter with-

out the complication of hidden entities. In all other

instances where the E–L law has the same expression as the

Lorentz law (e.g., force and torque exerted by EM fields on

free charges and free currents), one should not hesitate to

invoke the hidden entities if and when the need arises.

Much has been made of the letter in which Einstein

himself, in response to a June 15, 1918 letter from Walter

Dällenbach concerning the EM stress-energy tensor, wrote:

‘‘It has long been known that the values I had derived with

Laub at the time are wrong; Abraham, in particular, was the

one who presented this in a thorough paper. The correct

strain tensor has incidentally already been pointed out by

Minkowski’’ [23]. We now know, however, that the major

difference between the Lorentz and E–L formulations is the

absence of hidden entities (within magnetic materials) in

the latter. In other words, it can be shown that total force

and total torque exerted by EM fields on any object are

precisely the same in the two formulations, provided that

the contributions of hidden momentum to the Lorentz force

and torque exerted on magnetic matter are properly sub-

tracted [24, 25]. Since the vast majority of the experimental

tests of the Lorentz law pertain to total force and/or total

torque experienced by rigid bodies, these experiments can

be said to equally validate the E–L formulation.

For the sake of completeness, Sect. 8 will briefly address

the Abraham and Minkowski strain tensors mentioned in

Einstein’s letter to Dällenbach, highlighting their substan-

tial differences not only with the E–L law, but also with the

conventional Lorentz law.

2 Synopsis

Whereas Maxwell’s equations are unique and undisputed,

there exist alternative expressions for EM force, torque,

energy, and momentum in the classical literature. The

focus of the present paper is on two different approaches to

the latter aspects of electrodynamics, one that can loosely

be associated with the name of H. A. Lorentz, and another

that could be traced to A. Einstein and J. Laub. While in the

Lorentz approach, electric and magnetic dipoles are

reduced to bound electrical charges and currents, the E–L

treatment considers dipoles as independent entities, on a

par with free electrical charges and currents. Section 3

argues that Maxwell’s macroscopic equations permit dif-

ferent models (or interpretations) of the electric and mag-

netic dipoles to coexist. Different models lead to different

versions of Poynting’s theorem, as discussed in Sect. 4, and

also to different expressions for the EM force and

momentum densities, as elaborated in Sect. 5. It will be

seen that the Lorentz and E–L formalisms, although dif-

fering in intermediate steps, generally yield similar results

in the end.

The E–L expression of EM force-density may be parsed

in different ways, assigning different contributions by the

various constituents of matter (i.e., charge, current, polar-

ization, and magnetization) to the overall force-density.

This subject is taken up in Sect. 6, in the context of certain

objections raised against the E–L approach. Another

objection, involving the expression of EM torque in the E–

L formalism, is addressed in Sect. 7. Here it will be shown

that the general expression of EM torque-density must

include the terms P� E and M �H, which were men-

tioned only briefly in Einstein and Laub’s original paper

[21], but perhaps their generality has not been sufficiently

appreciated. Section 8 is devoted to a comparison between

the EM force densities derived from the Abraham and

Minkowski tensors on the one hand, and those supported

by the E–L and Lorentz theories on the other. The absence

of electrostrictive and magnetostrictive contributions to the

force-density in both the Abraham and Minkowski theories

stands in sharp contrast to the presence of these effects in

the E–L formulation.

3 Maxwell’s macroscopic equations

We take Maxwell’s macroscopic equations [26] as our

point of departure. In addition to free charge and free

current densities, qfreeðr; tÞ and Jfreeðr; tÞ, the macroscopic

equations contain polarization Pðr; tÞ and magnetization

Mðr; tÞ as sources of the EM field. It is important to rec-

ognize that Maxwell’s equations, taken at face value, do

not make any assumptions about the nature of P and M, nor

about the constitutions of electric and magnetic dipoles.

These equations simply take polarization and magnetiza-

tion as they exist in Nature, and enable one to calculate the

fields Eðr; tÞ and Hðr; tÞ whenever and wherever the spatio-

temporal distributions of the sources (qfree; Jfree;P;M) are

fully specified.

In Maxwell’s macroscopic equations, P is combined

with the E-field, and M with the H-field, which then appear

as the displacement Dðr; tÞ ¼ eoEþ P and the magnetic

induction Bðr; tÞ ¼ loH þM. In their most general form,

Maxwell’s macroscopic equations are written as
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r � D ¼ qfree; ð1aÞ
r �H ¼ Jfree þ oD=ot; ð1bÞ
r � E ¼ �oB=ot; ð1cÞ
r � B ¼ 0: ð1dÞ

It is possible to interpret the above equations in different

ways, without changing the results of calculations. In what

follows, we rely on two different interpretations of the

macroscopic equations. This is done by simply re-arrang-

ing the equations without changing their physical content.

We shall refer to the two re-arrangements (and the corre-

sponding interpretations) as the ‘‘Lorentz formalism’’ and

the ‘‘Einstein–Laub formalism’’.

In the Lorentz formalism, Eqs. (1a) and (1b) are re-or-

ganized by eliminating the D and H-fields. The re-arranged

equations are subsequently written as

eor � E ¼ qfree �r � P, ð2aÞ

r � B ¼ lo Jfree þ
oP

ot
þ l�1

o r�M

� �
þ loeo

oE

ot
; ð2bÞ

r � E ¼ � oB

ot
; ð2cÞ

r � B ¼ 0: ð2dÞ

In this interpretation, electric dipoles appear as bound

electric charge and bound electric current densities (�r � P
and oP=otÞ, while magnetic dipoles behave as Amperian

current loops with a bound current-density given by

l�1
o r�M. None of this says anything at all about the

physical nature of the dipoles, and whether, in reality,

electric dipoles are a pair of positive and negative electric

charges joined by a short spring, or whether magnetic

dipoles are small, stable loops of electrical current. All one

can say is that eliminating D and H from Maxwell’s

equations has led to a particular form of these equations

which is consistent with the above ‘‘interpretation’’ con-

cerning the physical nature of the dipoles.

Next, consider an alternative arrangement of Maxwell’s

equations, one that may be designated as the departure

point for the E–L formulation. Eliminating D and B from

Eq. (1), one arrives at

eor � E ¼ qfree �r � P, ð3aÞ

r �H ¼ Jfree þ
oP

ot

� �
þ eo

oE

ot
; ð3bÞ

r � E ¼ � oM

ot
� lo

oH

ot
; ð3cÞ

lor �H ¼ �r �M. ð3dÞ

In the E–L interpretation, the electric dipoles appear as a

pair of positive and negative electric charges tied together

by a short spring (exactly as in the Lorentz formalism).

However, each magnetic dipole now behaves as a pair of

north and south poles joined by a short spring. In other

words, magnetism is no longer associated with an electric

current density, but rather with bound magnetic charge and

bound magnetic current densities, �r �M and oM=ot,

respectively. We emphasize once again that such inter-

pretations have nothing to do with the physical reality of

the dipoles. The north and south poles mentioned above are

not necessarily magnetic monopoles (i.e., in the sense of

the Gilbert model [19]); rather, they are ‘‘fictitious’’ char-

ges that acquire meaning only when Maxwell’s equations

are written in the form of Eq. (3).

The two forms of Maxwell’s equations given by Eqs. (2)

and (3) are identical, in the sense that, given the source dis-

tributions (qfree; Jfree;P;M), these two sets of equations

predict exactly the same EM fields ðE;D;B;HÞ throughout

space and time. How one chooses to ‘‘interpret’’ the physical

nature of the dipoles is simply a matter of taste and personal

preference. Such interpretations are totally irrelevant as far

as the solutions of Maxwell’s equations are concerned.

4 Electromagnetic energy

Different interpretations of Maxwell’s macroscopic equa-

tions lead to different expressions for the EM energy-

density and the energy flow-rate (i.e., the Poynting vector).

However, as will be seen below, the end results turn out to

be the same if hidden energy is properly taken into account.

In the Lorentz formulation, we dot-multiply Bðr; tÞ into

Eq. (2c), then subtract it from the dot-product of Eðr; tÞ
into Eq. (2b). Defining the Poynting vector (in the Lorentz

formalism) as

SL ¼ l�1
o E� B: ð4Þ

we arrive at

r � SL þ o

ot
ð1=2eoE � Eþ 1=2l�1

o B � BÞ

þ E � Jfree þ
oP

ot
þ l�1

o r�M

� �
¼ 0:

ð5Þ

Thus, in the Lorentz interpretation, EM energy flows at a

rate of SL (per unit area per unit time), the stored energy-

density in the E and B fields is

ELðr; tÞ ¼ 1=2eoE � Eþ 1=2l�1
o B � B, ð6Þ

and energy is exchanged between fields and matter at a rate

of

o

ot
EðexchÞ

L ðr; tÞ ¼ E � Jtotal ðper unit volume per unit time),

ð7Þ
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where Jtotal is the sum of free and bound current densities;

see Eq. (5). Note that the exchange of energy between the

fields and the material media is a two-way street: when

E � J is positive, energy leaves the field and enters the

material, and when E � J is negative, energy flows in the

opposite direction. All in all, we have imposed our own

interpretation on the various terms appearing in Eq. (5),

which is the mathematical expression of energy conserva-

tion. The validity of Eq. (5), however, being a direct and

rigorous consequence of Maxwell’s equations, is indepen-

dent of any specific interpretation.

A similar treatment of EM energy-density and flow-rate

can be carried out in the Einstein–Laub approach. This

time, we dot-multiply Eq. (3c) into Hðr; tÞ and subtract the

resulting equation from the dot-product of Eðr; tÞ into

Eq. (3b). We find

r � E�Hð Þ þ o

ot
1=2eoE � Eþ 1=2loH �Hð Þ

þ E � Jfree þ E � oP
ot

þH � oM
ot

� �
¼ 0:

ð8Þ

Thus, in the E–L interpretation, the Poynting vector is

SEL ¼ E�H; ð9Þ

the stored energy-density in the E and H-fields is

EELðr; tÞ ¼ 1=2eoE � Eþ 1=2loH �H, ð10Þ

and energy is exchanged between fields and media at the

rate of

o

ot
EðexchÞ

EL ðr; tÞ ¼ E � Jfree þ E � oP
ot

þH � oM
ot

ðper unit volume per unit timeÞ:
ð11Þ

Once again, energy conservation is guaranteed by

Eq. (8), which is a direct and rigorous consequence of

Maxwell’s equations, irrespective of how one might

interpret the various terms of the equation.

It is noteworthy that the commonly used Poynting vector

S ¼ E�H [26–28] is the one derived in the E–L formal-

ism. The Poynting vector SL ¼ l�1
o E� B associated with

the Lorentz interpretation (and preferred by some authors

[29, 30]) has been criticized on the grounds that it does not

maintain the continuity of EM energy flux across the

boundary between two adjacent media [27]. The simplest

example is provided by a plane EM wave arriving from

free space at the flat surface of a semi-infinite magnetic

dielectric at normal incidence. The boundary conditions

associated with Maxwell’s equations dictate the continuity

of the E and H components that are parallel to the surface

of the medium. Thus, at the entrance facet, the flux of

energy associated with SL exhibits a discontinuity

whenever the tangential B field happens to be discontinu-

ous. Proponents of the Lorentz formalism do not dispute

this fact, but invoke the existence of a hidden energy flux at

the rate of l�1
o M � E that accounts for the discrepancy

[31]. Be it as it may, since the hidden energy flux is not an

observable, one cannot be blamed for preferring the for-

malism that avoids the use of hidden entities.

5 Electromagnetic force and momentum

In the Lorentz formalism, all material media are repre-

sented by charge and current densities. Generalizing the

Lorentz law f ¼ qðEþ V � BÞ, which is the force exerted

on a point-charge q moving with velocity V in the EM

fields E and B, the force-density that is compatible with the

interpretation of Maxwell’s equations in accordance with

Eq. (2) may be written as follows:

FLðr; tÞ ¼ ðqfree �r � PÞEþ Jfree þ
oP

ot
þ l�1

o r�M

� �
� B.

ð12Þ

Substitution for the total charge and current densities

from Eqs. (2a) and (2b) into the above equation, followed

by standard manipulations, yields

FLðr; tÞ ¼ r
$
� ðeoEEÞ þ r

$
� ðl�1

o BBÞ � 1=2rðeoE � E
þ l�1

o B � BÞ � oðeoE� BÞ=ot:
ð13Þ

With the aid of the identity tensor I
$

, Eq. (13) may be

rewritten as

r
$
� 1=2ðeoE � Eþ l�1

o B � BÞI
$
� eoEE� l�1

o BB
h i

þ o

ot
ðeoE� BÞ þ FLðr; tÞ ¼ 0:

ð14Þ

The bracketed entity on the left-hand side of Eq. (14) is

the Maxwell stress tensor T
$
ðr; tÞ [26]. Thus the EM

momentum-density in the Lorentz formalism is Gðr; tÞ ¼
eoE� B ¼ SL=c

2 (sometimes referred to as the Livens

momentum). According to Eq. (14), the EM momentum

entering through the closed surface of a given volume is

equal to the change in the EM momentum stored within

that volume plus the mechanical momentum transferred to

the material media located inside the volume. The Lorentz

force density FLðr; tÞ is simply a measure of the rate of

transfer of momentum from the fields to the material media

(or vice versa).

In the E–L formalism, the force-density, which has

contributions from the E and H-fields acting on the sources

(qfree; Jfree;P;MÞ, is written as [21]
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FELðr; tÞ ¼ qfreeEþ Jfree � loH þ ðP � rÞEþ oP

ot
� loH

þ ðM � rÞH � oM

ot
� eoE.

ð15Þ

Substitution from Eq. (3) into the above equation, fol-

lowed by standard algebraic manipulations, yields

FELðr; tÞ ¼ ðr � DÞEþ ðB � rÞH � 1=2lorðH �HÞ
� oðE�H=c2Þ=ot
þ ðD � rÞE� 1=2eorðE � EÞ þ ðr � BÞH.

ð16Þ

With the aid of the identity tensor I
$

, Eq. (16) is

rewritten as

r
$
� 1=2(eoE � Eþ loH �H)I

$
� DE� BH

h i

þ o

ot
ðE�H=c2Þ þ FELðr; tÞ ¼ 0:

ð17Þ

The bracketed entity on the left-hand side of Eq. (17) is

the E–L stress tensor T
$

ELðr; tÞ [21]. Thus, according to

Einstein and Laub, the EM momentum-density is

Gðr; tÞ ¼ E�H=c2 ¼ SEL=c
2, which is commonly known

as the Abraham momentum. In words, Eq. (17) states that

the EM momentum entering through the closed surface of a

given volume is equal to the change in the Abraham

momentum stored within the volume plus the mechanical

momentum transferred to the material media located inside

the volume. The E–L force-density FELðr; tÞ is simply a

measure of the momentum transfer rate from the fields to

the material media (or vice versa).

Note that the stress tensors of Lorentz and E–L, when

evaluated in the free-space region surrounding an isolated

object, are exactly the same. This means that, in steady-

state situations where the enclosed EM momentum does

not vary with time, the force exerted on an isolated object

in accordance with the Lorentz law is precisely the same as

that predicted by Einstein and Laub. Even in situations

which depart from the steady state, the actual force exerted

on an isolated object should remain the same in the two

formulations. Here the difference between the EM

momentum densities of Lorentz ðeoE� BÞ and Einstein–

Laub ðE�H=c2Þ, namely, eoE�M, accounts only for the

mechanical momentum that is hidden inside magnetic

dipoles [10, 19, 24]. Since hidden momentum has no

observable effects on the force and torque exerted on

material bodies [19], the difference in the EM momenta in

the two formulations cannot have any physical

consequences.

It is remarkable that Einstein and Laub proposed their

force-density formula, Eq. (15), nearly six decades before

Shockley discovered the lack of momentum balance in

certain EM systems containing magnetic materials [1]. The

concept of hidden momentum proposed by Shockley

accounts for the momentum imbalance in EM systems that

acquire mechanical momentum at a rate that differs from

that dictated by the exerted Lorentz force. Had Shockley

used the E–L force instead, he would have found perfect

balance and no need for hidden momentum.

6 Alternative expressions of the Einstein–Laub
equation

The E–L formula describing the EM force-density acting

on matter has been criticized on several grounds. In this

section, we briefly address these concerns and, where

possible, suggest remedies.

A persistent criticism has been that the current Jfree in

Eq. (15) is acted upon by loH rather than by B, whereas

experiments such as those involving Lorentz electron

microscopy [32–34], or the deflection of charged particles

passing through permanent magnets [35, 36], seem to

support the Jfree � B formula [20]. One way to respond to

this criticism is to note that the E–L theory provides an

expression only for the total force-density exerted on a

material medium containing free charge, free current,

polarization, and magnetization. This total force may be

parsed in different ways to yield different expressions for

the force-density acting on the individual components qfree,

Jfree, P and M. Equation (15) may thus be rewritten as

follows:

FELðr; tÞ¼ qfreeEþJfree �BþðP �rÞEþðoP=otÞ�B

þðM �rÞHþM�ðr�HÞ�oðeoM�EÞ=ot:
ð18Þ

Note in the above equation that both Jfree and oP=ot now

interact with the B field (rather than with the H-field), and

that P and M do not appear to behave symmetrically in

response to the E, B and H-fields. Note also that the last

term of Eq. (18), associated with the force experienced by

M, simply removes the contribution of the hidden

momentum eoM � E.

The alternative expression of the E–L force-density in

Eq. (18) thus answers the criticism as to whether loH or B

should act on the carriers of electrical current. In free

space, where B ¼ loH, this question is moot, of course, but

the passage of electrical current through magnetic media

requires further attention to interactions between moving

particles (which comprise the current) and the stationary

particles (which give rise to magnetism). Thus in experi-

ments involving charged particles traveling through
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magnetic media (e.g., anomalous Hall effect [37], Lorentz

electron microscopy [32]), neither the Lorentz nor the E–L

force (irrespective of the manner in which the latter has

been parsed) should suffice to describe the behavior of the

system. Rather, one must also take into account particle–

particle scatterings that might involve interactions such as

spin–orbit coupling and quantum–mechanical exchange

[37, 38].

Returning to Eq. (18), the symmetry between P and M

may be restored if we rewrite the final expression as

FELðr; tÞ ¼ qfreeEþ Jfree � Bþ ðP � rÞEþ P� ðr � EÞ½ �
þ (M � r)H þM � ðr �HÞ½ �
þ oðP� B�M � D� P�MÞ=ot:

ð19Þ

In static situations, the last term of Eq. (19) drops out,

and the remaining terms, for the specific parsing chosen

here, provide exact expressions for the force-density

exerted on the various constituents of matter. Also, in

linear systems driven by a monochromatic (i.e., single-

frequency x) excitation, time-averaging over each oscil-

lation period s ¼ 2p=x removes from Eq. (19) the contri-

bution of the last term. If, in addition to linearity, the

material media are further assumed to be isotropic and non-

absorptive, we may write [26–28]

P(r; t) ¼ eo eðr;xÞ � 1½ �E(r; t), ð20aÞ
M(r; t) ¼ lo lðr;xÞ � 1½ �H(r; t), ð20bÞ

where e and l are the (real-valued) permittivity and per-

meability of the media at the excitation frequency x. The

time-averaged E–L force-density of Eq. (19) may then be

written as

FELðr; tÞh i ¼ qfreeEþ Jfree � Bh i þ 1=2eo eðr;xÞ � 1½ �r E � Eh i
þ 1=2lo lðr;xÞ � 1½ �r H �Hh i:

ð21Þ

The above equation, which also covers static situa-

tions (x ¼ 0), contains electrostrictive as well as mag-

netostrictive terms that are proportional, respectively, to

the local gradients of the E- and H-field intensities,

E � Eh i and H �Hh i. This brings out a second criticism of

the E–L theory, which is the alleged inadequacy of the

magnitude of the electrostrictive term of Eq. (21) in

accounting for the Hakim–Higham experiment involving

the force of static electric fields on liquid dielectrics

[39]. The interpretation of the Hakim–Higham experi-

ment begins with the Abraham and Minkowski force-

density equations (see Sect. 8), neither of which contains

a contribution from electrostriction. A phenomenologi-

cal term is then added to the Abraham and

Minkowski equations to produce the so-called

‘‘Helmholtz force’’1 [40, 41], which incorporates the

needed electrostrictive effect. Hakim and Higham con-

clude that the Helmholtz force provides a better fit to

their experimental data than does the E–L force. Inter-

pretation of such experiments, however, as pointed out

by Brevik [41], requires careful attention to spurious

effects, and, in any case, it is necessary to examine a

much broader range of static as well as dynamic situa-

tions before settling on a microscopic theory of EM

force and torque that has a firm basis in physical reality.

7 Electromagnetic torque and angular momentum

The torque and angular momentum densities in the Lorentz

formulation may be determined by cross-multiplying the

position vector r into Eq. (14). We will have

r� FLðr; tÞ þ
o

ot
ðr� SL=c

2Þ

þ o

ox
r� 1=2ðeoE � Eþ l�1

o B � BÞx̂� eoExE� l�1
o BxB

� �� �

þ o

oy
r� 1=2ðeoE � Eþ l�1

o B � BÞŷ� eoEyE� l�1
o ByB

� �� �

þ o

oz
r� 1=2ðeoE � Eþ l�1

o B � BÞẑ� eoEzE� l�1
o BzB

� �� �
¼ 0:

ð22Þ

The first term on the left-hand side of Eq. (22) is the

Lorentz torque-density, while the second term provides

the time-rate-of-change of the EM angular momentum

density. In the remaining terms, we have moved r�
inside the differential operators, which is readily justified

by simple differentiation of the resulting expressions.

The last three terms in Eq. (22) form the divergence of a

2nd rank tensor, thus confirming the conservation of

angular momentum. The EM torque and angular

momentum densities in the Lorentz formulation are thus

given by

1 The Helmholtz force-density associated with the action of the E-

field on a dielectric material of mass density q and relative

permittivity e is often written as follows [41]:

FHðr; tÞ ¼ �1=2eoðreÞðE � EÞ þ 1=2eor q
oe
oq

E � E
� �

:

The first term on the right-hand side of the above equation arises

naturally from the stress tensors of Abraham and Minkowski, as

discussed in Sect. 8. The second term, which is associated with

electrostriction, is derived phenomenologically, using arguments from

the theories of elasticity and thermodynamics [40, 75].
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TLðr; tÞ ¼ r� FLðr; tÞ; ð23Þ

LLðr; tÞ ¼ r� SL=c
2: ð24Þ

A similar procedure can be carried out within the Ein-

stein–Laub theory, but the end result, somewhat unex-

pectedly, turns out to be different. After cross-multiplying

both sides of Eq. (17) into r, one recognizes that r� cannot

move inside the last three differential operators without

introducing certain additional terms. Taking account of the

fact that or=ox ¼ x̂; or=oy ¼ ŷ; and or=oz ¼ ẑ; one arrives

at

r� FELðr; tÞ þ P� EþM �H þ o

ot
ðr� SEL=c

2Þ

þ o

ox
r� 1=2ðeoE � Eþ loH �HÞx̂� DxE� BxH½ �f g

þ o

oy
r� 1=2ðeoE � Eþ loH �HÞŷ� DyE� ByH

� �� �

þ o

oz
r� 1=2ðeoE � Eþ loH �HÞẑ� DzE� BzH½ �f g ¼ 0:

ð25Þ

Once again, the last three terms in Eq. (25) form the

divergence of a 2nd rank tensor, thus confirming the con-

servation of angular momentum. The remaining terms of

the equation then yield expressions for the EM torque and

angular momentum densities, namely,

TELðr; tÞ ¼ r� FEL þ P� EþM �H; ð26Þ

LELðr; tÞ ¼ r� SEL=c
2: ð27Þ

In their original paper [21], Einstein and Laub men-

tioned the need for the inclusion of P� E and M �H

terms in the torque equation only briefly and with

specific reference to anisotropic bodies. Of course, in

linear, isotropic, lossless media, where P is parallel to E

and M is parallel to H, both cross-products vanish.

However, in more general circumstances, the torque

expression must include these additional terms. The

above derivation of Eq. (25) should make it clear that

the expression of EM torque in Eq. (26) has general

validity, and that P� E and M �H must always be

added to r� FEL if the angular momentum of a closed

system is to be conserved.

As was the case with the EM force discussed in Sect. 5,

the total EM torque exerted on an isolated object always

turns out to be the same in the Lorentz and E–L formula-

tions; any differences between the two approaches can be

reconciled by subtracting the contribution of the hidden

angular momentum density, r� ðeoE�MÞ, from the

Lorentz torque [19].

8 Force and momentum according to Minkowski
and Abraham

The stress tensors of Minkowski [42] and Abraham

[43, 44] are essentially identical2:

T
$
ðr; tÞ ¼ 1=2ðD � Eþ B �HÞI

$
� DE� BH: ð28Þ

What distinguishes Minkowski’s theory from that of

Abraham is the EM momentum-density Gðr; tÞ, which is

D� B in Minkowski’s case, and E�H=c2 in the case of

Abraham [41, 45]. Applying the divergence operator to the

above stress tensor and invoking Maxwell’s macroscopic

equations and well-known vector identities, we find

r
$
� T

$
ðr; tÞ ¼�qfreeE�ðP �rÞE�ðM �rÞH� eoE� oB

ot

þloH� Jfree þ
oD

ot

� �
þ 1=2rðP �EþM �HÞ:

ð29Þ

From this point on, Eq. (29) must be treated in different

ways, depending on whether the goal is to derive the

Abraham or the Minkowski force-density. In the Abraham

case we have

r
$
� T

$
ðr; tÞ ¼ � qfreeEþ Jfree � loH þ ðP � rÞE½

þ oP

ot
� loH þ ðM � rÞH � oM

ot
� eoE

�1=2rðP � EþM �HÞ� � oðE�H=c2Þ=ot:
ð30Þ

The last term in the above equation is the time-deriva-

tive of the Abraham momentum-density,

2 In the literature [41, 45, 47, 55], Abraham’s stress tensor is usually

written as a symmetrized version of Minkowski’s tensor, that is,

T
$

Aðr; tÞ ¼ 1=2 ðD � Eþ B �HÞI
$
� ðDEþ EDÞ � ðBH þHBÞ

h i
:

Abraham’s concerns, as well of those of his followers, were

primarily with linear, isotropic media, namely, media for which D ¼
eoeE and B ¼ lolH. In such cases, since the stress tensor of

Minkowski, given by Eq. (28), is already symmetric, the above act of

symmetrization does not modify the tensor. In Abraham’s own paper

[43], the stress tensor is written explicitly only twice, in Eqs. (5a) and

(56), and in both instances it is identical to Minkowski’s (asymmetric)

tensor. At several points in his papers [43, 44], Abraham mentions the

symmetry of his tensor, but it appears that he has the special case of

linear, isotropic media in mind. The special symmetry that Abraham

introduced into Minkowski’s theory is, of course, that between the

energy flow-rate, E�H, and the electromagnetic momentum density,

E�H=c2, which reside, respectively, in the fourth column and the

fourth row of the stress-energy tensor. Be it as it may, in Eq. (28) we

have chosen the asymmetric version of Abraham’s (3 9 3) stress

tensor, as it simplifies the subsequent discussion. In any event, this

does not affect the main results and the conclusions reached in Sect. 8,

since the media chosen for analysis in that section are linear and

isotropic.
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GAðr; tÞ ¼ E�H=c2. Therefore, the bracketed terms con-

stitute the Abraham force-density. This force-density is

seen to differ from that of Einstein and Laub, Eq. (15),

only in the gradient term 1=2rðP � EþM �HÞ:
To arrive at the Minkowski force-density, we return to

Eq. (29) and proceed with our development of r
$
� T

$
, as

follows:

r
$
�T

$
ðr; tÞ ¼� qfreeEþJfree �BþðP �rÞE½

þP�ðr�EÞ� 1=2rðP �EÞþ ðM �rÞH
þM�ðr�HÞ� 1=2rðM �HÞ��oðD�BÞ=ot:

ð31Þ

Since the last term in Eq. (31) is the time-derivative of

the Minkowski momentum-density, GMðr; tÞ ¼ D� B, the

bracketed terms constitute the force-density expression

according to Minkowski. Despite apparent differences

between the end results of Eqs. (30) and (31), the two

expressions, arrived at via different routes, must be iden-

tical. The Abraham and Minkowski force densities differ

from each other only by oðD� B� E�H=c2Þ=ot.
To further simplify the Abraham force-density derived

in Eq. (30), we specialize to the case of linear, isotropic,

lossless media under monochromatic excitation. All func-

tions of space and time must now be written as

f ðr; tÞ ¼ Re ~f ðrÞexp( � ixtÞ
� �

, where two-function prod-

ucts are time-averaged in accordance with f ðr; tÞgðr; tÞh i ¼
1=2Re ~f ðrÞ~g�ðrÞ

� �
. Polarization and magnetization are rela-

ted to the E and H-fields via

~PðrÞ ¼ eo eðr;xÞ � 1½ � ~EðrÞ; ð32aÞ
~MðrÞ ¼ lo lðr;xÞ � 1½ � ~HðrÞ; ð32bÞ

where e and l are real-valued functions of r and x. Under

these circumstances, the time-averaged Abraham force-

density becomes

FAðr; tÞh i ¼ 1=2Re ~qfree
~E� þ ~Jfree � ~B� � 1=2eoðreÞ ~E

�� ��2n

�1=2loðrlÞ ~H
�� ��2o: ð33Þ

In the case of the Minkowski force-density given by

Eq. (31), further simplification is achieved by specializing

to linear isotropic media. Monochromaticity and time-av-

eraging in this case would not be necessary if we limit the

discussion to lossless, non-dispersive media, where

Pðr; tÞ ¼ eo eðrÞ � 1½ �Eðr; tÞ; ð34aÞ
Mðr; tÞ ¼ lo lðrÞ � 1½ �Hðr; tÞ: ð34bÞ

Subsequently, the Minkowski force-density may be

written as

FMðr; tÞ ¼ qfreeEþ Jfree � B� 1=2eoðreÞðE � EÞ
� 1=2loðrlÞðH �HÞ: ð35Þ

It is readily observed that, upon time-averaging, the

Minkowski force-density of Eq. (35) becomes identical to

the (already time-averaged) Abraham force-density in

Eq. (33). This should not be surprising, considering that the

Abraham and Minkowski force-densities differ only by

oðD� B� E�H=c2Þ=ot, whose time-average is zero for

monochromatic excitations in linear media (even in the

presence of loss and anisotropy).

In piecewise homogeneous media, where e and l within

individual pieces of material do not vary with r, and

assuming qfree ¼ 0 and Jfree ¼ 0, the Abraham and Min-

kowski force densities of Eqs. (33) and (35) produce forces

only at the boundaries between adjacent regions, where e
and l change discontinuously. As mentioned in Sect. 6, the

Abraham and Minkowski force densities do not possess

electrostrictive and magnetostrictive terms, that is, terms

proportional to r E � Eh i and r H �Hh i, respectively. The

addition of a phenomenological term to these equations (to

arrive at the Helmholtz force) has thus been deemed nec-

essary in order to explain certain experimental observations

[41]. In contrast, the E–L theory has a built-in mechanism

for producing electrostriction and magnetostriction, which

gives it an advantage not only over the Abraham and

Minkowski theories, but also over the Lorentz formulation

[46].

9 Concluding remarks

In applications involving rigid (as opposed to deformable)

media, the E–L method yields results that are identical to

those obtained in the Lorentz formalism, albeit without the

need for hidden energy and hidden momentum within

magnetic materials—the hidden entities being inescapable

companions of the Lorentz approach. It may thus appear

that the choice between the Lorentz and E–L formulations

is a matter of taste; those who feel comfortable with hidden

entities may continue to use the Lorentz law, while others

can resort to the E–L theory in order to avoid keeping track

of hidden entities. This apparent equivalence, however,

does not stand up to further scrutiny. Even after subtracting

the hidden momentum contribution from the Lorentz force,

the corresponding force-density distribution within an

object turns out to be substantially different from that

predicted by the E–L theory. Such differences should be

measurable [45–49] and, in fact, the scant experimental

evidence presently available seems to favor the E–L

approach [46]. Considering that in recent years it has

become possible to trap small droplets of various liquids by

means of focused laser beams [50], it would be desirable to
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excite one or more whispering gallery modes inside such

trapped droplets, then monitor the deformations of the

droplet as a function of the incident laser power, the

excited mode indices, and the refractive index of the dro-

plet. Detailed numerical simulations would be necessary to

predict the deformation of the droplet in accordance with

each and every one of the proposed EM stress-energy

tensors. A comparison between the measurement results

and the theoretical calculations should then enable one to

decide, once and for all, the stress-energy tensor that rep-

resents the physical reality.

In 1973, Ashkin and Dziedzic performed a remarkable

experiment in which they focused a green laser beam

(k0 = 0.53 lm) onto the surface of pure water [51]. They

observed a bulge on the surface, where the focused laser

beam had entered. Subsequent analysis by Loudon [52, 53]

showed that compressive radiation forces beneath the sur-

face tend to squeeze the liquid toward the optical axis,

causing a surface bulge via the so-called ‘‘toothpaste tube’’

effect. In his analysis, Loudon used the E–L formulation;

his findings are consistent with the results of our computer

simulations [46], which indicate a compressive force

pointing everywhere toward the optical axis of the incident

laser beam. In contrast, theoretical as well as numerical

analyses based on the Lorentz formulation [46, 54] reveal

the existence of both expansive and compressive forces in

different regions beneath the surface, which effectively

cancel each other out, thus ruling out the possibility of

bulge formation on the water surface. The observations of

Ashkin and Dziedzic in [51] thus provide a rare experi-

mental evidence against the Lorentz formulation and in

support of the E–L force-density expression.

One must not forget, however, that the Abraham and

Minkowski force densities also predict a bulge similar to

that observed in the experiment, although, in this case,

electrostriction (i.e., the second component of the Helm-

holtz force) is required to account for the ‘‘squeeze’’ of the

liquid needed for stability. This alternative explanation of

the observed bulge, discussed at length in [41], is qualita-

tively similar to Loudon’s analysis based on the E–L

equation [52, 53]. Either way, it is clear that the experi-

mental results hint at a departure from the Lorentz for-

mulation, suggesting the need for further analysis in order

to pinpoint the correct form of the microscopic force

equation—one that could accurately predict the measurable

characteristics of the bulge in addition to explaining other

relevant observations [41, 55–59]. Of particular interest

here would be a detailed quantitative analysis of the

experimental data pertaining to the coupling of light to

elastic waves in nonlinear optics [60–64]. Stimulated

Brillouin scattering in optical fibers [65, 66] is a good

example of such phenomena which could yield valuable

information about the elastic deformation of the fiber’s

core region in the presence of intense light pulses. Needless

to say, detailed knowledge of the EM field distribution in

conjunction with numerical simulations of the elastic

vibrations for the extant EM stress-energy tensors would be

needed to decide which tensor comes closest to predicting

the experimental observations.

To the best of our knowledge, there exist no experi-

mental data on the mechanical coupling of EM waves to

transparent magnetic materials. (For the purpose of

deciding among the various stress-energy tensors, trans-

parency of the magnetic medium at the operating wave-

length is essential, given that thermal expansion or

contraction effects should not be allowed to mix with the

mechanical effects of radiation.) Substantial differences

exist among the predictions of the various stress-energy

tensors when a magnetic medium experiences EM force

and/or torque in consequence of its interactions with opti-

cal or microwave radiation. Aside from the issue of hidden

momentum, the EM force-density distribution throughout a

magnetic medium is very much dependent on the assumed

EM stress-energy tensor. Whereas in transparent non-

magnetic media the electric polarization (i.e., density of

electric dipoles) alone is responsible for the force and

torque experienced by the medium, in magnetic materials

both electric and magnetic dipoles contribute to the local

force-density exerted by the fields on the material object.

As before, elastic deformations of the magnetic medium

(be it of a soft and flexible nature, or of such rigidity as to

produce a measurable elastic response to the applied EM

force) must be monitored and compared with theoretical

calculations.

Finally, it has been predicted that the radiation pressure

on a submerged mirror inside a liquid has a strong

dependence on the phase angle u of the mirror’s Fresnel

reflection coefficient q ffi qj j expðiuÞ [67, 68]. Different

stress tensors predict different radiation pressures on a

submerged mirror whose phase angle u departs substan-

tially from the usual value of 180�. It will be of consid-

erable value if radiation pressure measurements similar to

those of Jones et al. [69–71] could be carried out inside

liquids of varying refractive indices using submerged

multilayer stack dielectric mirrors whose phase angles u
substantially deviate from 180�. As explained in

[58, 68, 72–74], the results of such measurements will help

to distinguish among the various stress-energy tensors.
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