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propulsion and airframe structural systems of astronau-
tical flight vehicles [33]. Functionally graded materials 
(FGMs) are considered a special class of composite mate-
rials characterized by smooth and continuous distribution 
of material properties. They have comparatively smaller 
residual stresses, lower stress concentrations, and higher 
bonding strength than conventional composite laminates. 
Due to these advantages, FGMs are being used increasingly 
in many applications, such as, in aircraft industry, space 
vehicles, reactor vessels, automobile, electronics, optics, 
chemistry, biomedical engineering, nuclear engineering 
and mechanical engineering [23].

In the microscopic scale, FGM is considered a het-
erogeneous material, which should be homogenized accu-
rately to be easily modeled computationally. Anthoine [2] 
presented a second-order homogenization of functionally 
graded materials. Lee and Kim [35] exploited Voigt rule 
(VR) and Mori–Tanaka method (MTM) to detect the effec-
tive material properties of heterogeneous micromechanical 
FGM. Effective properties of FG panels are investigated for 
the two types of models, namely, power function (P-FGM) 
and sigmoid function (S-FGM) functions.

Chi and Chung [17] suggested a sigmoid function, a 
combination of two type of P-FGM functions, to reduce 
the stress intensity factors in a crack structure. In 2003, 
Chakraborty et  al. [16] studied static, free vibration and 
wave propagation of exponential and power-law FGM 
Timoshenko beam (TBT) by finite element method (FEM). 
Li et al. [36] proposed a unified approach to the formula-
tion of TBT and Euler–Bernoulli’s (EB). Kapuria et al. [32] 
fabricated multi-layered FG beam using powder metallurgy 
and thermal spraying techniques, and then experimentally 
validated the results on static and free vibration. Benatta 
et al. [8] presented an analytical solution for static bending 
of simply supported FGM hybrid beams using higher-order 

Abstract  Most analyses of functional graded materials 
(FGM) focusing on power law distribution, which presents 
stress concentration at the interface when material proper-
ties change rapidly. The objective of the current paper is to 
develop two symmetric and anti-symmetric functions and 
compare their effects on the static deflection and bending 
stresses with classical power-law distribution. The pro-
posed distributions are a symmetric power-law and a sig-
moid function which is anti-symmetric. To homogenized 
micromechanical properties of FGM, the effective material 
properties are derived on the basis of Voigt model. Kine-
matic relation of Euler–Bernoulli beam is assumed and vir-
tual work is proposed to derive the equilibrium equations. 
A finite element model is proposed to form stiffness matrix 
and force vector and then solve the problem numerically. 
Proposed model has been validated. Numerical results 
presents the effect of power exponent, and elasticity ratios 
on a static deflection and stresses of FG beams. The most 
significant finding is that, the symmetric power function is 
more reliable and can considerably reduce the stress than 
the other two functions. However, the sigmoid function dis-
tribution represents the highest stress.

1  Introduction

Functionally graded material (FGM) was first proposed 
by Japanese scientists to decrease the thermal stresses in 
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shear deformation (HOSD) beam theory. Ben-Oumrane 
et al. [10] presented a theoretical analysis of flexional bend-
ing of Al/Al2O3 S-FGM thick beams according to different 
beam theories. Simsek [52] investigated static analysis of 
FG simply-supported beam subjected to a uniformly dis-
tributed load using Ritz method within the framework of 
TBT and the HOSD theories. Mahi et  al. [42] presented 
exact solutions to study the free vibration of a unified 
HOSD beam with temperature-dependent material prop-
erties. The materials distributions are varied continuously 
through the thickness according to an exponential func-
tion (E-FGM) or S-FGM. Giunta et al. [25] proposed sev-
eral axiomatic refined theories for the linear static analysis 
of beams made of materials whose properties are graded 
along one or two directions. Huang and Li [30] studied free 
vibration of non-uniform axially FG beams by transform-
ing the governing differential equation to Fredholm integral 
equations.

Alshorbagy et al. [1] investigated the free vibration char-
acteristics of P-FGM distributed through beam thickness or 
beam length using FEM. Birsan et  al. [11] employed the 
direct approach to analyze the deformation of curved FG 
rods and beams. Shahba and Rajasekaran [51] studied free 
vibration and stability of axially FG tapered Euler–Ber-
noulli beams by conventional differential transform method 
(DTM). Menaa et  al. [43] derived analytical solutions for 
static shear correction factor of FG rectangular beams 
using the energy equivalence principle. Mohanty et al. [45] 
presented the evaluation of static and dynamic behavior of 
P-FGM ordinary and sandwich beam using FEM and TBT. 
Li and Batra [38] derived analytical relations between the 
critical buckling load of an FGM Timoshenko beam and 
that of the corresponding homogeneous Euler–Bernoulli 
beam subjected to axial compressive load for different 
boundary conditions. Pradhan and Chakraverty [48] inves-
tigated free vibration of Euler and Timoshenko P-FGM 
beams using Rayleigh–Ritz method. Li et al. [39] derived 
analytically the bending solutions of FGM of TBT in terms 
of the homogenous Euler–Bernoulli beams. Daouadji et al. 
[18] derived elasticity solution of a cantilever FG beam 
with P-FGM and E-FGM subjected to linearly distributed 
load. Duc and Cong [20] presents a proposal to investi-
gate the nonlinear dynamic response of imperfect symmet-
ric thin S-FGM subjected to mechanical loads. Wang and 
Wang [57] presented static analysis of higher order sand-
wich beams by weak form quadrature element method. 
Liu and Shu [40] investigated analytically free vibrations 
of E-FGM Euler–Bernoulli beams with a single delamina-
tion. Sarkar and Ganguli [50] derived closed-form solu-
tions for axially-loaded FG Timoshenko beams having 
uniform cross-section and fixed–fixed boundary condition. 
Jin and Wang [31] studied free vibration of FG Euler–Ber-
noulli beam using a weak form of DQM. Bourada et  al. 

[14] presented a new simple shear and normal deforma-
tions theory for FG beams. Nguyen et al. [47] studied lat-
eral buckling analysis of thin-walled functionally graded 
open-section beams. For a nano-scale beam, Eltaher et al. 
[24] presented a review for bending, buckling, vibrations, 
and wave propagation of nanoscale FG beams. Hamed 
et al. [26] investigated free vibration behavior of symmet-
ric and sigmoid functionally graded nanobeams. Ebrahimi 
and Barati [21] developed a dynamic model of smart shear-
deformable heterogeneous piezoelectric nanobeams. Ebra-
himi and Salari [22] presented dynamic behavior of piezo-
thermo-electrically excited FG nanobeams. The material 
distribution is assumed to be sigmoid and power-law 
graded. Azimi et al. [3] studied thermo-mechanical vibra-
tion of rotating axially FG nonlocal Timoshenko beam.

The analysis of FG plate structures are considered by 
many authors, such as, Meziane et al. [44] presented a sim-
ple refined theory for buckling and free vibration of expo-
nentially FG plates. Zidi et al. [58] studied hygro-thermo-
mechanical bending of FG plate using higher order shear 
theory. Bousahla et al. [15] and Bellifa [7] considered the 
neutral axis effect on the bending and vibration of FG plate 
with higher order shear theory. Hebali et al. [28] and Mahi 
et  al. [42] developed 3D hyperbolic HOSD for the bend-
ing and free vibration of P-FGM plates. Yahia et  al. [56] 
studied wave propagation in porous FG plates using HOSD. 
Tounsi et  al. [54], Bouderba et  al. [12] and Hamidi et  al. 
[27] presented a sinusoidal plate theory including stretch-
ing effect for thermomechanical bending of FG sandwich 
plates. By dividing the transverse displacement into bend-
ing, shear, and thickness stretching parts, Belabed et al. [4] 
and Bennoun et  al. [9] developed refined plate theory to 
study vibrations of sandwich FGM plates. Tounsi et al. [55] 
and Houari et al. [29] proposed 3-unknown non-polynomial 
shear deformation theory for static, buckling and vibration 
analyses FGM sandwich plates. Beldjelili et al. [5] studied 
hygro-thermo-mechanical bending of S-FGM plates resting 
on variable elastic foundations. For a nano-plate, Belkoris-
sat et al. [6] and Bounouara et al. [13] developed a nonlocal 
zeroth-order shear deformation theory for free vibration of 
FG nanoscale plates resting on elastic foundation.

According to the author’s knowledge and survey, the 
static deflection and stress distribution of symmetric power 
function and sigmoid function are not yet addressed in lit-
erature. Thus, the present paper illustrates the bending 
behavior of rectangular FG beam subjected to transverse 
loading with different material distributions. The material 
consists of ceramics (Al2O3) and metal (Al) phases varying 
through the thickness direction. The Equilibrium equations 
of FG beam are derived using Euler–Bernoulli beam theory 
and virtual work principle. The paper is organized as fol-
lows: The problem formulation is addressed in Sect. 2. The 
finite element (FE) model and stiffness matrices are derived 



Bending analysis of different material distributions of functionally graded beam﻿	

1 3

Page 3 of 9  296

in Sect.  3. Code validation and numerical results are dis-
cussed in Sect. 4. Summarized concluding remarks are pre-
sented in Sect. 5.

2 � Problem formulation

In this section, material distribution through the beam 
thickness according to Voigt rule is assumed, constitutive 
equations are illustrated and equilibrium equation of FG 
Euler-beam is derived.

2.1 � Spatial material graduation functions

FGMs are manufactured by mixing different material 
phases continuously though a specific spatial direction. To 
estimate the effective properties at micromechanics level, 
the simplest homogenization techniques are Voigt rule 
Mori and Tanaka [46] and Mori–Tanaka model, Tomota 
et al. [53]. Although, Voigt rule does not consider the inter-
action among adjacent inclusions, Mori–Tanaka method 
(MTM) considered these interactions of neighboring 
phases at microscopic level, Lee and Kim [35]. According 
to Li et al. [37] and Komijani et al. [34], the volume frac-
tion of FG materials can be expressed as

where V  is the volume fraction, k is a nonnegative power 
exponent, and subscripts c and m represent the ceramic and 
metal, respectively. In the current analysis, three functions 
are assumed to describe the spatial distribution of materials 
through the thickness direction. The first and simplest on is 
the power law function P-FGM, which is described by [1, 
16, 18, 23, 31]

The modified symmetric power-law function S-P-FGM 
has the following form [41]

The Sigmoid function S-FGM is assumed to be two 
power-law functions to ensure smooth distribution of 
stresses [10, 20, 26, 35, 43]. This function is depicted by
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The FG beam in the current manuscript is composed of 
aluminum metal [Em  = 70  GPa, and Poisson’s ratio 

(

�m
)

of 
0.3] and a ceramic of alumina [Ec = 380 GPa, and �c = 0.3]. 
Delale and Erdogan [19] proved that the effect of Poisson’s 
ratio on the deformation is much less than Young’s modulus. 
So, the Poisson’s ratio is assumed to be constant in this analy-
sis. The distribution of Young modulus through the beam 
thickness for the three assumed functions is shown in Fig. 1.

The power function distribution shown in Fig.  1a shows 
an increase in the power index from 0 (the metal phase) to 
k = 10 (ceramics rich phase) as the Young modulus increases. 
Un-symmetric distribution of the material characteristics 
through the mid-plane (z = 0) is the main feature of this func-
tion. So, the mid-plane is not coincident with neutral plane, 
Eltaher et al. [23]. But the other two distributions (S-P-FGM 
and S-FGM) distribution, as illustrated in Fig. 1b, c, are sym-
metric and anti-symmetric with respect to mid-plane, respec-
tively, and their mid-planes are coincident with the neutral 
plane.

2.2 � Constitutive equations

Based on the Euler–Bernoulli theory, that plane sections per-
pendicular to the axis of the beam before deformation remain 
(a) plane, (b) rigid, and (c) rotate such that they remain per-
pendicular to the (deformed) axis after deformation. The 
assumptions amount to neglecting the Poisson effect and 
transverse strains, Reddy [49]. The displacement field can be 
assumed as:

where u and w are the total displacements along the coor-
dinate (x), and u0 and w0 denote the axial and transverse 
displacements of a point on the neutral axis. According to 
Euler hypothesis, the only nonzero strain is

And the nonzero stress can be described by

Axial and bending moment can be written as
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where

Based on the principle of virtual work which states 
that “if a body is in equilibrium, the total virtual work 
done by internal as well as external forces through their 
respective virtual displacements is zero”. The analytical 
form of virtual work is represented by

where the internal strain energy is given by

and work done by external forces is

in which q(x) is the distributed transverse load, f (x) is the 
distributed axial force, Q is the applied point load, and �Δ 
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is the virtual displacement. By substituting Eqs.  (11 and 
12) into Eq.  (10), and performing integration by parts, 
yields

Thus, the governing equilibrium equations in terms of 
forces and moments can be described by

Equilibrium equations in terms of displacements can be 
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Fig. 1   The variation of Young Modulus through the beam thickness. a Power-Law Function (P-FGM). b Symmetric Power-Law Function (S-P-
FGM). c Sigmoid Function S-FGM
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3 � Numerical FE formulation

The displacement field at the mid-plane of the FG beam 
can be assumed as

Axial displacement,

Transverse displacement, 

where �j is the linear Lagrange interpolation function, and 
�j is the Hermite cubic interpolation functions. uj and wj are 
the axial and transverse nodal displacement, respectively. 
According to Eq. (13), the virtual work statements can be 
expressed in terms of generalized displacement 

(

u0,w0

)

 as

Substituting Eq, (16) into Eq. (17) results in the follow-
ing equilibrium equation in matrix form:

where Kuu is the axial stiffness, Kuw and Kwu is the coupling 
axial-bending stiffness, Kww is the bending stiffness, {f }, 
{q} and {Q} are the axial, transverse distributed loads and 
concentrated load vectors, respectively.

4 � Numerical results

The results of the proposed model are compared with pre-
vious published works to validate the code and model in 
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the first subsection. After that, the effects of elasticity ratio 
and power index exponent, on the transverse deflection and 
axial stresses are investigated for the three proposed func-
tion distributions.

4.1 � Validation

The geometrical dimensions of the beam in this subsec-
tion are proposed by Simsek [52], for a slenderness ratio 
L/h = 16. The present results are illustrated in Table 1. As 
concluded from this table, the present results for P-FGM 
and those of Simsek [52] are close. A small deviation is 
observed (5% as a maximum), which is there for two rea-
sons. The first is the difference in proposed theories in 
analysis (Euler in current analysis, Timoshenko in Simsek 
[52]). The second reason is due to the dimension of the 
beam (L/h = 16), which is a moderately thick beam, and 
Euler beam is more efficient for thin beams (L/h > 20).

Figure  2 illustrates the effect of material distribution 
parameter (k) on the normal stress distribution through the 
beam thickness for different function behaviors. The stress 
results obtained by Simsek [52] is also compared with the 
proposed power function as shown in Fig. 2a. The obtained 
results are approximately identical to those obtained by 
Simesk [52]. The small deviation is again due to the differ-
ence in the proposed theories.

4.2 � Effect of power index (k)

It is noted from Table  1 that, as power index increases 
the deflection decreases for both P-FGM and S-P-FGM. 
Because the ceramics phase which has a higher modulus 
increases in constituent of the beam, the maximum deflec-
tion for S-P-FGM is higher than P-FGM. That means the 
distribution of ceramics phase in S-P-FGM is less than the 
distribution in P-FGM at the same power index value. By 
comparing S-FGM with P-FGM, it is noted that the deflec-
tion increases with increasing the power index for S-FGM. 
However, an opposite effect is observed for P-FGM. As 
shown in Fig. 2, the higher stress is observed for P-FGM 
with relative the two other distribution. A symmetric and 

Table 1   Maximum non-
dimensional transverse 
deflection of the beam for 
various power exponent

Power exponent (k) Maximum non-dimensional transverse deflection

Simsek [52] Present P-FGM Present S-P-FGM Present S-FGM

Full metal 1.00812 1.00000 1.00000 1.00000
0.2 0.75595 0.72962 0.896 0.51959
0.5 0.63953 0.60030 0.79032 0.52259
1.0 0.56615 0.52718 0.68293 0.52719
2.0 0.50718 0.47908 0.57377 0.53274
5.0 0.44391 0.43200 0.46281 0.5379
Full Ceramic 0.35284 0.35000 0.35000 0.35000
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uniform stress distribution is noted for S-P-FGM, which 
gives advantage for symmetric power law distribution com-
pared to other functions.

4.3 � Effect of elasticity ratio (E1/E2)

Tables  2, 3 and 4 present the maximum deflection of FG 
beam as the elasticity ratio ranges from 1 to 20 and the 
material distribution parameter k changes from 0.2 to 10 
for the three function distributions: FGM, S-P-FGM and 
S-FGM, respectively. First of all, when E1/E2 = 1, the 
isotropic material is rendered. Fixing material distribu-
tion parameter k and varying the elasticity ratio results in 
a significant decrease in deflection for three function dis-
tributions. However for the case in hand, the material 

distribution parameter has the same effect on P-FGM and 
S-P-FGM while it has a counter effect on S-FGM at a spe-
cific elasticity ratio. For example, at E1/E2 = 5, the static 
deflection decreases from 0.56098 to 0.23782 (approxi-
mately half value) as the power exponent increases from 
0.2 to 10 for P-FGM, as seen in Fig.  2. The same obser-
vation shows for S-P-FGM, where the deflection decreases 
from 0.8 to 0.245 (approximately one-third) as the power 
exponent increases. However, deflection increases from 
0.33466 to 0.36513 as the material distribution parameter 
increases, as shown in Table  4. The previous observation 
gives the designer a facility to select the proper distribution 
and the proper function for his/her application.

Figure 3 shows the effect of elasticity ratio on the axial 
stress distribution along the thickness direction for the 

Fig. 2   Maximum Non-dimensional axial stress of the beam for various power exponent. a Power-Law Function (P-FGM). b Symmetric Power-
Law Function (S-P-FGM). c Sigmoid Function S-FGM

Table 2   The effect of elasticity 
ratio and for power exponent on 
non-dimensional max deflection 
for P-FGM

E1/E2 k = 0.2 k = 0.5 k = 0.7 k = 1.0 k = 2.0 k = 5 k = 10

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 0.83224 0.73354 0.70109 0.67179 0.62903 0.58493 0.55482
5 0.56098 0.41616 0.37736 0.34491 0.30115 0.26146 0.23782
10 0.36917 0.24548 0.21596 0.19225 0.16178 0.13617 0.12185
20 0.22261 0.13609 0.11713 0.10237 0.084121 0.069542 0.061688

Table 3   The effect of elasticity 
ratio and for power exponent on 
non-dimensional max deflection 
for S-P-FGM

E1/E2 k = 0.2 k = 0.5 k = 0.7 k = 1.0 k = 2.0 k = 5 k = 10

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 0.94118 0.875 0.84091 0.8 0.71429 0.61538 0.56522
5 0.8 0.63636 0.56923 0.5 0.38462 0.28571 0.24528
10 0.64 0.4375 0.37 0.30769 0.21739 0.15094 0.12621
20 0.45714 0.26923 0.21765 0.17391 0.11628 0.07767 0.064039
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three proposed functions at a specific power exponent 
k = 2.0. As shown in Fig.  3a for P-FGM, as the elasticity 
ratio increases, the stress increases at the lower surface 
(z
h
=

−1

2
) and decreases at the upper surface (z

h
=

1

2
). How-

ever, for S-P-FGM, by increasing the elasticity ratio, the 
stress increases relatively at z

h
=

±1

4
 and decreases at upper 

and lower surfaces, as seen in Fig. 3b. The effect of elas-
ticity ratio on stress distribution for S-FGM is the same as 
P-FGM. It increases at the lower surface and decreases at 
the upper one. However, the elasticity ratio is more signifi-
cant in case of S-FGM than in P-FGM, especially at lower 
surfaces. Uniform and symmetric distributions are the main 
features of S-P-FGM.

5 � Conclusions

Static bending analysis of an FG simply-supported beam 
modeled according to Euler–Bernoulli theory and sub-
jected to a uniform distributed load is investigated. Three 
functions are assumed to describe the variation of metal 
and ceramics phases through the beam thickness, namely, 
power function, symmetric power function, and sigmoid 
function. The equilibrium equations are derived in details 
according to virtual work and the weak form is proposed 

to derive the element stiffness matrices and force vectors 
using finite element method. The model and results are val-
idated compared to previous work. Numerical results show 
significant effects of the elasticity ratio and material distri-
bution exponent on the static deflection and stress distribu-
tion. Results illustrate a reduction of axial stress for a sym-
metric power distribution function than for other functions. 
The proposed model gives designers and engineers a facil-
ity to select the proper distributions and proper functions 
for their application.
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