

Surface effects on vibration analysis of elastically restrained piezoelectric nanobeams subjected to magneto-thermo-electrical field embedded in elastic medium

Javad Marzbanrad¹ · Mahya Boreiry² · Gholam Reza Shaghaghi²

Received: 27 September 2016 / Accepted: 7 January 2017 / Published online: 15 March 2017 © Springer-Verlag Berlin Heidelberg 2017

Abstract In the present study, a generalized nonlocal beam theory is utilized to study the magneto-thermomechanical vibration characteristic of piezoelectric nanobeam by considering surface effects rested in elastic medium for various elastic boundary conditions. The nonlocal elasticity of Eringen as well as surface effects, including surface elasticity, surface stress and surface density are implemented to inject size-dependent effects into equations. Using the Hamilton's principle and Euler-Bernoulli beam theory, the governing differential equations and associated boundary conditions will be obtained. The differential transformation method (DTM) is used to discretize resultant motion equations and related boundary conditions accordingly. The natural frequencies are obtained for the various elastic boundary conditions in detail to show the significance of nonlocal parameter, external voltage, temperature change, surface effects, elastic medium, magnetic field and length of nanobeam. Moreover, it should be noted that by changing the spring stiffness at each end, the conventional boundary conditions will be obtained which are validated by well-known literature.

1 Introduction

In recent years, the tendency in studying the mechanical behavior of nanostructures has been grown. Among all nanostructures, the piezoelectric, for their unique mechanical properties, proved to be capable of designing the nanoelectro-mechanical systems (NEMSs). It is apparent that these nanomaterials can be applicable for building blocks for nanodevices integrating mechanical and electrical functionality at nanoscale size [1]. So, according to their wide range of application such as nano-sensors, actuators, generators, transistors, and diodes, investigating the vibrational behavior of piezoelectric nanomaterials is significant [2].

It is known that the classical continuum mechanics cannot predict the size effects. Therefore, to inject the sizedependent response of nanostructures, several non-classical higher-order continuum theories have been employed, such as nonlocal elasticity theory [3], stress theory [4], strain gradient theory [5], surface elasticity [6], and micropolar theory [7]. Among all these theories, the nonlocal elasticity theory of Eringen [3] can be employed in a wide range of applications in the analysis of nanostructures. Due to simplicity and high computational efficiency of nonlocal elasticity theory, rapid extensions of this theory in various mechanical analysis for different nanostructures can be observed as [8–10].

One of the main size-dependent factors of nanostructures is surface effects, which are happening for increasing the surface-to-volume ratio in nanoscale. Due to high surface-to-volume ratio, the surface effects as well as the small scale effect become substantial, which leads to exceptional mechanical characteristics at the nanoscale. Therefore, as the surface layers energy is negligible compared with the bulk energy of material at the macroscale, the classical continuum mechanics is not applicable to predict

[☑] Javad Marzbanrad marzban@iust.ac.ir

¹ Vehicle Dynamical Systems Research Laboratory, School of Automotive Engineering, Iran University of Science and Technology, Tehran, Iran

² Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran

the surface energy effect. Gurtin and Murdoch [11, 12], based on the continuum mechanics, developed a theoretical framework to take the surface energy effects into account. According to this theory, the surface layer is considered as an elastic two-dimensional membrane with zero thickness adhered to the underlying bulk material without slipping. It is also considered that the surface layers have distinct properties than the bulk of material which is characterized using the Lame constants of surface followed by surface residual stress. Many efforts have been done to investigate the surface effects [13–18] and nonlocal effects [19–27] on the mechanical properties of nanobeam separately, and simultaneously [2, 28–36].

Also, remarkable attention has been paid to investigate the mechanical characteristic of piezoelectric nanostructures in high-temperature conditions. So, the influence of temperature changing in the mechanical analysis is studied extensively. As for instance, Ebrahimi et al. [37] investigated the vibration characteristic of smart piezoelectrically actuated nanobeams in the magneto-electrical field and thermal environment. Further, Ke et al. [38] implemented the nonlocal elasticity theory into the thermo-electricmechanical vibration analysis of piezoelectric nanobeam. Furthermore, Mohammadimehr et al. [39] studied the vibration and buckling analysis of triple-walled ZnO piezoelectric nanobeam based on the Timoshenko beam theory resting on Pasternak foundation under magneto-electrothermo-mechanical loadings. In the work done by Marzbanrad et al. [40], the vibration behavior of size-dependent piezoelectric nanobeam resting on elastic under axial preload was studied by considering surface and thermal effects. Moreover, Ansari et al. [41] implemented the analytical solution to predict the postbuckling characteristics of FGM nanobeams subjected to thermal environment and surface stress effect.

It should be noted that all the mentioned works presented the numerical results for various mechanical properties of nanostructures for conventional boundary conditions (BCs) including Simply–Simply (S–S), Clamped–Clamped (C–C), Clamped–Simply (C–S) and Clamped–Free (C–F). In continuous systems, the type of BCs from their direct effect on vibration response of structures is so important. Mostly, in real systems, one of the mentioned BCs which has the nearest manner are chosen and assumed to satisfy the conditions exactly [42, 43]. Moreover, the rotational and transitional springs will substitute at the ends to introduce small deflections and moments. Further, Wattanasakulpong et al. [44] studied the linear and nonlinear vibration behavior of nanobeams which are elastically end-restrained. The numerical results are presented for Elastic-Elastic (E-E) and Simply-Elastic (S-E) boundary conditions. Besides, Zarepour et al. [45] investigated the electro-thermo-mechanical nonlinear characteristic of nanobeams resting on Winkler–Pasternak elastic medium for E–E and S–S BCs.

The present paper makes the first attempt to investigate the magneto-thermo-electric-mechanical vibration of piezoelectric nanobeam with elastic boundary condition by considering surface and nonlocal elasticity effects. Based on the Eringen's nonlocal constitutive relations and using Gurtin-Murdoch theory to incorporate the surface effects, equilibrium equations of piezoelectric nanobeam subjected in magnet and thermal field is achieved. The differential transformation method (DTM) with an iterative algorithm on the basis of Taylor series expansion is utilized to solve resultant motion equations for various BCs. The natural frequencies for various elastic boundary conditions are obtained, while, by choosing right values for spring stiffness at each end of nanobeam, the corresponding natural frequencies for classical BCs will be achieved. To validate the accuracy of motion equations and numerical results, the resultant natural frequencies are compared with wellknown literature which are in excellent agreement. The results are obtained for various spring stiffness constants, voltage values of piezoelectric field, temperature changing, magnetic field effect, nonlocal parameter, elastic foundation including Pasternak and Winkler foundations and nanobeam length for various elastic boundary conditions. It is shown that making changes to spring stiffness value and surface effect of piezoelectric nanobeam are two main approaches to achieve desired natural frequencies.

2 Formulation and theories

2.1 Eringen's nonlocal elasticity theory

Among various types of nonlocal elasticity theory, Eringen's theory proved to be capable and easy to use. The essence of nonlocal elasticity is that the stress field at a reference point x in an elastic medium does not only depend on the strain at that point, but also on the strains at all other points in the bulk of material [3].

This theory is based on the atomic theory of lattice dynamics and also the experimental observations of atomic and molecular scales which come from the observations on phonon dispersion. In this theory, the internal size as a material parameter is used to incorporate the scale effects into the equations [46]. The most general form of nonlocal elasticity relations will be indicated as an integral over the whole body of material, but by neglecting the body forces, the basic equations for stress tensor and electric displacement will be obtained as [47]:

$$\sigma_{ij} - \mu^2 \nabla^2 \sigma_{ij} = C_{ijkl} \varepsilon_{kl} - e_{kij} E_k - \lambda_{ij} \Delta T , \qquad (1)$$

$$D_i - \mu^2 \nabla^2 D_i = e_{ikl} \varepsilon_{kl} + \varepsilon_{ik} E_k + p_i \Delta T , \qquad (2)$$

where ∇^2 is the Laplace operator, σ_{ij} , D_i denote the component of the stress, electric field; ε_{kl} , C_{ijkl} , $e_{_{ikl}}$, λ_{ij} are the strain, elastic constant, piezoelectric constants and thermal module. ΔT and p_i are the temperature changes and piezoelectric constants; and also, $\mu = (e_0 a)^2$ represent the nonlocal parameter; moreover, $e_0 a$ denotes the scale length coefficient revealing the size effect in obtaining the response of nanostructures.

2.2 Surface effects

For the fact that the inter-atomic distance plays an important role in elastic constant of crystals, the bound contraction in the surface layers has a dominant influence than that in the bulk. To increase the surface-to-bulk ratio in nanoscale, the surface effects will become more significant and cannot be neglected. As this ratio increases, the surface effects role in response of nanobeam become more dominant. Accordingly, the energy which is produced by the atoms located in surface layers affects the mechanical properties of nanostructures which have been studied extensively by researchers. Gurtin et al. [11] proposed a continuum model which considered the surface layers as a zero-thickness film which subjected on the material body. In other words, the body and surface layers in the nanobeam are assumed such as a composite beam which is composed of a solid core with the bulk modulus and the surface shell with surface modulus as depicted in Fig. 1. The surface layer is assumed to be a two-dimensional thin film which attached perfectly to the bulk. Besides, the surface layers and the bulk material considered to be bonded, accordingly, the displacement field is continuous for both parts across the interface. It should be noted that this assumption is only for the modeling purpose which means that these layers do not actually exist; for this reason, the type of surface is not defined. For isotropic surfaces, the local stresses and electric displacement will be defined for piezoelectric nanobeam based on Gurtin model as [29]:

Fig. 1 Schematic of the nanobeam with elastic boundary conditions with length L, width b and height h

$$\tau^{sl}_{\alpha\beta} = \tau^0_{\alpha\beta} + C^s_{\alpha\beta\gamma\delta}\varepsilon_{\gamma\delta} - e^s_{\alpha\beta k}E_k , \qquad (3)$$

$$D_i^{\rm sl} = D_i^0 + e_{\alpha\beta i}^s \varepsilon_{\alpha\beta} + k_{ij}^s E_j , \qquad (4)$$

where $C^s_{\alpha\beta\gamma\delta}$, $\varepsilon_{\gamma\delta}$, $e^s_{\alpha\beta k}$ and k^s_{ij} express the surface elastic, surface strains, surface piezoelectric and surface dielectric constants, respectively. $\tau^{sl}_{\alpha\beta}$, $\tau^0_{\alpha\beta}$ denote the nonlocal stress tensor and residual surface stress tensor, respectively.

By considering the same material properties for both top and bottom layers, the constitutive stress–strain relations for surface layers will be obtained as:

$$\tau_{xx} = \tau_0 + E^s u_{x,x} , \quad E^s = 2\mu_0 + \lambda_0, \quad \tau_{nx} = \tau_0 u_{n,x} , \quad (5)$$

while σ_{zz} is often neglected in classical beam theories, which is assumed to satisfy the equilibrium equations by its linear relation with the beam thickness:

$$\sigma_{zz} = \frac{2z\nu}{h} (\tau_o \frac{\partial^2 w}{\partial x^2} - \rho_o \frac{\partial^2 w}{\partial t^2})$$
(6)

2.3 Problem formulation

The vibration analysis of piezoelectric nanobeam embedded in elastic medium using the nonlocal and surface effects under the magnet and thermal environment with various elastic boundary conditions will be presented. The piezoelectric nanobeam with length L ($0 \le x \le L$), thickness h ($-h/2 \le z \le h/2$), and width b ($-b'_2 \le y \le b'_2$) subjected to an applied voltage $\phi(x, z)$ and uniform temperature change ΔT is depicted in Fig. 1. The Euler–Bernoulli beam theory is utilized to obtain the motion equations. Following the Euler–Bernoulli beam theory (EBT), the displacement field for nanobeam at any arbitrary point is [48]:

$$u_1 = u(x, t) - z \frac{\partial w(x, t)}{\partial x}, \ u_2 = 0, \ u_3 = w(x, t),$$
 (7)

where u(x, t) and w(x, t) denote the axial and transverse components of displacement, respectively.

The only nonzero strain component which can be defined based on EBT is:

$$\epsilon_{xx} = \frac{\partial u}{\partial x} - z \frac{\partial^2 w}{\partial^2 x} \tag{8}$$

And also, the electric displacement field for piezoelectric nanobeam can be expressed as [14]:

$$E_x = -\frac{\partial \phi}{\partial x}; E_z = -\frac{\partial \phi}{\partial z},$$

$$D_x = \lambda_{11}E_x; D_z = e_{31}\varepsilon_x + \lambda_{33}E_z,$$

$$\frac{\partial D_x}{\partial x} + \frac{\partial D_z}{\partial z} = 0$$
(9)

where λ_{11} and λ_{33} are the dielectric constants, while D_x and D_z express the electric displacements.

For the fact that λ_{11} and λ_{33} are in the same order, $E_x << E_z$ should be considered, D_x in compare with D_z should be ignored. The electrical BCs will be assumed as $\phi(x, -h/2) = 0$, $\phi(x, h/2) = 2V$ combining with Eqs. (8) and (9), the electrical potential can be obtained as:

$$\phi(x, z) = -\frac{e_{31}}{\lambda_{33}} \left(\frac{z^2 - h^2}{2}\right) \frac{\partial^2 w}{\partial x^2} + \left(1 + \frac{z}{h}\right) V \tag{10}$$

Furthermore, the equivalent piezoelectric load can be expressed as follows:

$$P_{\text{electric}}(x,t) = b \int_{-h}^{h} \sigma_{x}^{*} dz = 2 V b e_{31}$$
(11)

Accordingly, using Hamilton's principle, the governing motion equations and relative BCs will be obtained as [48]:

$$\int_{0}^{t} \delta(U - T + W_{\text{ext}}) dt = 0, \qquad (12)$$

where U, T and W_{ext} are the strain energy, kinetic energy and the work done by external forces, respectively. The first variation of strain energy for piezoelectric nanobeams is:

$$\delta T = -\int_{0}^{t} \left(I_1 \left(\frac{\partial^2 w}{\partial t^2} \right) \delta(w) - I_2 \left(\frac{\partial^4 w}{\partial x^2 \partial t^2} \right) \delta(w) + I_1 \left(\frac{\partial^2 u}{\partial t^2} \right) \delta(u) \right) dx$$
(17)

where:

$$I_1 = \int_{-\frac{h}{2}}^{\frac{h}{2}} \rho \, dz, \quad I_2 = \int_{-\frac{h}{2}}^{\frac{h}{2}} \rho \, z^2 \, dz \tag{18}$$

The axial load which is obtained by the elastic medium based on the Winkler–Pasternak foundation is considered to be as:

$$f = -k_{\rm w}w + k_{\rm p}\frac{\partial^2 w}{\partial x^2} \tag{19}$$

where $k_{\rm w}$ and $k_{\rm p}$ are the Winkler and Pasternak elastic medium constants.

The first variation of the work done by external forces will be determined by:

$$\delta W_{\text{ext}} = \int_{0}^{t} (f\delta(u) + q\delta(w))dt , \qquad (20a)$$

$$\delta U = \int_{0}^{L} \int_{-\frac{h}{2}}^{\frac{h}{2}} \begin{pmatrix} \sigma_{xx} \delta \varepsilon_{xx} + \sigma_{xz} \delta \gamma_{xz} - D_x \delta E_x - D_z \delta E_z + K_{\text{TL}} w(0, t) \delta w(0, t) \\ + K_{\text{RL}} \frac{\partial w(0, t)}{\partial x} \delta(\frac{\partial w(0, t)}{\partial x}) + K_{\text{TR}} w(L, t) \delta w(L, t) \\ + K_{\text{RR}} \frac{\partial w(L, t)}{\partial x} \delta(\frac{\partial w(L, t)}{\partial x}) \end{pmatrix} dz dx ,$$
(13)

where K_{RL} , K_{TL} , K_{RR} and K_{TR} express the corresponding rotational and translational spring constants at the left and right ends, respectively. Using Eq. (8) and Eq. (13) gives:

$$\delta U = \int_{0}^{l} \int_{-h/2}^{h/2} \begin{bmatrix} N\delta u - M\delta\left(\frac{\partial^{2}w}{\partial x^{2}}\right) + D_{x}\delta\left(\frac{\partial\phi}{\partial x}\right) + D_{z}\delta\left(\frac{\partial\phi}{\partial z}\right) \\ + K_{\text{TL}}w(0,t)\delta w(0,t) + K_{\text{RL}}\frac{\partial w(0,t)}{\partial x}\delta\left(\frac{\partial w(0,t)}{\partial x}\right) \\ + K_{\text{TR}}w(L,t)\delta w(L,t) + K_{\text{RR}}\frac{\partial w(L,t)}{\partial x}\delta\left(\frac{\partial w(L,t)}{\partial x}\right) \end{bmatrix} dx$$
(14)

Accordingly, the axial force N and bending moment force M are defined as:

$$N = \int \sigma_{xx} dz, \ M = \int \sigma_{xx} z dz \tag{15}$$

After that, the kinetic energy will be determined as:

$$T = \frac{1}{2}\rho \iint (\dot{u}_1^2 + \dot{u}_2^2 + \dot{u}_3^2) dA.dx$$

= $\frac{1}{2}\rho \int \left(I_1 \left(\frac{\partial u}{\partial t}\right)^2 + I_2 \left(\frac{\partial^2 w}{\partial x \partial t}\right)^2 + I_1 \left(\frac{\partial w}{\partial t}\right)^2 \right) dx$ (16)

Thus, the first variation of kinetic energy from Eq. (16) can be written as:

where q is defined as:

$$q = \left(H + N_T + P_{\text{electric}} + K_P + q_z\right) \left(\frac{\partial^2 W}{\partial x^2}\right) - K_w W , \quad (20b)$$

$$N_T = -E\lambda_1 A \,\Delta T \tag{21a}$$

$$f_z = \eta H_x^2 \left(\frac{\partial^2 w}{\partial x^2}\right) \tag{21b}$$

$$q_z = \int_A f_z \, dz = \eta A \, H_x^2 \left(\frac{\partial^2 w}{\partial x^2}\right) \tag{21c}$$

$$H = 2b\tau_0 \tag{21d}$$

Substituting Eqs. (14), (17) and (19) into Hamilton's principle [Eq. (12)], the motion equations are obtained as:

$$\frac{\partial N}{\partial x} + f - I_1 \left(\frac{\partial^2 u}{\partial t^2}\right) = 0$$
(22a)

$$\frac{\partial^2 M}{\partial x^2} + q + I_2 \left(\frac{\partial^4 w}{\partial x^2 \partial t^2}\right) - I_1 \left(\frac{\partial^2 w}{\partial t^2}\right) = 0$$
(22b)

The bending moment and spring constants based on the obtained BCs from Hamilton's principle will be described as:

$$-M - K_{\rm RL}\frac{\partial w}{\partial x} = 0, \quad \frac{\partial M}{\partial x} - K_{\rm TL} w = 0 \text{ at } x = 0$$
 (23a)

$$M - K_{\rm RR} \frac{\partial w}{\partial x} = 0, \quad -\frac{\partial M}{\partial x} - K_{\rm TR} w = 0 \text{ at } x = L$$
 (23b)

The bending moment with considering surface and nonlocal effects for piezoelectric nanobeam will be obtained as:

$$M = \int \sigma_{xx} z dA + \int \tau_{xx} z dA - \int e_{31} \phi_z z dA$$
(24)

$$M = -(EI)^* \frac{\partial^2 w}{\partial x^2} + \frac{2I\nu}{h} \left(\tau_0 \frac{\partial^2 w}{\partial x^2} - \rho_0 \frac{\partial^2 w}{\partial t^2} \right) + \frac{e_{31}^2}{\lambda_{33}} I \frac{\partial^2 w}{\partial x^2} ,$$
(25)

where the effective bending stiffness of nanobeam will be determined as $(EI)^* = E(\frac{bh^3}{12}) + E_s(\frac{h^3}{6} + \frac{bh^2}{2})$. The bending moment using the nonlocal elasticity will be obtained as:

$$M - \mu \frac{\partial^2 M}{\partial x^2} = -(EI)^* \frac{\partial^2 w}{\partial x^2} + \frac{2I\nu}{h} \left(\tau_0 \frac{\partial^2 w}{\partial x^2} - \rho_0 \frac{\partial^2 w}{\partial t^2} \right) + \frac{e_{31}^2}{\lambda_{33}} I \frac{\partial^2 w}{\partial x^2}$$
(26)

$$M = \mu \left(-I_2 \left(\frac{\partial^4 w}{\partial x^2 \partial t^2} \right) + I_1 \left(\frac{\partial^2 w}{\partial t^2} \right) - q \right) - (EI)^* \frac{\partial^2 w}{\partial x^2} + \frac{2I_v}{h} \left(\tau_0 \frac{\partial^2 w}{\partial x^2} - \rho_0 \frac{\partial^2 w}{\partial t^2} \right) + \frac{e_{31}^2}{\lambda_{33}} I \frac{\partial^2 w}{\partial x^2}$$
(27)

Substituting Eqs. (27) into (22), the constitutive motion equation is as:

$$\begin{pmatrix} 1 - \mu \frac{\partial^2}{\partial x^2} \end{pmatrix} \left(-I_2 \left(\frac{\partial^4 w}{\partial x^2 \partial t^2} \right) + I_1 \left(\frac{\partial^2 w}{\partial t^2} \right) - q_w \right) - (EI)^* \frac{\partial^4 w}{\partial x^4}$$
$$+ \frac{2Iv}{h} \left(\tau_0 \frac{\partial^4 w}{\partial x^4} - \rho_0 \frac{\partial^4 w}{\partial x^2 \partial t^2} \right) + \frac{e_{31}^2}{\lambda_{33}} I \frac{\partial^4 w}{\partial x^4} = 0$$
(28)

For the free vibration response of piezoelectric nanobeam, a harmonic motion is assumed with the natural frequency of ω as:

$$w(x, t) = W(x)e^{i\omega t}$$
⁽²⁹⁾

Substituting Eqs. (29) into (28) resulted to:

$$\begin{pmatrix} 1 - \mu \frac{\partial^2}{\partial x^2} \end{pmatrix} \left(\omega^2 I_2 \left(\frac{\partial^2 W}{\partial x^2} \right) - \omega^2 I_1 W(x) - q_w \right) - (EI)^* \frac{\partial^4 W}{\partial x^4} + \frac{2I_V}{h} \left(\tau_0 \frac{\partial^4 W}{\partial x^4} + \rho_0 \omega^2 \frac{\partial^4 W}{\partial x^2} \right) + \frac{e_{31}^2}{\lambda_{33}} I \frac{\partial^4 W}{\partial x^4} = 0$$

$$(30)$$

 Table 1
 Some basic theorems of DTM for equations of motion

Original function	Transformed function
$f(x) = g(x) \pm h(x)$	$F(K) = G(K) \pm H(K)$
$f(x) = \lambda g(x)$	$F(K) = \lambda G(K)$
f(x) = g(x) h(x)	$F(K) = \sum_{l=0}^{K} G(K-l)H(l)$
$f(x) = \frac{d^n g(x)}{dx^n}$	$F(K) = \frac{(k+n)!}{k!}G(K+n)$
$f(x) = x^n$	$F(K) = \delta(K - n) = \begin{cases} 1 & k = n \\ 0 & k \neq n \end{cases}$

2.4 Solution procedure

To derive an analytical solution for Eq. (30) due to the nature homogeneity is relatively difficult. In this condition, the DTM is utilized to translate the governing equations into ordinary equation. The manner of differential transform method is explained briefly in the following. In this method, differential transformation of k^{th} derivative function y(x) and inverse of differential transformation of Y(k) are explained as [49]:

$$Y(k) = \frac{1}{k!} \left[\frac{\mathrm{d}^k}{\mathrm{d}x^k} y(x) \right]_{x=0},$$
(31a)

$$y(x) = \sum_{k=0}^{\infty} x^k Y(k)$$
, (31b)

where y(x) is the original function and Y(k) is the transformed function. Equations (31) can be explored as:

$$y(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} \left[\frac{\mathrm{d}^k}{\mathrm{d}x^k} y(x) \right]_{x=0}$$
(32)

The theory of the differential transformation is derived from Taylor's series expansion that can be deduced from Eq. (31a). The function y(x) in Eq. (31b) can be written in a finite form as:

$$y(x) = \sum_{k=0}^{N} x^{k} Y(k)$$
(33)

From the definitions of DTM in Equations (31), fundamental theorems of differential transforms method can be utilized that are listed in Table 1 and in Table 2 tabulated the differential transformation of boundary conditions. Applying the DTM into the equation of motion resulted as:

 Table 2
 Transformed boundary
 conditions (BC) based on DTM

$\overline{X=0}$		X = L	
Original BC	Transformed BC	Original BC	Transformed BC
f(0) = 0	F[0] = 0	f(L) = 0	$\sum_{k=0}^{\infty} F[k] = 0$
$\frac{\mathrm{d}f(0)}{\mathrm{d}x} = 0$	F[1] = 0	$\frac{\mathrm{d}f(L)}{\mathrm{d}x}=0$	$\sum_{k=0}^{\infty} k F[k] = 0$
$\frac{\mathrm{d}^2 f(0)}{\mathrm{d}x^2} = 0$	F[2] = 0	$\frac{\mathrm{d}^2 f(L)}{\mathrm{d}x^2} = 0$	$\sum_{k=0}^{\infty} k(k-1) F[k] = 0$
$\frac{\mathrm{d}^3 f(0)}{\mathrm{d} x^3} = 0$	F[3] = 0	$\frac{\mathrm{d}^3 f(L)}{\mathrm{d} x^3} = 0$	$\sum_{k=0}^{\infty} k(k-1)(k-2)F[k] = 0$

$$\left((EI)^{*} + \frac{2I_{3}\nu}{h} \tau_{0} - \frac{e_{31}^{2}}{\lambda_{33}} - \mu^{2} \left(N_{T} + P_{\text{electric}} + H + K_{P} + q_{z} \right) \right) \frac{(k+4)!}{k!} W[k+4]$$

$$+ \left(\frac{2I_{3}\nu\rho_{0}\omega^{2}}{h} + \left(N_{T} + P_{\text{electric}} + H + K_{P} + q_{z} \right) + \mu^{2}K_{w} - I_{1}\mu^{2}\omega^{2} \right) \frac{(k+2)!}{k!} W[k+2]$$

$$- \left(K_{w} + I_{1}\omega^{2} \right) W[k] = 0$$

$$(34)$$

By simplifying Eq. (34), the following relation will be obtained:

$$W[k+4] = \frac{-\left(\frac{2I_{3}\nu\rho_{0}\omega^{2}}{h} + \left(N_{T} + P_{\text{electric}} + H + K_{P} + q_{z}\right) + \mu^{2}K_{w} - I_{1}\mu^{2}\omega^{2}\right)\frac{(k+2)!}{k!}W[k+2] + \left(K_{w} + I_{1}\omega^{2}\right)W[k]}{\left((EI)^{*} + \frac{2I_{3}\nu}{h}\tau_{0} - \frac{e_{31}^{2}}{\lambda_{33}} - \mu^{2}\left(N_{T} + P_{\text{electric}} + H + K_{P} + q_{z}\right)\right)\frac{(k+4)!}{k!}}$$
(35)

Besides, applying the Table 2 relations to boundary conditions results:

Clamped–Elastic supported (C–E):

$$W[0] = 0, \quad W[1] = 0, \quad W[2] = C_1, \quad W[3] = C_2$$

$$\sum_{k=0}^{\infty} EI_s k(k-1) \quad W[k] - \sum_{k=0}^{\infty} K_{RR} k \quad W[k] = 0$$

$$\sum_{k=0}^{\infty} EI_s k(k-1)(k-2) \quad W[k] + \sum_{k=0}^{\infty} K_{TR} \quad W[k] = 0$$
(36a)
(36a)

Simply–Elastic supported (S–E):

 $W[0] = 0, W[2] = C_1, W[1] = 0, W[3] = C_2$

$$\sum_{k=0}^{\infty} EI_{s}k(k-1) W[k] - \sum_{k=0}^{\infty} K_{RR}k W[k] = 0$$
(36b)
$$\sum_{k=0}^{\infty} EI_{s}k(k-1)(k-2) W[k] + \sum_{k=0}^{\infty} K_{TR} W[k] = 0$$
Electic Electic supported (E. E):

Elastic–Elastic supported (E–E):

$$W[0] = C_{1}, \quad W[1] = C_{2}, \quad W[2] = -\frac{K_{\text{RL}}C_{2}}{2EI_{s}}, \quad W[3] = \frac{K_{\text{TL}}C_{1}}{6EI_{s}}$$

$$\sum_{k=0}^{\infty} EI_{s}k(k-1) \quad W[k] - \sum_{k=0}^{\infty} K_{\text{RR}}k \quad W[k] = 0$$

$$\sum_{k=0}^{\infty} EI_{s}k(k-1)(k-2) \quad W[k] + \sum_{k=0}^{\infty} K_{\text{TR}} \quad W[k] = 0$$
(36c)

Deringer

It should be noted that the transitional and rotational spring constants at each end of nanobeam will be expressed in the terms of moment of inertia and the Young's modulus as:

$$K_{\rm TL} = \frac{\beta_{\rm TL} E_c I}{L^3}, \ K_{\rm RL} = \frac{\beta_{\rm RL} E_c I}{L}, \ K_{\rm TR} = \frac{\beta_{\rm TR} E_c I}{L^3}, \ K_{\rm RR} = \frac{\beta_{\rm RR} E_c I}{L},$$
(37)

where β denotes the spring constant factor.

3 Numerical results and discussion

This section is dedicated to results obtained for analysis of megneto-thermo-mechanical vibration behavior of piezoelectric nanobeam incorporating nonlocal parameter, surface effect, elastic foundation for various elastic boundary conditions based on the Euler-Bernoulli beam theory. The material properties of nanobeam made of AL are given in Table 3.

It should be noted that in the case in which the spring constants at each end in Elastic-Elastic boundary condition set to be a high value as 10^6 , the resultant natural frequencies correspond to the clamped boundary condition. Moreover, other conventional boundary conditions will be obtained for various values of spring constants,

Table 3	Al	material	properties
---------	----	----------	------------

Properties		Al [52, 53]
Young's modules	E	70 GPa
Poisson's ratio	ν	0.3
Mass density	ρ	2700 Kg/m ³
Residual surface tensions	$ au^0$	0.9108 N m
Elasticity surface modules	E^{s}	5.1882 N m
Density of surface layer	$ ho^{s}$	$5.46 \times 10^{-7} \text{ Kg m}^2$
Thermal coefficient	λ_1	2.56×10^{-6} 1/k
Piezoelectric coefficient	e ₃₁	$-10 \text{ C} \text{ m}^2$
Dielectric constants	λ_{33}	1.0275×10^{-8}

Table 4 Comparison of the non-dimensional fundamental frequency for a nanobeam with various nonlocal parameters for simply-supported boundary condition (L=10 nm, h/b=2)

L/h	μ	Reddy [48]	Present
10	0	9.8696	9.8695
	1	9.4159	9.4158
	2	9.0195	9.0194
	3	8.6693	8.6692
	4	8.3569	8.3568
	5	8.0761	8.0760
20	0	9.8696	9.8695
	1	9.4159	9.4158
	2	9.0195	9.0194
	3	8.6693	8.6692
	4	8.3569	8.3568
	5	8.0761	8.0760
100	0	9.8696	9.8695
	1	9.4159	9.4158
	2	9.0195	9.0194
	3	8.6693	8.6692
	4	8.3569	8.3568
	5	8.0761	8.0760

for instance, in Simply–Elastic (S–E) boundary condition by substituting $\beta_{\rm RR} = 10^{-6}$, $\beta_{\rm TR} = 10^6$ is corresponding to S–S case and $\beta_{\rm RR} = \beta_{\rm TR} = 10^6$ related to S-C case. And also for clamped–elastic (C–E) boundary condition, by substituting $\beta_{\rm RR} = \beta_{\rm TR} = 10^{-6}$ is equivalent to C-F boundary condition and if by assuming $\beta_{RR} = \beta_{TR} = 10^{\circ}$, the obtained boundary condition is C-C. To validate the accuracy of the numerical results, comparison between the present results and available results obtained by Reddy [48] for simply-supported boundary condition and Eltaher [50] for clamped-clamped, simply-clamped and clamped-free boundary condition are tabulated in Tables 4 and 5, respectively. As it is indicated from Tables 4 and 5, an excellent agreement is obtained for all classical boundary conditions. And also, for the fact that the experimental tests do not exist in detail for various conditions, in this study, the first dimensional frequency versus aspect ratio is also compared with the results which are obtained by molecular dynamic simulation respresented in Ansari and Sahmani [51] and showed to be in acceptable agreement which is depicted in Fig. 2.

After that, the convergence study is performed to determine the minimum number of iterations required to obtain stable and accurate results for classical boundary condition as it is mentioned above in Table 6. As it can be observed for C–F boundary condition, the first three natural frequencies converge after 17th, 23rd and 35th iterations with four digit precisions, respectively. And also for S–S case, these natural frequencies converge after 17th, 27th and 35th iterations, while for C-S, they converge after 19th, 29th, and 37th iterations, and at last, for C–C boundary condition, the resultant natural frequencies converge after 23th, 33th, and 41st iterations. Therefore, the number of iterations is selected as k=25 for the results reported here for first natural frequencies.

First, natural frequencies of nanobeam are presented in Table 7 for various elastic boundary condition with different nonlocal parameter and spring constant factors. It can be found from the results that by incorporating the surface effects, the natural frequencies corresponding to all values of nonlocal parameters increase which indicates the fact that by considering the surface effects, the stiffness of nanobeam will be increased. Also, it is observed from Table 7 that for spring constant factor between 10^{-6} and 1, increasing nonlocal parameter causes an increase in natural frequencies for C–E and E–E boundary conditions. Also,

Table 5 Comparison of the non-dimensional fundamental frequency for a nanobeam with various nonlocal parameters for Clamped–Simply, Clamped–Clamped, Clamped–Free boundary condition (L=10 nm, h/b=2)

μ	C–S		C–C		C–F	C–F		
	Present paper	Eltaher [50]	Present paper	Eltaher [50]	Present paper	Eltaher [50]		
0	15.4177	15.4189	22.3724	22.3744	3.5160	3.5161		
1	14.5988	14.9929	21.1083	21.1096	3.5312	3.5314		
2	13.8959	14.5997	20.0323	20.0330	3.5469	3.5470		
3	13.2841	14.2353	19.1025	19.1028	3.5629	3.5630		
4	12.7456	13.8965	18.2891	18.2890	3.5794	3.5795		
5	12.2669	13.5803	17.5699	17.5696	3.5962	3.5963		

Fig. 2 The variation of the first frequency of classical beam versus aspect ratio in compare with the molecular dynamic results represented in Ref [51]

for spring constant factor between 1 and 10^6 , the increase in nonlocal parameter tends to decrease the natural frequency in C–E and E–E boundary conditions and also for all values of spring stiffness in S-E boundary condition.

Table 8 illustrates the effect of the natural frequencies for various elastic boundary conditions with different length and spring constant factors. As shown in Table 8, the surface effect is very sensitive to beam length and thickness. At the nanoscale, the fundamental frequency of the nanobeam by considering surface effect is approximately 3–4 orders higher than that of a classical beam including nonlocal parameters. At the microscale, the surface effect decreases and it is approximately 1.5–2 times greater than the classical. At a macroscale, surface effects are completely ignored and natural frequency of beam is similar to the classical beam.

Table 9 implies the influences of elastic foundation including Winkler and Pasternak foundation on the natural frequencies. It can be readily observed that the value of the natural frequency has a direct relation with the stiffness of the elastic foundation. By increasing the value of Winkler–Pasternak foundation coefficients, the natural frequency increases which indicates the fact that by considering the elastic foundation, the stiffness of nanobeam will be increased, and hence, natural frequency will be grown.

In Table 10, effects of temperature change on the natural frequency of nanobeam are tabulated. With the increase of temperature change, generally, the natural frequencies

Table 6 Convergence study of nanobeam for the first three natural frequencies by considering surface effects $(L/h = 10, L = 20 \text{ nm}, \mu = 2 \text{ nm}^2, h/b = 2)$

k	C–F			S–S	S–S		C–S	C–S			C–C		
	$\overline{\bar{\omega}_1}$	$\bar{\omega}_2$	$\bar{\omega}_3$	$\bar{\omega}_1$	$\bar{\omega}_2$	$\bar{\omega}_3$	$\overline{\bar{\omega}_1}$	$\bar{\omega}_2$	$\bar{\omega}_3$	$\overline{\bar{\omega}_1}$	$\bar{\omega}_2$	$\bar{\omega}_3$	
11	9.8174	_	_	14.7937	_	_	23.1375	_	_	_	_	_	
13	9.8738	27.2969	-	14.7544	-	-	22.6873	-	-	-	-	_	
15	9.8705	28.8027	-	14.7568	35.5376	-	22.7261	-	-	32.2324	63.7672	_	
17	9.8707	28.4702	-	14.7567	38.2431	-	22.7231	-	-	32.8312	45.1801	_	
19	9.8707	28.5145	-	14.7567	37.4262	-	22.7233	45.6402	-	32.7439	75.0133	_	
21	9.8707	28.5099	-	14.7567	37.4976	53.8799	22.7233	46.3445	-	32.7519	52.4444	-	
23	9.8707	28.5102	-	14.7567	37.4906	3755.63	22.7233	46.2342	-	32.7513	56.3325	-	
25	9.8707	28.5102	-	14.7567	37.4912	58.6594	22.7233	46.2452	-	32.7513	54.7216	_	
27	9.8707	28.5102	58.6377	14.7567	37.4911	59.4117	22.7233	46.2442	_	32.7513	54.8436	_	
29	9.8707	28.5102	59.9023	14.7567	37.4911	59.2893	22.7233	46.2443	68.2207	32.7513	54.8293	-	
31	9.8707	28.5102	59.6625	14.7567	37.4911	59.3021	22.7233	46.2443	68.4173	32.7513	54.8307	76.5658	
33	9.8707	28.5102	59.6865	14.7567	37.4911	59.3021	22.7233	46.2443	68.3926	32.7513	54.8306	78.7267	
35	9.8707	28.5102	59.6842	14.7567	37.4911	59.3010	22.7233	46.2443	68.3951	32.7513	54.8306	78.1387	
37	9.8707	28.5102	59.6844	14.7567	37.4911	59.3010	22.7233	46.2443	68.3949	32.7513	54.8306	78.1989	
39	9.8707	28.5102	59.6844	14.7567	37.4911	59.3010	22.7233	46.2443	68.3949	32.7513	54.8306	78.1919	
41	9.8707	28.5102	59.6844	14.7567	37.4911	59.3010	22.7233	46.2443	68.3949	32.7513	54.8306	78.1926	
43	9.8707	28.5102	59.6844	14.7567	37.4911	59.3010	22.7233	46.2443	68.3949	32.7513	54.8306	78.1926	

Table 7 Non-dimensional fundamental frequency corresponding to first mode obtained with various elastic boundary condition (L=20 nm, L/h=10, T=20, V=0.02)

β	$\mu=0$		μ=1		μ=2		μ=3		μ=4		μ=5	
	NSE*	NE*										
C–E												
10^{-6}	9.9778	3.9528	9.9796	3.9463	9.9815	3.9397	9.9835	3.9332	9.9857	3.9267	9.9881	3.9202
10^{-5}	9.9778	3.9529	9.9796	3.9463	9.9815	3.9397	9.9835	3.9332	9.9858	3.9267	9.9881	3.9202
10^{-4}	9.9780	3.9529	9.9798	3.9464	9.9817	3.9398	9.9837	3.9333	9.9859	3.9267	9.9883	3.9202
10^{-3}	9.9798	3.9536	9.9815	3.9471	9.9834	3.9405	9.9854	3.9339	9.9876	3.9274	9.9899	3.9208
10^{-2}	9.9977	3.9608	9.9991	3.9540	10.0006	3.9473	10.0022	3.9405	10.0040	3.9338	10.0059	3.9271
10^{-1}	10.1661	4.0300	10.1639	4.0215	10.1618	4.0129	10.1599	4.0044	10.1581	3.9959	10.1563	3.9874
1	11.2675	4.5629	11.2432	4.5418	11.2189	4.5207	11.1947	4.4996	11.1705	4.4784	11.1463	4.4572
10^{1}	15.6067	6.97205	15.5388	6.9166	15.4713	6.86153	15.4041	6.8066	15.3373	6.7520	15.2708	6.6976
10^{2}	29.4752	14.7494	29.3060	14.6149	29.1381	14.4814	28.9714	14.3487	28.8059	14.2169	28.6416	14.0860
10 ³	32.9045	20.6253	32.6549	20.2668	32.4089	19.9189	32.1665	19.5812	31.9275	19.2531	31.6918	18.9344
10^{4}	33.1037	21.3705	32.8487	20.9584	32.5976	20.5618	32.3502	20.1798	32.1065	19.8113	31.8662	19.4557
10^{5}	33.1225	21.4439	32.8670	21.0262	32.6154	20.6246	32.3676	20.2381	32.1233	19.8655	31.8827	19.5061
10^{6}	33.1243	21.4512	32.8688	21.0330	32.6172	20.6309	32.3693	20.2439	32.1250	19.8709	31.8843	19.5111
S–E												
10^{-6}	0.0051	0.0012	0.0051	0.0016	0.0051	0.0011	0.0051	0.0011	0.0051	0.0011	0.0050	0.0011
10^{-5}	0.0162	0.0037	0.0162	0.0037	0.0161	0.0036	0.0160	0.0035	0.0160	0.0034	0.0160	0.0033
10^{-4}	0.0512	0.0118	0.0511	0.0116	0.0509	0.0113	0.0508	0.0111	0.0506	0.0108	0.0505	0.0106
10^{-3}	0.1619	0.0374	0.1615	0.0366	0.1610	0.0358	0.1605	0.0351	0.1600	0.0343	0.1596	0.0335
10^{-2}	0.5110	0.1184	0.5095	0.1160	0.5080	0.1136	0.5065	0.1111	0.5050	0.1086	0.5035	0.1060
10^{-1}	1.5821	0.3787	1.5773	0.3715	1.5724	0.3642	1.5674	0.3567	1.5625	0.34906	1.5576	0.3412
1	4.3380	1.2819	4.3213	1.26392	4.3047	1.24581	4.28815	1.22752	4.2715	1.20905	4.2549	1.19038
10 ¹	10.3349	4.3342	10.2882	4.29522	10.2417	4.25632	10.1955	4.21753	10.1494	4.17885	10.1036	4.14027
10^{2}	20.6655	10.7741	20.5323	10.6509	20.4004	10.5289	20.2698	10.4082	20.1405	10.2886	20.0125	10.1702
10^{3}	22.7096	13.7547	22.5386	13.5090	22.3701	13.2710	22.2038	13.0404	22.0399	12.8166	21.8783	12.5994
10^{4}	22.8789	14.1004	22.7045	13.8342	22.5327	13.5775	22.3634	13.3297	22.1965	13.0901	22.0319	12.8583
10^{5}	22.8954	14.1350	22.7207	13.8667	22.5486	13.6081	22.3790	13.3584	22.2118	13.1172	22.0469	12.8839
10^{6}	22.8970	14.1384	22.7223	13.8700	22.5502	13.6111	22.3805	13.3613	22.2133	13.1199	22.0484	12.8865
E–E												
10^{-6}	10.3705	4.0853	10.3731	4.0785	10.3759	4.0716	10.3789	4.0649	10.3820	4.0581	10.3854	4.0513
10^{-5}	10.0155	3.9656	10.0173	3.9590	10.0193	3.9524	10.0215	3.9458	10.0238	3.9393	10.0262	3.9328
10^{-4}	9.9817	3.9542	9.9835	3.9476	9.9854	3.9411	9.9875	3.9345	9.9897	3.9280	9.9921	3.9215
10^{-3}	9.9802	3.9538	9.9819	3.9472	9.9838	3.9406	9.9858	3.9340	9.9879	3.9275	9.9903	3.9210
10^{-2}	9.9977	3.9608	9.9991	3.9540	10.0006	3.9473	10.0023	3.9405	10.0040	3.9338	10.0060	3.9271
10^{-1}	10.1661	4.0300	10.1639	4.0215	10.1619	4.0129	10.1599	4.0044	10.1581	3.9959	10.1563	3.9874
1	11.2675	4.5629	11.2432	4.5418	11.2189	4.5207	11.1947	4.4996	11.1705	4.4784	11.1463	4.4572
10^{1}	15.6067	6.9720	15.5388	6.9166	15.4713	6.8615	15.4041	6.8066	15.3373	6.7520	15.2708	6.6976
10^{2}	29.4752	14.7494	29.3060	14.6149	29.1381	14.4814	28.9714	14.3487	28.8059	14.2169	28.6416	14.0860
10^{3}	32.9045	20.6253	32.6549	20.2668	32.4089	19.9189	32.1665	19.5812	31.9275	19.2531	31.6918	18.9344
10^{4}	33.1037	21.3705	32.8487	20.9584	32.5976	20.5618	32.3502	20.1798	32.1065	19.8113	31.8662	19.4557
10^{5}	33.1225	21.4439	32.8670	21.0262	32.6154	20.6246	32.3676	20.2381	32.1233	19.8655	31.8827	19.5061
10^{6}	33.1243	21.4512	32.8688	21.0330	32.6172	20.6309	32.3693	20.2439	32.1250	19.8709	31.8843	19.5111

*NE nonlocal effect, NSE coupling nonlocal and surface effects

Table 8 The natural frequency of nanobeam with various length and spring constant factor by considering surface effect $(L/h = 10, b/h = 2, \Delta T = 20^{\circ}C, V = 0.02, \mu = 2 \text{ nm}^2)$

β											
	10×10^{-9}	20×10^{-9}	50×10^{-9}	100×10^{-9}	10 ⁻⁶	10×10^{-6}	100×10^{-6}	10 ⁻³	10 ⁻²		
C-E											
10^{-6}	13.4097	9.9815	7.5566	6.1365	3.8915	3.5393	3.5015	3.4977	3.4973		
10^{-5}	13.4096	9.9815	7.5566	6.1365	3.8915	3.5393	3.5015	3.4977	3,4974		
10^{-4}	13,4093	9.9817	7.5568	6.1367	3.8917	3,5395	3,5017	3,4979	3.4975		
10^{-3}	13.4056	9.9834	7.5590	6.1388	3.8934	3.5411	3.5034	3.4996	3.4992		
10^{-2}	13,3695	10.0006	7.5805	6.1591	3.9105	3.5578	3.5200	3.5162	3.5158		
10^{-1}	13 0865	10.1618	7 7847	6 3522	4 0723	3 7152	3 6770	3 6732	3 6728		
1	12 4306	11 2189	9 14832	7 6521	5 1416	4 7466	4 7045	4 7002	4 6998		
10 ¹	15 1948	15 4713	13 6616	11 7843	8 2242	7 6398	7 5772	7 5709	7 5702		
10^{2}	26 5341	29 1381	27.0504	23 6660	16 5468	15 3288	15 1975	15 1842	15 1829		
10^{3}	27.8308	32 4089	33 2265	30.8225	23 1742	21 6626	21 4971	21 4804	21 4787		
10^{4}	27.8508	32,5976	33 6978	31 5010	23.1742	22 5080	21.4971	21.4004	21.4707		
10 ⁵	27.9042	32.5570	33 7423	31 5657	24.0240	22.5000	22.5415	22.3240	22.3250		
10 ⁶	27.9112	32.6172	33 7467	31 5722	24.1070	22.5915	22.424)	22.4001	22.4004		
10 S_F	27.9119	52.0172	55.7407	51.5722	24.1157	22.3777	22.7332	22.4104	22.4147		
10 ⁻⁶	0.0055	0.0050	0.0042	0.0036	0.0027	0.0026	0.0026	0.0026	0.0026		
10^{-5}	0.0055	0.0050	0.0042	0.0030	0.0027	0.0020	0.0020	0.0020	0.0020		
10^{-4}	0.0175	0.0101	0.0134	0.0366	0.0007	0.0085	0.0082	0.0062	0.0062		
10^{-3}	0.0555	0.0509	0.0424	0.1157	0.0273	0.0202	0.0201	0.0201	0.0201		
10^{-2}	0.1737	0.1010	0.1341	0.1157	0.0872	0.0631	0.0820	0.0820	0.0820		
10^{-1}	1 6085	1.5724	0.4254	0.3033	0.2755	0.2023	0.2009	0.2006	0.2008		
10	1.0965	1.3724	2 7075	2 2105	0.6570	0.8102	0.0119	0.0115	0.0114		
101	4.4270	4.3047	3.7073	5.2195	2.4038	2.2837	2.2708	2.2095	2.2094		
10 10 ²	10.0144	10.2417	9.0876	1.8838	J.0281	3.2038	5.2249	3.2210	3.2200		
10-	18.2118	20.4004	19.6030	17.4727	12.5415	11.0730	11.5792	11.3097	11.0088		
104	19.2834	22.3701	22.8599	21.2239	16.1294	15.1323	15.0233	15.0123	15.0112		
10 ¹	19.3704	22.5327	23.1578	21.6015	16.5533	15.5510	15.4412	15.4302	15.4290		
105	19.3789	22.5486	23.1870	21.6387	16.5957	15.5929	15.4831	15.4720	15.4709		
10°	19.3797	22.5502	23.1899	21.6424	16.5999	15.5971	15.4873	15.4762	15.4/51		
E-E	12 5000	10.0750	0 0007	7,5700							
10 °	13.7989	10.3759	8.3227	7.5799	-	_	-	-	-		
10 ⁻⁵	13.4472	10.0193	7.6248	6.2480	4.8471	_	-	-	-		
10-4	13.4130	9.9855	7.5636	6.1477	3.9641	_	-	-	-		
10 ⁻³	13.4059	9.9838	7.5597	6.1399	3.9005	3.6076	_	-	-		
10 ⁻²	13.3695	10.0006	7.5807	6.1593	3.9113	3.5644	3.5859	-	-		
10^{-1}	13.0865	10.1619	7.7848	6.3523	4.0724	3.7159	3.6835	3.7395	-		
1	12.4306	11.2189	9.1483	7.6521	5.1416	4.7468	4.7052	4.7073	4.7727		
10 ¹	15.1948	15.4713	13.6616	11.7843	8.2243	7.6399	7.5773	7.5718	7.5790		
10 ²	26.5341	29.1381	27.0504	23.6660	16.5468	15.3288	15.1975	15.1844	15.1845		
103	27.8308	32.4089	33.2265	30.8225	23.1742	21.6626	21.4971	21.4804	21.4791		
10^{4}	27.9042	32.5976	33.6978	31.5010	24.0240	22.5080	22.3415	22.3246	22.3230		
10^{5}	27.9112	32.6154	33.7423	31.5657	24.1076	22.5915	22.4249	22.4081	22.4064		
10^{6}	27.9119	32.6172	33.7467	31.5722	24.1159	22.5999	22.4332	22.4164	22.4147		

Table 9 The natural frequency of nanobeam with various spring constant factor by considering surface effect and nonlocal effect for different values of elastic foundation (L = 20 nm, L/h = 10, b/h = 2, $\Delta T = 20$ °C, V = 0.02, $\mu = 2$ nm²)

β	$K \mathbf{p} = 0$			$K_{\rm p} = 10$			Kp = 100			
	$\overline{Kw} = 0$	Kw = 10	kw = 100	$\overline{Kw} = 0$	Kw = 10	kw = 100	$\overline{Kw} = 0$	Kw = 10	kw = 100	
С–Е										
10^{-6}	9.9815	10.5671	14.9464	9.3370	9.9407	14.3494	6.0093	6.8243	11.8765	
10^{-5}	9.9815	10.5671	14.9464	9.3370	9.9407	14.3494	6.0095	6.8245	11.8766	
10^{-4}	9.9817	10.5672	14.9464	9.3373	9.9410	14.3494	6.0112	6.8260	11.8774	
10^{-3}	9.9834	10.5687	14.9461	9.3405	9.9438	14.3503	6.0289	6.8415	11.8856	
10^{-2}	10.0006	10.5832	14.9436	9.3719	9.9718	14.3590	6.2021	6.9931	11.9663	
10^{-1}	10.1618	10.7200	14.9237	9.6631	10.2319	14.4416	7.6455	8.2893	12.7029	
1	11.2189	11.6451	14.9766	11.3734	11.7884	15.0420	13.5899	13.9213	16.6140	
10^{1}	15.4713	15.7106	17.7202	16.1267	16.3563	18.2940	21.1391	21.3147	22.8342	
10 ²	29.1381	29.2385	30.1202	29.7701	29.8694	30.7425	34.7129	34.8040	35.6097	
10 ³	32.4089	32.4693	33.0072	33.2230	33.2820	33.8080	39.7753	39.8255	40.2739	
10^{4}	32.5976	32.6558	33.1748	33.4222	33.4790	33.9858	40.0767	40.1244	40.5508	
10^{5}	32.6154	32.6734	33.1906	33.4410	33.4976	34.0026	40.1048	40.1523	40.5767	
10^{6}	32.6172	32.6752	33.1922	33.4429	33.4995	34.0043	40.1076	40.1550	40.5793	
S–E										
10^{-6}	0.0050	3.1623	10.0000	0.0065	3.1623	10.0000	0.0132	3.1623	10.0000	
10^{-5}	0.0161	3.1623	10.0000	0.0205	3.1623	10.0000	0.0416	3.1626	10.0001	
10^{-4}	0.0509	3.1627	10.0000	0.0647	3.1629	10.0001	0.1317	3.1650	10.0008	
10^{-3}	0.1610	3.1660	10.0002	0.2045	3.1686	10.0010	0.4163	3.1893	10.0077	
10^{-2}	0.5080	3.1995	10.0019	0.6450	3.2242	10.0102	1.3127	3.4212	10.0766	
10^{-1}	1.5724	3.5031	10.0211	1.9883	3.7091	10.0978	4.0364	5.1105	10.7022	
1	4.3048	5.2255	10.3029	5.2583	6.0368	10.7456	10.2991	10.7212	13.9560	
10^{1}	10.2417	10.5997	13.3917	11.1536	11.4841	14.1100	17.1797	17.3993	19.2617	
10^{2}	20.4004	20.5274	21.6265	21.3239	21.4471	22.5162	27.9311	28.0352	28.9500	
10 ³	22.3701	22.4606	23.2587	23.4159	23.5027	24.2683	31.2475	31.3138	31.9034	
10^{4}	22.5327	22.6206	23.3959	23.5878	23.6718	24.4145	31.5131	31.5765	32.1417	
10^{5}	22.5486	22.6362	23.4093	23.6045	23.6883	24.4288	31.5387	31.6019	32.1648	
10 ⁶	22.5502	22.6378	23.4106	23.6062	23.6900	24.4302	31.5413	31.6044	32.1671	
E–E										
10^{-6}	10.3759	10.9448	15.2464	9.7270	10.3119	14.6374	6.3514	7.1301	12.0698	
10^{-5}	10.0193	10.6032	14.9752	9.3742	9.9761	14.3768	6.0413	6.8528	11.8943	
10^{-4}	9.9855	10.5708	14.9493	9.3410	9.9445	14.3522	6.0144	6.8288	11.8792	
10^{-3}	9.9838	10.5690	14.9464	9.3409	9.9441	14.3506	6.0292	6.8417	11.8858	
10^{-2}	10.0006	10.5832	14.9437	9.3720	9.9718	14.3590	6.2021	6.9932	11.9663	
10^{-1}	10.1619	10.7200	14.9237	9.6631	10.2319	14.4416	7.6455	8.2893	12.7029	
1	11.2189	11.6451	14.9766	11.3734	11.7884	15.0420	13.5899	13.9213	16.6140	
10^{1}	15.4713	15.7106	17.7202	16.1267	16.3563	18.2940	21.1391	21.3147	22.8342	
10 ²	29.1381	29.2385	30.1202	29.7701	29.8694	30.7425	34.7129	34.8040	35.6097	
10 ³	32.4089	32.4693	33.0072	33.2230	33.2820	33.8080	39.7753	39.8255	40.2739	
10^{4}	32.5976	32.6558	33.1748	33.4222	33.4790	33.9858	40.0767	40.1244	40.5508	
10 ⁵	32.6154	32.6734	33.1906	33.4410	33.4976	34.0026	40.1048	40.1523	40.5767	
10^{6}	32.6172	32.6752	33.1922	33.4429	33.4995	34.0043	40.1076	40.1550	40.5793	

Table 10 The natural frequency of nanobeam by considering surface and nonlocal effects for various spring constant factor and temperature change ($L = 20 \text{ nm}, L/h = 10, h/b = 0.2, V = 0.2, \mu = 2 \text{ nm}^2$)

β	ΔT										
	0	10	20	50	100	150	200				
С–Е											
10^{-6}	11.2168	11.2132	11.2096	11.1989	11.1811	11.1634	11.1458				
10^{-5}	11.2168	11.2132	11.2096	11.1989	11.1811	11.1634	11.1458				
10^{-4}	11.2167	11.2132	11.2096	11.1989	11.1811	11.1633	11.1457				
10^{-3}	11.2161	11.2125	11.2089	11.1982	11.1805	11.1628	11.1452				
10^{-2}	11.2097	11.2062	11.2027	11.1922	11.1747	11.1574	11.1401				
10^{-1}	11.1550	11.1521	11.1491	11.1404	11.1259	11.1114	11.0970				
1	11.0787	11.0789	11.0790	11.0795	11.0804	11.0813	11.0822				
10^{1}	14.4191	14.4218	14.4245	14.4326	14.4461	14.4595	14.4730				
10^{2}	28.1328	28.1354	28.1379	28.1456	28.1584	28.1712	28,1839				
10^{3}	31,1273	31,1305	31,1338	31,1435	31,1597	31,1759	31,1921				
10^{4}	31,3003	31,3036	31,3069	31,3167	31,3331	31,3495	31,3658				
10 ⁵	31,3167	31,3199	31.3232	31,3331	31,3495	31,3659	31,3823				
10^{6}	31,3183	31.3216	31.3248	31,3347	31,3511	31,3675	31,3839				
S-E	0110100	0110210	0110210	010017	010011	0110070	0110007				
10 ⁻⁶	0.0008	0.0009	0.0009	0.0010	0.0012	0.0013	0.0014				
10^{-5}	0.0026	0.0027	0.0029	0.0010	0.0012	0.0041	0.0044				
10^{-4}	0.0023	0.0027	0.0022	0.0101	0.0116	0.0129	0.0141				
10^{-3}	0.0264	0.0276	0.0287	0.0319	0.0366	0.0408	0.0445				
10^{-2}	0.0870	0.0276	0.0207	0.1038	0.1182	0.1310	0.0445				
10^{-1}	0.3623	0.3704	0.3784	0.4013	0.4368	0.4696	0.1420				
10	2 0900	2 0984	2 1069	2 1321	2 1734	2 2139	2 2537				
1 10 ¹	8 6518	8 6561	8 6604	8 6734	8 6950	8 7165	8 7380				
10^{2}	18 8807	18 8846	18 8886	18 9004	18 9202	18 9399	18 9596				
10^{3}	20.6738	20.6782	20.6826	20 6957	20 7176	20 7394	20 7612				
10 ⁴	20.0750	20.0782	20.8321	20.8453	20.8673	20.7594	20.7012				
10 ⁵	20.8252	20.8277	20.8321	20.8500	20.8075	20.8895	20.9113				
10 ⁶	20.8373	20.8423	20.8481	20.8533	20.8819	20.9059	20.9239				
F_F	20.0575	20.0457	20.0401	20.0014	20.0034	20.7034	20.7274				
10 ⁻⁶	11 6153	11 6117	11 6081	11 5974	11 5706	11 5618	11 5442				
10^{-5}	11.0155	11.0117	11.2482	11.3974	11.3790	11.3018	11.3442				
10-4	11.2554	11.2518	11.2402	11.2373	11.2197	11.2020	11.1643				
10^{-3}	11.2200	11.2170	11.2134	11.2027	11.1049	11.1072	11.1495				
10^{-2}	11.2103	11.2129	11.2095	11.1980	11.1009	11.1032	11.1430				
10^{-1}	11.2096	11.2002	11.2027	11.1922	11.1740	11.1374	11.1401				
10	11.1330	11.1321	11.1491	11.1404	11.1239	11.1114	11.0970				
1 10l	14.4101	11.0789	11.0790	11.0795	11.0804	11.0015	11.0822				
10 10 ²	14.4191	14.4210	14.4243	14.4320	14.4401	14.4393	14.4/30				
10 10 ³	20.1528	20.1004	20.13/9	20.1430	20.1304	20.1/12	20.1039				
10 10 ⁴	31.1273	21.2026	21.1000	31.1433 21.2167	21 2221	21.1/39	21.1921				
10	21.2100	21.2020	31.3009	21.2221	21.2205	21.2493	21.2028				
10	31.3100	31.3199	31.3232	31.3331	31.3495	31.3039	31.3823				
10.	31.3183	31.3210	51.5248	31.3347	31.3311	31.30/3	51.5839				

Table 11 The natural frequency of nanobeam by considering surface and nonlocal effects for various spring constant factor and voltage external $(L = 20 \text{ nm}, L/h = 10, h/b = 2, \mu = 2 \text{nm}^2, \Delta T = 20^{\circ}\text{C})$

β	V										
	-0.2	-0.15	-0.1	-0.05	0	0.05	0.1	0.15	0.2		
C-E											
10^{-6}	8.8600	9.0887	9.3313	9.5896	9.8656	10.1619	10.4817	10.8291	11.2096		
10^{-5}	8.8601	9.0887	9.3313	9.5896	9.8656	10.1619	10.4817	10.8291	11.2096		
10^{-4}	8.8605	9.0891	9.3316	9.5899	9.8658	10.1621	10.4818	10.8291	11.2096		
10^{-3}	8.8649	9.0929	9.3348	9.5924	9.8678	10.1634	10.4825	10.8292	11.2089		
10^{-2}	8.9084	9.1304	9.3664	9.6180	9.8874	10.1769	10.4897	10.8299	11.2027		
10^{-1}	9.3075	9.4763	9.6588	9.8564	10.0709	10.3044	10.5596	10.8397	11.1491		
1	11.5322	11.4510	11.3750	11.3051	11.2420	11.1868	11.1403	11.1039	11.0790		
10^{1}	16.6647	16.4009	16.1329	15.8605	15.5835	15.3016	15.0147	14.7224	14.4245		
10^{2}	30.2918	30.0357	29.7761	29.5129	29.2460	28.9752	28.7003	28.4213	28.1379		
10 ³	33.8995	33.5668	33.2307	32.8909	32.5474	32.2000	31.8488	31.4934	31.1338		
10^{4}	34.1080	33.7707	33.4300	33.0858	32.7378	32.3861	32.0305	31.6708	31.3069		
10^{5}	34.1276	33.7899	33.4488	33.1041	32.7558	32.4037	32.0476	31.6875	31.3232		
10^{6}	34.1295	33.7918	33.4507	33.1060	32.7576	32.4054	32.0493	31.6892	31.3248		
S–E											
10^{-6}	0.0074	0.0070	0.0065	0.0059	0.0054	0.0047	0.0039	0.0028	0.0009		
10^{-5}	0.0235	0.0220	0.0205	0.0188	0.0169	0.0148	0.0122	0.0089	0.0029		
10^{-4}	0.0742	0.0697	0.0648	0.0595	0.0535	0.0467	0.0387	0.0282	0.0091		
10^{-3}	0.2346	0.2203	0.2049	0.1880	0.1692	0.1478	0.1223	0.0892	0.0287		
10^{-2}	0.7397	0.6947	0.6461	0.5930	0.5338	0.4664	0.3861	0.2821	0.0941		
10^{-1}	2.2774	2.1400	1.9918	1.8301	1.6506	1.4465	1.2050	0.8959	0.3784		
1	5.9427	5.6157	5.2666	4.8905	4.4805	4.0259	3.5093	2.8970	2.1069		
10^{1}	11.8694	11.5217	11.1619	10.7890	10.4013	9.9971	9.5742	9.1298	8.6604		
10^{2}	22.0699	21.7054	21.3325	20.9507	20.5596	20.1585	19.7468	19.3237	18.8886		
10 ³	24.2692	23.8513	23.4257	22.9919	22.5495	22.0980	21.6368	21.1652	20.6826		
10^{4}	24.4492	24.0273	23.5977	23.1600	22.7137	22.2584	21.7935	21.3183	20.8321		
10^{5}	24.4667	24.0444	23.6144	23.1764	22.7298	22.2741	21.8088	21.3332	20.8467		
10^{6}	24.4685	24.0461	23.6161	23.1780	22.7314	22.2757	21.8103	21.3347	20.8481		
E–E											
10^{-6}	9.2458	9.4766	9.7212	9.9815	10.2593	10.5573	10.8785	11.2270	11.6081		
10^{-5}	8.8967	9.1256	9.3685	9.6270	9.9033	10.1999	10.5199	10.8675	11.2482		
10^{-4}	8.8642	9.0928	9.3353	9.5936	9.8696	10.1658	10.4856	10.8330	11.2134		
10^{-3}	8.8653	9.0932	9.3352	9.5928	9.8682	10.1638	10.4829	10.8296	11.2093		
10^{-2}	8.9084	9.1304	9.3664	9.6181	9.8874	10.1769	10.4897	10.8299	11.2027		
10^{-1}	9.3075	9.4763	9.6588	9.8564	10.0709	10.3044	10.5596	10.8397	11.1491		
1	11.5322	11.4510	11.3750	11.3051	11.2420	11.1868	11.1403	11.1039	11.0790		
10^{1}	16.6647	16.4009	16.1329	15.8605	15.5835	15.3016	15.0147	14.7224	14.4245		
10^{2}	30.2918	30.0357	29.7761	29.5129	29.2460	28.9752	28.7003	28.4213	28.1379		
10 ³	33.8995	33.5668	33.2307	32.8909	32.5474	32.2001	31.8488	31.4934	31.1338		
10^{4}	34.1080	33.7707	33.4300	33.0858	32.7378	32.3861	32.0305	31.6708	31.3069		
10 ⁵	34.1276	33.7899	33.4488	33.1041	32.7558	32.4037	32.0476	31.6875	31.3232		
10^{6}	34.1295	33.7918	33.4507	33.1060	32.7576	32.4054	32.0493	31.6892	31.3248		

Table 12 The $(L = 20 \text{ nm}, L)$	natural fi $h = 10, b = 0.5$	requency of $h, \Delta T = 0^{\circ} C,$	nanobeam $\mu = 2 \mathrm{nm}^2$)	by	considering	surface and	l nonlocal	effects	for	various	spring	constant	factor	and	magnetic	field
β	Н															
	1	2	3		4	5	9		7		~		6		10	
C-E																
10^{-6}	9.8692	9.8647	9.857	71	9.8466	9.8331	3.0	8167	6	7973	9.775	51	9.7501		9.7223	
10^{-5}	9.8692	9.8647	9.857	72	9.8466	9.8331	3.6	8167	.6	7974	9.775	52	9.7501		9.7224	
10^{-4}	9.8694	9.8649	9.857	74	9.8468	9.8333	3.9.	8169	.6	7976	9.775	54	9.7504		9.7226	
10^{-3}	9.8714	9.8669	9.855	33	9.8488	9.8354	3.6 1	8190	.6	7997	9.777	15	9.7526		9.7249	
10^{-2}	9.8909	9.8865	9.875	91	9.8688	9.8557	3.6 7	8396	3.6	8207	9.799	11	9.7746		9.7475	
10^{-1}	10.0737	10.0701	10.064	42	10.0560	10.0455	5 10.0	0326	10.(0175	10.000	12	9.9807		9.9592	
1	11.2413	11.2422	11.243	38	11.2460	11.2489) 11.2	2524	11.2	2566	11.261	4	11.2670		11.2733	
10^1	15.5799	15.5844	15.591	17	15.6021	15.6153	3 15.6	6315	15.6	5507	15.672	Li	15.6976		15.7255	
10^{2}	29.2426	29.2468	29.253	39	29.2639	29.2766	5 29.2	2922	29.3	3106	29.331	6	29.3559		29.3827	
10^{3}	32.5430	32.5485	32.557	76	32.5704	32.5868	32.4	6068	32.6	5305	32.657	8	32.6887		32.7232	
10^{4}	32.7334	32.7390	32.748	82	32.7611	32.7778	32.7	7981	32.6	8220	32.849		32.8810		32.9159	
10^{5}	32.7514	32.7569	32.766	52	32.7791	32.7958	32.8	8161	32.8	8401	32.867		32.8991		32.9341	
10^{6}	32.7532	32.7587	32.768	80	32.7809	32.7975	32.8	8179	32.8	8419	32.869	9	32.9009		32.9359	
S-E																
10^{-6}	0.0054	0.0054	0.005	54	0.0054	0.0054	1 0.0	0055	0.(0055	0.005	99	0.0056		0.0057	
10^{-5}	0.0169	0.0170	0.017	70	0.0171	0.0172	0.0	0173	0.(0174	0.017	76	0.0178		0.0179	
10^{-4}	0.0536	0.0537	0.053	38	0.0541	0.0543	3 0.0	0547	0.(0551	0.055	26	0.0562		0.0567	
10^{-3}	0.1693	0.1696	0.170	32	0.1709	0.1718	3 0.ì	1730	0.	1743	0.175	58	0.1775		0.1794	
10^{-2}	0.5342	0.5352	0.536	58	0.5391	0.5421	0.5	5456	0	5498	0.554	16	0.5600		0.5659	
10^{-1}	1.6516	1.6546	1.655	96	1.6666	1.6755	5 1.6	6863	1.6	5991	1.713	36	1.7299		1.7480	
1	4.4827	4.4896	4.500	60	4.5167	4.5369) 4.5	5615	4.	5904	4.623	35	4.6607		4.7019	
10^{1}	10.4034	10.4097	10.420	J1	10.4347	10.4534	10.4	4763	10.5	5032	10.534	12	10.5691		10.6081	
10^{2}	20.5617	20.5680	20.578	84	20.5930	20.6118	3 20.6	6347	20.t	5618	20.692	66	20.7282		20.7675	
10^{3}	22.5519	22.5590	22.570	38	22.5873	22.6085	5 22.6	6344	22.(6649	22.700	11	22.7399		22.7844	
10^{4}	22.7161	22.7233	22.735	52	22.7518	22.7732	22.7	7993	22.8	8301	22.865	20	22.9058		22.9506	
10^{5}	22.7321	22.7393	22.751	12	22.7679	22.7893	3 22.8	8154	22.8	8462	22.881	8	22.9220		22.9668	
10^{6}	22.7337	22.7409	22.752	28	22.7695	22.7905) 22.6	8170	22.8	8478	22.883	54	22.9236		22.9684	
E-E																
10^{-6}	10.2630	10.2584	10.250	38	10.2402	10.2266	5 10.2	2101	10.1	1906	10.168	33	10.1431		10.1151	
10^{-5}	9.9069	9.9024	9.894	48	9.8843	9.8705	3.9.	8543	3.6	8350	9.812	38	9.7877		9.7599	
10^{-4}	9.8732	9.8686	9.861	11	9.8506	9.8371	3.0	8206	3.6	8013	9.779	16	9.7541		9.7263	
10^{-3}	9.8718	9.8672	9.855	76	9.8492	9.8357	3.6 7	8194	3.6	8001	9.777	6/	9.7530		9.7252	
10^{-2}	9.8909	9.8865	9.875	92	9.8689	9.8557	3.6 7	8396	3.6	8208	9.799	16	9.7747		9.7476	
10^{-1}	10.0737	10.0701	10.064	42	10.0560	10.0455	5 10.(0326	10.(0175	10.000	12	9.9808		9.9592	

increase; the reason is that the increase in temperature change brings in more increase in the nanobeam stiffness and finally tends to grow in natural frequency. This behavior is right just for spring constant factor between 1 and 10^6 and for S–E completely. For C–E and E–E boundary condition, the natural frequency decreases in the range of 10^{-6} –1.

Table 11 presents the effect of the external voltage on the first natural frequency of nanobeam for various elastic boundary conditions. As it is observed, the positive voltage decreases the natural frequency and negative voltage increases the natural frequency generally. This is due to the fact that positive voltage weakens the nanobeam stiffness and negative voltage strengthens the nanobeam stiffness. But for C–E and E–E, this is opposite in the range of 10^{-6} –1 that natural frequency increases.

The effects of magnetic field on the natural frequency are examined in Table 12. It is found that natural frequency of nanobeam increases with increasing the value of magnetic potential. Obviously, the effect of external voltage is opposite to the magnetic potential. For this analysis, the behaviors of C–E and E–E boundary conditions are opposite to S–E within 10^{-6} –1 that the natural frequency decreases.

According to Tables 13, 14 and 15, the influences of each rotational and transitional spring constant factor change on the natural frequencies for C–E, S–E, and E–E boundary conditions are listed, respectively. As indicated from numerical results which are presented in detail, for a constant value of transitional spring, as the rotational spring increases, the natural frequencies increase. Moreover, for a constant value of transitional spring, with the increase in the value of rotational spring, the natural frequencies tend to increase.

The effects of external voltage and temperature change on the natural frequencies are investigated in Table 16. It can be seen that by increasing external voltage, for the spring stiffness within 10^{-6} -1 in C–E and E–E, the natural frequencies increase and for S–E, natural frequency declines. Also, in the range of 1–10⁶, by growing external voltage, for all boundary condition, the natural frequency decreases. Also, by rising temperature change for C–E and E–E within 10^{-6} -1, the natural frequency decreases, whereas for S–E, natural frequency rises. Also, in the range of 1–10⁶, growing temperature changes, natural frequency increases.

Depicted in Figs. 3, 4 and 5 are the variation of natural frequency for C–E, S–E, E–E boundary conditions by incorporating coupling of surface effect and nonlocal effect and just by considering nonlocal effect without surface effects, corresponding to various values of nonlocal parameters and spring constant factor. It can be observed that by considering the surface effect and by increasing the value of spring constant factor, natural frequency increases. It

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	~	Н									
1 11.2413 11.2422 11.2460 11.2489 11.2524 11.2670 12.5671 15.6976 15.771 15.6976 15.771 15.6976 29.3559 29.3579 29.3579 29.32.6878 32.6887 32.6887 32.6887 32.6887 32.6887 32.6887 32.6887 32.6887 32.9688 32.6578 32.8497 32.8810 32.9<1	111.241311.242211.243811.246011.248911.252411.256611.261411.267011.2733 10^1 15.579915.584415.591715.602115.615315.631515.650715.697615.725 10^2 29.242629.246829.253929.276629.292229.310629.331929.355929.3827 10^3 32.548532.576632.570432.586832.606832.657832.688732.7332 10^3 32.543032.576632.570432.586832.606832.657832.688732.7332 10^3 32.733432.734632.748232.771832.798132.849732.881032.9159 10^6 32.756932.776132.779132.816132.840132.899132.9316 10^6 32.753232.756932.779132.816132.841932.899132.9341 10^6 32.753232.758932.817932.841932.869632.9391		1	2	3	4	5	6	7	8	6	10
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	11.2413	11.2422	11.2438	11.2460	11.2489	11.2524	11.2566	11.2614	11.2670	11.2733
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10^2 29.2426 29.2468 29.2539 29.2639 29.2639 29.3766 29.3106 29.3319 29.3559 29.3821 10^3 32.5436 32.5764 32.5704 32.5868 32.6668 32.6305 32.6578 32.6887 32.732 10^4 32.7334 32.7330 32.7482 32.7718 32.7981 32.8497 32.8810 32.7152 10^5 32.7754 32.7791 32.7918 32.8401 32.8497 32.8109 32.9341 10^5 32.7569 32.7762 32.7791 32.7918 32.8401 32.8678 32.9341 10^5 32.7532 32.7587 32.7780 32.7916 32.8410 32.8091 32.9341 10^6 32.7532 32.7781 32.7975 32.8179 32.8419 32.8091 32.9341	10^1	15.5799	15.5844	15.5917	15.6021	15.6153	15.6315	15.6507	15.6727	15.6976	15.7255
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10^3 32.5430 32.5435 32.576 32.5704 32.5868 32.6068 32.6305 32.6578 32.6887 32.733 10^4 32.7334 32.7482 32.7482 32.7718 32.7981 32.8497 32.8810 32.9159 10^4 32.7514 32.7769 32.7791 32.7951 32.8401 32.8810 32.9159 10^5 32.7514 32.7769 32.7791 32.7958 32.8401 32.8901 32.9341 10^5 32.7532 32.7680 32.7791 32.7958 32.8419 32.8091 32.9341 10^6 32.7532 32.7680 32.7975 32.8179 32.8419 32.8091 32.9359	10^{2}	29.2426	29.2468	29.2539	29.2639	29.2766	29.2922	29.3106	29.3319	29.3559	29.3827
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10^{3}	32.5430	32.5485	32.5576	32.5704	32.5868	32.6068	32.6305	32.6578	32.6887	32.7232
$10^5 \qquad 32.7514 \qquad 32.7569 \qquad 32.7662 \qquad 32.7791 \qquad 32.7958 \qquad 32.8161 \qquad 32.8401 \qquad 32.8678 \qquad 32.8991 \qquad 32.910^5 \qquad 32.7587 \qquad 32.7680 \qquad 32.7809 \qquad 32.7975 \qquad 32.8179 \qquad 32.8419 \qquad 32.8696 \qquad 32.9009 \qquad 32.9010^5 \qquad 32.9009 \qquad 32.9010^5 \qquad 32.9000 \qquad 32$	10 ⁵ 32.7514 32.7569 32.7662 32.7791 32.7958 32.8401 32.8678 32.8991 32.9341 10 ⁶ 32.7532 32.7680 32.77809 32.7975 32.8179 32.8419 32.8096 32.9359	10^{4}	32.7334	32.7390	32.7482	32.7611	32.7778	32.7981	32.8220	32.8497	32.8810	32.9159
10^6 32.7532 32.7587 32.7680 32.7809 32.7975 32.8179 32.8419 32.8696 32.9009 32.9	10^{6} 32.7532 32.7587 32.7680 32.7809 32.7975 32.8179 32.8419 32.8696 32.9009 32.9359	10^{5}	32.7514	32.7569	32.7662	32.7791	32.7958	32.8161	32.8401	32.8678	32.8991	32.9341
		10^{6}	32.7532	32.7587	32.7680	32.7809	32.7975	32.8179	32.8419	32.8696	32.9009	32.9359

Table 12 (continued)

Springer

β_{TR}	$\beta_{ m RR}$						
	1	10	10 ²	10 ³	10^{4}	10 ⁵	10 ⁶
1	10.6732	10.0973	9.9625	9.9472	9.9456	9.9455	9.9455
10	15.8327	14.6525	14.3156	14.2754	14.2713	14.2709	14.2709
10 ²	22.2031	26.0375	28.4937	28.8950	28.9378	28.9421	28.9425
10 ³	23.1836	28.4689	31.2748	31.6534	31.6924	31.6963	31.6967
10^{4}	23.2793	28.6625	31.4314	31.7980	31.8357	31.8395	31.8398
10 ⁵	23.2888	28.6813	31.4462	31.8116	31.8491	31.8529	31.8533
10^{6}	23.2898	28.6831	31.4477	31.8130	31.8505	31.8542	31.8546

Table 13 The natural frequency of nanobeam for C–E boundary condition (L = 20 nm, L/h = 10, h/b = 2, $\mu = 2 \text{nm}^2$, $\Delta T = 20$)

Table 14 First natural frequency of nanobeam for S-E boundary condition (L = 20 nm, L/h = 10, h/b = 2, $\mu = 2 \text{ nm}^2$, $\Delta T = 20^{\circ}\text{C}$)

β_{TR}	$\beta_{ m RR}$	β _{RR}										
	1	10	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶					
1	4.4805	4.7923	4.8636	4.8716	4.8724	4.8725	4.8725					
10	10.4749	10.4013	10.3787	10.3760	10.3757	10.3756	10.3756					
10^{2}	15.4602	18.8116	20.5596	20.8124	20.8389	20.8415	20.8418					
10^{3}	16.2193	20.3275	22.2874	22.5496	22.5766	22.5793	22.5796					
10^{4}	16.2963	20.4674	22.4274	22.6870	22.7138	22.7164	22.7167					
10^{5}	16.3040	20.4812	22.4411	22.7004	22.7271	22.7298	22.7300					
106	16.3047	20.4826	22.4424	22.7017	22.7284	22.7311	22.7314					

Table 15 First natural frequency of P-FG nanobeam for E-E boundary condition ($L = 20 \text{ nm}, L/h = 10, h/b = 2, \mu = 2 \text{ nm}^2, \Delta T = 20$)

$\beta_{\rm TL} - \beta_{\rm TR}$	$\beta_{\rm RR} - \beta_{\rm RL}$											
	1	10	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶					
1	10.6732	10.0973	9.9625	9.9472	9.9456	9.9455	9.9455					
10	15.8327	14.6525	14.3156	14.2754	14.2713	14.2709	14.2709					
10 ²	22.2031	26.0375	28.4937	28.8950	28.9378	28.9421	28.9425					
10 ³	23.1836	28.4689	31.2748	31.6534	31.6924	31.6963	31.6967					
10 ⁴	23.2793	28.6625	31.4314	31.7980	31.8357	31.8395	31.8398					
10 ⁵	23.2888	28.6813	31.4462	31.8116	31.8491	31.8529	31.8533					
10 ⁶	23.2898	28.6831	31.4477	31.8130	31.8505	31.8542	31.8546					

means that surface energy effects and spring constant factor play more important role than the nonlocal parameter.

And also, the efficiency of piezoelectric material is described as follows:

Efficiency of piezoelectric material

Natural frequency of piezoelectric nanobeam

Natural frequency of nanobeam

The variation of efficiency of piezoelectric material versus voltage is depicted in Fig. 6 for various classical boundary conditions. As it can be observed, the negative voltage tends to increase the natural frequency of nanobeam, while the positive voltage decreases the value of natural frequencies. Also, for the C–F boundary condition, the voltage sign has inverse influence on the natural frequencies in comparison with other boundary conditions.

4 Conclusion

In the present study, the magneto-thermo-mechanical vibration analysis of piezoelectric nanobeam rested in elastic medium is studied by considering surface and nonlocal

Table 16 The natural frequency of nanobeam with various spring constant factor by considering surface effect and nonlocal effect $(L = 20 \text{ nm}, L/h = 10, h/b = 2, \mu = 2 \text{ nm}^2)$

β	V = -0.2			V = 0			V = 0.2		
	$\overline{T=0}$	T=25	T=50	$\overline{T=0}$	T=25	T=50	$\overline{T=0}$	T=25	T=50
C–E									
10^{-6}	8.8640	8.8590	8.8541	9.8707	9.8643	9.8579	11.2168	11.2079	11.1989
10^{-5}	8.8641	8.8591	8.8541	9.8707	9.8643	9.8579	11.2168	11.2079	11.1989
10^{-4}	8.8645	8.8595	8.8546	9.8709	9.8645	9.8581	11.2167	11.2078	11.1989
10^{-3}	8.8689	8.8639	8.8590	9.8729	9.8665	9.8601	11.2161	11.2072	11.1982
10^{-2}	8.9122	8.9074	8.9026	9.8924	9.8861	9.8799	11.2097	11.2009	11.1922
10^{-1}	9.3104	9.3068	9.3031	10.0749	10.0699	10.0649	11.1550	11.1477	11.1404
1	11.5307	11.5326	11.5345	11.2410	11.2423	11.2436	11.0787	11.0791	11.0795
10^{1}	16.6600	16.6659	16.6717	15.5785	15.5847	15.5910	14.4191	14.4259	14.4326
10^{2}	30.2873	30.2930	30.2987	29.2412	29.2472	29.2532	28.1328	28.1392	28.1456
10 ³	33.8936	33.9010	33.9084	32.5412	32.5489	32.5567	31.1273	31.1354	31.1435
10^{4}	34.1019	34.1095	34.1170	32.7316	32.7394	32.7472	31.3003	31.3085	31.3167
10^{5}	34.1215	34.1291	34.1366	32.7495	32.7574	32.7652	31.3166	31.3249	31.3331
10^{6}	34.1235	34.1310	34.1385	32.7513	32.7592	32.7670	31.3183	31.3265	31.3347
S–E									
10^{-6}	0.0074	0.0074	0.0074	0.0053	0.0054	0.0054	0.0008	0.0009	0.0010
10^{-5}	0.0234	0.0235	0.0235	0.0169	0.0169	0.0170	0.0026	0.0029	0.0032
10^{-4}	0.0741	0.0742	0.0743	0.0534	0.0536	0.0537	0.0083	0.0092	0.0101
10^{-3}	0.2343	0.2346	0.2349	0.1689	0.1693	0.1698	0.0264	0.0293	0.0319
10^{-2}	0.7389	0.7399	0.7409	0.5327	0.5341	0.5355	0.0870	0.0958	0.1038
10^{-1}	2.2750	2.2779	2.2809	1.6472	1.6514	1.6557	0.3623	0.3823	0.4013
1	5.9370	5.9441	5.9512	4.4728	4.4824	4.4920	2.0900	2.1111	2.1321
10^{1}	11.8633	11.8710	11.8786	10.3942	10.4031	10.4120	8.6518	8.6626	8.6734
10 ²	22.0634	22.0715	22.0796	20.5525	20.5614	20.5702	18.8807	18.8906	18.9004
10 ³	24.2618	24.2711	24.2804	22.5415	22.5515	22.5615	20.6738	20.6848	20.6957
10^{4}	24.4417	24.4511	24.4604	22.7057	22.7158	22.7259	20.8232	20.8343	20.8453
10^{5}	24.4592	24.4686	24.4780	22.7217	22.7318	22.7419	20.8379	20.8489	20.8599
10^{6}	24.461	24.4703	24.4797	22.7233	22.7334	22.7435	20.8393	20.8503	20.8614
E–E									
10^{-6}	9.2498	9.2448	9.2398	10.2645	10.2580	10.2516	11.6153	11.6063	11.5974
10^{-5}	8.9007	8.8957	8.8908	9.9084	9.9020	9.8956	11.2554	11.2464	11.2375
10^{-4}	8.8682	8.8632	8.8582	9.8747	9.8683	9.8619	11.2206	11.2116	11.2027
10^{-3}	8.8692	8.8643	8.8593	9.8733	9.8669	9.8605	11.2165	11.2075	11.1986
10^{-2}	8.9123	8.9074	8.9026	9.8924	9.8862	9.8799	11.2098	11.2010	11.1922
10^{-1}	9.3104	9.3068	9.3032	10.0749	10.0699	10.0649	11.1550	11.1477	11.1404
1	11.5307	11.5326	11.5345	11.2410	11.2423	11.2436	11.0787	11.0791	11.0795
10^{1}	16.6600	16.6659	16.6717	15.5785	15.5847	15.5910	14.4191	14.4259	14.4326
10 ²	30.2873	30.2930	30.2987	29.2412	29.2472	29.2532	28.1328	28.1392	28.1456
10 ³	33.8936	33.9010	33.9084	32.5412	32.5489	32.5567	31.1273	31.1354	31.1435
10^{4}	34.1019	34.1095	34.1170	32.7316	32.7394	32.7472	31.3003	31.3085	31.3167
10^{5}	34.1215	34.1291	34.1366	32.7495	32.7574	32.7652	31.3166	31.3249	31.3331
10^{6}	34.1235	34.1310	34.1385	32.7513	32.7592	32.7670	31.3183	31.3265	31.3347

Fig. 3 The variation of the first dimensionless frequency of nanobeam with spring constant factor for different nonlocal parameters for C–E boundary condition (L=20 nm, L/h=10, h/b=2)

(b) without considering surface effect

effects for various elastic boundary conditions. To assume the elastic boundary condition, the rotational and transitional springs at each end are located which are used to introduce small deflections and moments. The main goal of the presented study is to investigate the influence of nonlocal parameter, piezoelectric voltage, temperature change, surface effects, elastic medium, magnetic field and length of nanobeam natural frequencies for different values of spring constants in elastic supports. As it is shown, the Hamilton's principle is used to derive the motion equations based on the Euler–Bernoulli beam model. Then, DTM as an efficient and accurate numerical tool was implemented to solve vibration equations of piezoelectric nanobeam with elastic boundary condition. The convergence study and validation were also presented as well as the numerical results which clarified the influence of nonlocal parameter, piezoelectric voltage, temperature change, surface effects, elastic medium, magnetic field, length of nanobeam and spring constants on the first dimensionless natural frequency of piezoelectric nanobeam. Based on the presented numrecal results: **Fig. 4** The variation of the first dimensionless frequency of nanobeam with spring constant factor for different nonlocal parameters with considering surface effect for S–E boundary condition (L=20 nm, L/h=10, h/b=2)

(b) without considering surface effect

- 1. Increasing the spring constants leads to increase in the natural frequencies for all named boundary conditions.
- 2. For the variation of spring constant from 10^{-6} to 1 in C–E and E–E, the obtained result has the manner near the C–F boundary condition which shows different behavior in each case.
- 3. As the temperature change increases, the natural frequencies increase.
- 4. Increasing the voltage parameter from negative to positive amount tends to decrease the fundamental natural frequencies.
- 5. The natural frequencies decrease in the case that the nonlocal parameter increases.

Fig. 5 The variation of the first dimensionless frequency of nanobeam with spring constant factor for different nonlocal parameters with considering surface effect for E–E boundary condition (L=20 nm, L/h=10, h/b=2)

Fig. 6 Variation of efficiency of piezoelectric material versus voltage for various boundary conditions

(b) without considering surface effect

- 6. As the length of nanobeam increases from the nanoscale to macroscale, the natural frequencies decrease and reach the classical value.
- 7. The surface effects tend to increase the natural frequencies which means the stiffness of nanobeam increases.

References

- H.G. Craighead, Nanoelectromechanical systems. Science 290, 1532–1535 (2000)
- S. Hosseini-Hashemi, I. Nahas, M. Fakher, R. Nazemnezhad, Surface effects on free vibration of piezoelectric functionally graded nanobeams using nonlocal elasticity. Acta Mech. 225, 1555–1564 (2014)
- 3. A.C. Eringen, Nonlocal continuum field theories, (Springer Science & Business Media, Berlin, 2002)
- R. Sourki, S. Hoseini, Free vibration analysis of size-dependent cracked microbeam based on the modified couple stress theory. Appl. Phys. A 122, 1–11 (2016)

- E.C. Aifantis, Strain gradient interpretation of size effects. Int. J. Fract. 95, 299–314 (1999)
- M. Gurtin, J. Weissmüller, F. Larche, A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A 78, 1093–1109 (1998)
- 7. A.C. Eringen, Theory of micropolar plates. Z. für Angew. Math. und Phys. ZAMP 18, 12–30 (1967)
- A. Anjomshoa, Application of Ritz functions in buckling analysis of embedded orthotropic circular and elliptical micro/ nano-plates based on nonlocal elasticity theory. Meccanica 48, 1337–1353 (2013)
- F. Bakhtiari-Nejad, M. Nazemizadeh, Size-dependent dynamic modeling and vibration analysis of MEMS/NEMS-based nanomechanical beam based on the nonlocal elasticity theory. Acta Mech. 227, 1363–1379 (2016)
- L.-L. Ke, Y.-S. Wang, Z.-D. Wang, Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory. Compos. Struct. 94, 2038–2047 (2012)
- M.E. Gurtin, A.I. Murdoch, A continuum theory of elastic material surfaces. Arch. Rational Mech. Anal. 57, 291–323 (1975)
- 12. M.E. Gurtin, A.I. Murdoch, Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)
- R. Nazemnezhad, S. Hosseini-Hashemi, Nonlinear free vibration analysis of Timoshenko nanobeams with surface energy. Meccanica 50, 1027–1044 (2015)
- A.T. Samaei, M. Bakhtiari, G.-F. Wang, Timoshenko beam model for buckling of piezoelectric nanowires with surface effects. Nanoscale Res. Lett. 7, 1–6 (2012)
- A. Assadi, B. Farshi, Size-dependent longitudinal and transverse wave propagation in embedded nanotubes with consideration of surface effects. Acta Mech. 222, 27–39 (2011)
- J. He, C.M. Lilley, Surface effect on the elastic behavior of static bending nanowires. Nano Lett. 8, 1798–1802 (2008)
- Y. Feng, Y. Liu, B. Wang, Finite element analysis of resonant properties of silicon nanowires with consideration of surface effects. Acta Mech. 217, 149–155 (2011)
- M. Korayem, A. Korayem, The effect of surfaces type on vibration behavior of piezoelectric micro-cantilever close to sample surface in a humid environment based on MCS theory. Appl. Phys. A 122, 771 (2016)
- M. Ece, M. Aydogdu, Nonlocal elasticity effect on vibration of in-plane loaded double-walled carbon nano-tubes. Acta Mech. 190, 185–195 (2007)
- L.-L. Ke, Y.-S. Wang, Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory. Smart Mater. Struct. 21, 025018 (2012)
- C.W. Lim, R. Xu, Analytical solutions for coupled tensionbending of nanobeam-columns considering nonlocal size effects. Acta Mech. 223, 789–809 (2012)
- M. Aydogdu, A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration, Phys. E Low-Dimens. Syst. Nanostructures 41, 1651–1655 (2009)
- M. Şimşek, H. Yurtcu, Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory. Compos. Struct. 97, 378–386 (2013)
- S. Hosseini, O. Rahmani, Exact solution for axial and transverse dynamic response of functionally graded nanobeam under moving constant load based on nonlocal elasticity theory. Meccanica 52, 1441–1457 (2017)
- A. Ghorbanpour-Arani, A. Rastgoo, M. Sharafi, R. Kolahchi, A.G. Arani, Nonlocal viscoelasticity based vibration of double viscoelastic piezoelectric nanobeam systems. Meccanica 51, 25–40 (2016)

- T. Natsuki, N. Matsuyama, Q.-Q. Ni, Vibration analysis of carbon nanotube-based resonator using nonlocal elasticity theory. Appl. Phys. A **120**, 1309–1313 (2015)
- M. Arda, M. Aydogdu, Torsional wave propagation in multiwalled carbon nanotubes using nonlocal elasticity. Appl. Phys. A **122**, 1–10 (2016)
- X.-W. Lei, T. Natsuki, J.-X. Shi, Q.-Q. Ni, Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model. Compos Part B Eng, 43 (2012) 64–69
- K. Wang, B. Wang, Vibration of nanoscale plates with surface energy via nonlocal elasticity. Phys. E Low-Dimens. Syst. Nanostructures, 44 448–453 (2011)
- F. Ebrahimi, M. Boreiry, Investigating various surface effects on nonlocal vibrational behavior of nanobeams. Appl. Phys. A 121, 1305–1316 (2015)
- M. Eltaher, F. Mahmoud, A. Assie, E. Meletis, Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams. Appl. Math. Comput. 224, 760–774 (2013)
- F. Mahmoud, M. Eltaher, A. Alshorbagy, E. Meletis, Static analysis of nanobeams including surface effects by nonlocal finite element. J. Mech. Sci. Technol. 26, 3555–3563 (2012)
- P. Malekzadeh, M. Shojaee, Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams. Compos Part B Eng 52, 84–92 (2013)
- F. Ebrahimi, G.R. Shaghaghi, M. Boreiry, A semi-analytical evaluation of surface and nonlocal effects on buckling and vibrational characteristics of nanotubes with various boundary conditions. Int. J. Struct. Stab. Dyn. 16, 155002 (2015)
- M. Ghadiri, N. Shafiei, A. Akbarshahi, Influence of thermal and surface effects on vibration behavior of nonlocal rotating Timoshenko nanobeam. Appl. Phys. A **122**, 1–19 (2016)
- M. Ghadiri, M. Soltanpour, A. Yazdi, M. Safi, Studying the influence of surface effects on vibration behavior of size-dependent cracked FG Timoshenko nanobeam considering nonlocal elasticity and elastic foundation. Appl. Phys. A 122, 1–21 (2016)
- F. Ebrahimi, M.R. Barati, Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment. J. Vib. Control 1077546316646239 (2016)
- L. Ke, Y. Wang, J. Yang, S. Kitipornchai, Thermo-electricmechanical vibration of nonlocal piezoelectric nanobeams, in: 4th International Conference on Dynamics, Vibration and Control (ICDVC2014), 2014
- M. Mohammadimehr, S.A.M. Managheb, S. Alimirzaei, Nonlocal buckling and vibration analysis of triple-walled zno piezoelectric timoshenko nano-beam subjected to magneto-electrothermo-mechanical loadings. Mech. Adv. Compos. Struct. 2 113–126 (2015)
- J. Marzbanrad, M. Boreiry, G.R. Shaghaghi, Thermo-electromechanical vibration analysis of size-dependent nanobeam resting on elastic medium under axial preload in presence of surface effect. Appl. Phys. A 122, 1–14 (2016)
- R. Ansari, T. Pourashraf, R. Gholami, S. Sahmani, Postbuckling behavior of functionally graded nanobeams subjected to thermal loading based on the surface elasticity theory. Meccanica 52, 283–297 (2016)
- M. Pakdemirli, H. Boyacı, Vibrations of a stretched beam with non-ideal boundary conditions. Math. Comput. Appl. 6 217–220 (2001)
- M. Pakdemirli, H. Boyaci, Effect of non-ideal boundary conditions on the vibrations of continuous systems. J. Sound Vib. 249, 815–823 (2002)
- N. Wattanasakulpong, A. Chaikittiratana, On the linear and nonlinear vibration responses of elastically end restrained beams using DTM. Mech Based Des. Struct. Mach. 42 135–150 (2014)

- 45. M. Zarepour, S.A. Hosseini, A semi analytical method for electro-thermo-mechanical nonlinear vibration analysis of nanobeam resting on the winkler-pasternak foundations with general elastic boundary conditions. Smart. Mater. Struct. **25**, 085005 (2016)
- 46. T. Murmu, S. Pradhan, Thermo-mechanical vibration of a singlewalled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory. Comput. Mater. Sci. 46, 854–859 (2009)
- K. Wang, B. Wang, The electromechanical coupling behavior of piezoelectric nanowires: surface and small-scale effects. EPL (Europhysics Letters) 97, 66005 (2012)
- J. Reddy, Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288–307 (2007)
- I.A.-H. Hassan, Application to differential transformation method for solving systems of differential equations. Appl. Math. Modell. 32, 2552–2559 (2008)

- M. Eltaher, A.E. Alshorbagy, F. Mahmoud, Vibration analysis of Euler–Bernoulli nanobeams by using finite element method. Appl. Math. Modell. 37, 4787–4797 (2013)
- R. Ansari, S. Sahmani, Small scale effect on vibrational response of single-walled carbon nanotubes with different boundary conditions based on nonlocal beam models. Commun. Nonlinear Sci. Numer. Simul. 17, 1965–1979 (2012)
- S. Hosseini–Hashemi, M. Fakher, R. Nazemnezhad, Surface effects on free vibration analysis of nanobeams using nonlocal elasticity: a comparison between Euler-Bernoulli and Timoshenko. Journal of Solid Mechanics 5, 290–304 (2013)
- M. Komijani, Y. Kiani, S. Esfahani, M. Eslami, Vibration of thermo-electrically post-buckled rectangular functionally graded piezoelectric beams. Compos. Struct. 98, 143–152 (2013)