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Abstract In the present study, a generalized nonlocal
beam theory is utilized to study the magneto—thermo—
mechanical vibration characteristic of piezoelectric nano-
beam by considering surface effects rested in elastic
medium for various elastic boundary conditions. The non-
local elasticity of Eringen as well as surface effects, includ-
ing surface elasticity, surface stress and surface density are
implemented to inject size-dependent effects into equa-
tions. Using the Hamilton’s principle and Euler-Bernoulli
beam theory, the governing differential equations and asso-
ciated boundary conditions will be obtained. The differ-
ential transformation method (DTM) is used to discretize
resultant motion equations and related boundary conditions
accordingly. The natural frequencies are obtained for the
various elastic boundary conditions in detail to show the
significance of nonlocal parameter, external voltage, tem-
perature change, surface effects, elastic medium, magnetic
field and length of nanobeam. Moreover, it should be noted
that by changing the spring stiffness at each end, the con-
ventional boundary conditions will be obtained which are
validated by well-known literature.
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1 Introduction

In recent years, the tendency in studying the mechanical
behavior of nanostructures has been grown. Among all
nanostructures, the piezoelectric, for their unique mechani-
cal properties, proved to be capable of designing the nano-
electro-mechanical systems (NEMSs). It is apparent that
these nanomaterials can be applicable for building blocks
for nanodevices integrating mechanical and electrical func-
tionality at nanoscale size [1]. So, according to their wide
range of application such as nano-sensors, actuators, gen-
erators, transistors, and diodes, investigating the vibrational
behavior of piezoelectric nanomaterials is significant [2].

It is known that the classical continuum mechanics can-
not predict the size effects. Therefore, to inject the size-
dependent response of nanostructures, several non-classical
higher-order continuum theories have been employed, such
as nonlocal elasticity theory [3], stress theory [4], strain
gradient theory [5], surface elasticity [6], and micropolar
theory [7]. Among all these theories, the nonlocal elastic-
ity theory of Eringen [3] can be employed in a wide range
of applications in the analysis of nanostructures. Due to
simplicity and high computational efficiency of nonlocal
elasticity theory, rapid extensions of this theory in vari-
ous mechanical analysis for different nanostructures can be
observed as [8-10].

One of the main size-dependent factors of nanostruc-
tures is surface effects, which are happening for increas-
ing the surface-to-volume ratio in nanoscale. Due to high
surface-to-volume ratio, the surface effects as well as the
small scale effect become substantial, which leads to excep-
tional mechanical characteristics at the nanoscale. There-
fore, as the surface layers energy is negligible compared
with the bulk energy of material at the macroscale, the
classical continuum mechanics is not applicable to predict
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the surface energy effect. Gurtin and Murdoch [11, 12],
based on the continuum mechanics, developed a theoretical
framework to take the surface energy effects into account.
According to this theory, the surface layer is considered as
an elastic two-dimensional membrane with zero thickness
adhered to the underlying bulk material without slipping. It
is also considered that the surface layers have distinct prop-
erties than the bulk of material which is characterized using
the Lame constants of surface followed by surface residual
stress. Many efforts have been done to investigate the sur-
face effects [13—18] and nonlocal effects [19-27] on the
mechanical properties of nanobeam separately, and simul-
taneously [2, 28-36].

Also, remarkable attention has been paid to investigate
the mechanical characteristic of piezoelectric nanostruc-
tures in high-temperature conditions. So, the influence of
temperature changing in the mechanical analysis is studied
extensively. As for instance, Ebrahimi et al. [37] investi-
gated the vibration characteristic of smart piezoelectrically
actuated nanobeams in the magneto-electrical field and
thermal environment. Further, Ke et al. [38] implemented
the nonlocal elasticity theory into the thermo-electric-
mechanical vibration analysis of piezoelectric nanobeam.
Furthermore, Mohammadimehr et al. [39] studied the
vibration and buckling analysis of triple-walled ZnO piezo-
electric nanobeam based on the Timoshenko beam theory
resting on Pasternak foundation under magneto-electro-
thermo-mechanical loadings. In the work done by Marz-
banrad et al. [40], the vibration behavior of size-depend-
ent piezoelectric nanobeam resting on elastic under axial
preload was studied by considering surface and thermal
effects. Moreover, Ansari et al. [41] implemented the ana-
lytical solution to predict the postbuckling characteristics
of FGM nanobeams subjected to thermal environment and
surface stress effect.

It should be noted that all the mentioned works pre-
sented the numerical results for various mechanical proper-
ties of nanostructures for conventional boundary conditions
(BCs) including Simply—Simply (S-S), Clamped—Clamped
(C-C), Clamped—Simply (C-S) and Clamped-Free (C-F).
In continuous systems, the type of BCs from their direct
effect on vibration response of structures is so important.
Mostly, in real systems, one of the mentioned BCs which
has the nearest manner are chosen and assumed to sat-
isfy the conditions exactly [42, 43]. Moreover, the rota-
tional and transitional springs will substitute at the ends
to introduce small deflections and moments. Further, Wat-
tanasakulpong et al. [44] studied the linear and nonlinear
vibration behavior of nanobeams which are elastically
end-restrained. The numerical results are presented for
Elastic—Elastic (E-E) and Simply-Elastic (S-E) bound-
ary conditions. Besides, Zarepour et al. [45] investigated
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the electro-thermo-mechanical nonlinear characteristic of
nanobeams resting on Winkler—Pasternak elastic medium
for E-E and S-S BCs.

The present paper makes the first attempt to investigate
the magneto-thermo-electric-mechanical vibration of pie-
zoelectric nanobeam with elastic boundary condition by
considering surface and nonlocal elasticity effects. Based
on the Eringen’s nonlocal constitutive relations and using
Gurtin—Murdoch theory to incorporate the surface effects,
equilibrium equations of piezoelectric nanobeam subjected
in magnet and thermal field is achieved. The differential
transformation method (DTM) with an iterative algorithm
on the basis of Taylor series expansion is utilized to solve
resultant motion equations for various BCs. The natural
frequencies for various elastic boundary conditions are
obtained, while, by choosing right values for spring stiff-
ness at each end of nanobeam, the corresponding natural
frequencies for classical BCs will be achieved. To validate
the accuracy of motion equations and numerical results,
the resultant natural frequencies are compared with well-
known literature which are in excellent agreement. The
results are obtained for various spring stiffness constants,
voltage values of piezoelectric field, temperature chang-
ing, magnetic field effect, nonlocal parameter, elastic foun-
dation including Pasternak and Winkler foundations and
nanobeam length for various elastic boundary conditions.
It is shown that making changes to spring stiffness value
and surface effect of piezoelectric nanobeam are two main
approaches to achieve desired natural frequencies.

2 Formulation and theories
2.1 Eringen’s nonlocal elasticity theory

Among various types of nonlocal elasticity theory, Erin-
gen’s theory proved to be capable and easy to use. The
essence of nonlocal elasticity is that the stress field at a ref-
erence point x in an elastic medium does not only depend
on the strain at that point, but also on the strains at all other
points in the bulk of material [3].

This theory is based on the atomic theory of lattice
dynamics and also the experimental observations of atomic
and molecular scales which come from the observations
on phonon dispersion. In this theory, the internal size as a
material parameter is used to incorporate the scale effects
into the equations [46]. The most general form of nonlocal
elasticity relations will be indicated as an integral over the
whole body of material, but by neglecting the body forces,
the basic equations for stress tensor and electric displace-
ment will be obtained as [47]:
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D; — u>V?D; = ey ey + €4 B + p,AT 2)

where V2 is the Laplace operator, s D, denote the com-
ponent of the stress, electric field; g, Cijkl, € /lij are the
strain, elastic constant, piezoelectric constants and thermal
module. AT and p; are the temperature changes and piezo-
electric constants; and also, y = (eoa)2 represent the nonlo-
cal parameter; moreover, eya denotes the scale length coef-
ficient revealing the size effect in obtaining the response of

nanostructures.
2.2 Surface effects

For the fact that the inter-atomic distance plays an impor-
tant role in elastic constant of crystals, the bound con-
traction in the surface layers has a dominant influence
than that in the bulk. To increase the surface-to-bulk ratio
in nanoscale, the surface effects will become more sig-
nificant and cannot be neglected. As this ratio increases,
the surface effects role in response of nanobeam become
more dominant. Accordingly, the energy which is pro-
duced by the atoms located in surface layers affects the
mechanical properties of nanostructures which have been
studied extensively by researchers. Gurtin et al. [11]
proposed a continuum model which considered the sur-
face layers as a zero-thickness film which subjected on
the material body. In other words, the body and surface
layers in the nanobeam are assumed such as a composite
beam which is composed of a solid core with the bulk
modulus and the surface shell with surface modulus as
depicted in Fig. 1. The surface layer is assumed to be a
two-dimensional thin film which attached perfectly to
the bulk. Besides, the surface layers and the bulk mate-
rial considered to be bonded, accordingly, the displace-
ment field is continuous for both parts across the inter-
face. It should be noted that this assumption is only for
the modeling purpose which means that these layers do
not actually exist; for this reason, the type of surface is
not defined. For isotropic surfaces, the local stresses and
electric displacement will be defined for piezoelectric
nanobeam based on Gurtin model as [29]:

surface layer
KTL KTR

KRL KRR

Fig. 1 Schematic of the nanobeam with elastic boundary conditions
with length L, width b and height /
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D} =D; + e, + KE; 4

A
where Ca sy €

face strains, surface piezoelectric and surface dielectric
constants, respectively. r;lﬂ, rgﬂ denote the nonlocal stress
tensor and residual surface stress tensor, respectively.

By considering the same material properties for both top
and bottom layers, the constitutive stress—strain relations

for surface layers will be obtained as:

yé,e‘; s and kfj express the surface elastic, sur-

=1+ E’u E =2uy+ Ay, 7

nx = Tolny > (5)
while o, is often neglected in classical beam theories,
which is assumed to satisfy the equilibrium equations by its

linear relation with the beam thickness:

Txx xX,X

272v,  0*w 0%w
- p,— 6
oo ) (6)

O = h T axz

2.3 Problem formulation

The vibration analysis of piezoelectric nanobeam embed-
ded in elastic medium using the nonlocal and surface
effects under the magnet and thermal environment with
various elastic boundary conditions will be presented. The
piezoelectric nanobeam with length L (0 < x < L), thick-
ness h (—h/2 < z < h/2), and width b (=24 <y <%5) sub-
jected to an applied voltage ¢(x, z) and uniform tempera-
ture change AT is depicted in Fig. 1. The Euler—Bernoulli
beam theory is utilized to obtain the motion equations.
Following the Euler—Bernoulli beam theory (EBT), the dis-
placement field for nanobeam at any arbitrary point is [48]:

ow(x, 1)
ox
where u(x, ) and w(x, ) denote the axial and transverse
components of displacement, respectively.
The only nonzero strain component which can be
defined based on EBT is:

U = u(x, t) —Z U, = 09 Uz = W(x’ t) s (7)

ou 0*w
& _ 77 8
K ox Z(ﬁx ®)

And also, the electric displacement field for piezoelec-
tric nanobeam can be expressed as [14]:

Ex = —% EZ = —%,

ox’ 0z
Dx = ’11]Ex; Dz = €31&, + )’33Ez’ (9)
oD oD,
ox 0z

where A, and A3, are the dielectric constants, while D,and
D .express the electric displacements.
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For the fact that A;,and A;; are in the same order,
E, << E, should be considered, D, in compare with D,
should be ignored. The electrical BCs will be assumed
as ¢, —h/2)=0, ¢(x, h/2) =2Vcombining with
Egs. (8) and (9), the electrical potential can be obtained as:

22— K2 w z
P(x, 2) = /133< 5 >ax2 +<1+E)V (10

Furthermore, the equivalent piezoelectric load can be
expressed as follows:

h

P ecric, 1) = h/ o, dz=2Vbey 11
Zh

Accordingly, using Hamilton’s principle, the governing

motion equations and relative BCs will be obtained as [48]:

o*w 0%u
)6(w)—1 (6 262>6( )+Il<ﬁ>5(u)>dx

a7

1
0w
oT=— | (1, &L
/<(M
0

where:

h

h h
2 2

I, =/hpdz, 12=/hpz2dz (18)
2 2

The axial load which is obtained by the elastic medium
based on the Winkler-Pasternak foundation is considered to
be as:

1w

f=—k w+kp 5 (19)

where k,, and k, are the Winkler and Pasternak elastic
medium constants.
The first variation of the work done by external forces will

t
/ S(U-T+W,)di=0, (12)  bedetermined by:
0 !
where U, T and W, are the strain energy, kinetic energy
and the work done by external forces, respectively. The first Wew = [ (00) +gs(whdt , (202)
variation of strain energy for piezoelectric nanobeams is: 0
W 068, + 0.6y, —DSE, —D.SE, + Ky w(0,1)6w(0, 1)
aw(o 1) o ow(0,0)
5U = // + Ky 2200 5200 4 g (L, (L, 1) dzdsx 3)
h
3 Y aw(i 0 5(aw(’i 0y
where Ky;, Ky,Kzrand Kpp express the corresponding  where g is defined as:
rotational and translational spring constants at the left and 2w
right ends, respectively. Using Eq. (8) and Eq. (13) gives: q= (H + Ny + Pyecric + Kp + qz) <ﬁ> - K, W, (20b)
o o
v ( )+D5( >+D5<a Ny = —EA, AAT (21a)
/ / +K7 w(0, )EW(0, 1) + Ky @W;O £ 5(200) - fdx
+Kygw(L, )8W(L, 1) + Ky = 0.5(2220) f= i 0w o1b
) (21b)
(14)
Accordingly, the axial force N and bending moment e
force M are defined as: q, = /fZ dz=nAH: <a_v2v> (21c)
A X
N = /O-xxdz’ M =/ 0 2d2 (15)  H=2br, (21d)

After that, the kinetic energy will be determined as:

T=%p//(u§+u§+u§)dA.dx
16)
1 ou\? Pw\’ ow (
—51’/<’1<a) “2(@) +1(57) )dx

Thus, the first variation of kinetic energy from Eq. (16)
can be written as:
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ON 0%u
—+f-L(=)=0
ox T/ ‘<ar2>

PM (2 Zp (22 =0
oz TR\ e ) T 9

Substituting Egs. (14), (17) and (19) into Hamilton’s prin-
ciple [Eq. (12)], the motion equations are obtained as:

(22a)

(22b)
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The bending moment and spring constants based on the
obtained BCs from Hamilton’s principle will be described as:

ow oM
_M_KRLE=0’ E—KTLW=OatX=O (233)

ow oM
M—KRRE=O, _E_KTRWZOatx:L (23b)

The bending moment with considering surface and nonlo-
cal effects for piezoelectric nanobeam will be obtained as:

M= / 0, ZdA + / 7, 2dA — / e3¢ zdA (24)

L0%w 21
M=-ENLE =Y
D ox2  h <

Pw  dPw\ G dtw
O P02 >+/1_331§’
(25)
where the effective bending stiffness of nanobeam will be
determined as (EI)* = E(", ) + E, ("4 + "4 ). The bend-
ing moment using the nonlocal elasticity will be obtained

as:

M Pw 2 Pw  Pw\ G o%w
M-yl = (e Y RE) Yl
Hox (ED X2 h < 09 TP ) Ayy 0x2
(26)

o*w 0*w L 02w
M=”<_’2<W> +’1<¥> “1) ~E5e
2Iv( 0w 0w 3 Pw
+ =X + 2L
I ( a2 " P > Ay OX2

Substituting Egs. (27) into (22), the constitutive motion
equation is as:

2 ()4 , aZ 04
(112 ) (1) +1(5) ) -z
2

O T AT
5 <TO ox* p06x20t2>+13316x4 =0 (28)

@7)

For the free vibration response of piezoelectric nanobeam,
a harmonic motion is assumed with the natural frequency of
 as:

wix, 1) = W(x)e'™ (29)
Substituting Egs. (29) into (28) resulted to:

(1= (2 -

20y W2 W e o'W
o 06x4 t po@ oﬁ) 33]3)(4 =0

@’ W(x) —

e
4. ) - (ED* 2

(30)

Table 1 Some basic theorems of DTM for equations of motion

Original function Transformed function

J(x) = g(x) + h(x) F(K) = G(K) + H(K)
f&) = Ag() F(K) = AG(K)
= K
Jx) = g(x) h(x) FK) = 3 GK — DH()
1=0
fla) = =9 F(K) = “22G(K +n)
f) = lk=n

F(K):&(K—n):{o k%n

2.4 Solution procedure

To derive an analytical solution for Eq. (30) due to the nature
homogeneity is relatively difficult. In this condition, the DTM
is utilized to translate the governing equations into ordinary
equation. The manner of differential transform method is
explained briefly in the following. In this method, differential
transformation of k™ derivative function y(x) and inverse of
differential transformation of Y(k) are explained as [49]:

1
Y(k) = [ y(x)] , 31
dxk 40 ( a)

NOEDIS (P

k=0

(31b)

where y(x) is the original function and Y(k) is the trans-
formed function. Equations (31) can be explored as:

< 1 [ df
Y= [@y(x)] . 32)

k=0
The theory of the differential transformation is derived
from Taylor’s series expansion that can be deduced from
Eq. (31a). The function y(x) in Eq. (31b) can be written in a
finite form as:

N
NOEIESC() (33)
k=0

From the definitions of DTM in Equations (31), funda-
mental theorems of differential transforms method can be
utilized that are listed in Table 1 and in Table 2 tabulated the
differential transformation of boundary conditions. Applying
the DTM into the equation of motion resulted as:
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Table 2 Transformed boundary

L X=0 X=L
conditions (BC) based on DTM
Original BC Transformed BC Original BC Transformed BC
F(0)=0 F[0] =0 =0 E’: Flk] = 0
k=0
aro) _ = afin) _ had
" =0 Fi=0 =0 Y kFlkI =0
=0
YO =0 Fl21=0 el 2 k= 1) Flk = 0
3 _ 37 ©
SP=0 FBRI=0 He=0 k= (k= 2Pk =0
2
((EI)* + 2t - % — W2 (Np + Poeeyic + H + Kp + qz))(k;‘”’ Wk + 4]
, 33
+<2"”% + (Np + Peeyic + H+ Kp + q.) + 12K, — I, y2w2>—(k:!2)! Wk + 2] (34)

—(K,, +1,0*)W[k] =0

By simplifying Eq. (34), the following relation will be

obtained:
_<2I3v:0w2 + (NT +Pelecmc +H+KP +qz) +M2Kw _IIMZG)Z)%WUC-F 2]+ (Kw +I]a)2)W[k]
S ’ 2 . (35)
- ) - k4!
<(EI) + ; T()_%3]3_ﬂz(NT+Pelectric+H+KP+qZ)>(-lt!)

Besides, applying the Table 2 relations to boundary condi-
tions results:
Clamped-Elastic supported (C-E):

W[0]=0, W[1]=0, W[2]=C,, W[3]=C,

Y ELk(k—1) Wikl = ) Kpgk WKl =0

k°=00 k=0 . (3621)
Y ELk(k—1)(k—2) WIK] + ) Kgg WIk] =0
k=0 k=0

Simply-Elastic supported (S-E):
W[0] =0, W[2]=C,, W[1]=0, W[3]=C,
Y ELk(k—1) Wikl = ) Kegk Wikl =0
k=0 k=0 (36b)
Y ElLk(k—1)(k=2) Wkl + ) Kz Wikl =0
k=0 k=0

Elastic—FElastic supported (E-E):
W[0] =C,, W[l]=C,, W[2]= —%fz W3] = %[Cl
2 ELk(k—1) Wkl = ¥ Kpgk W[k] =0
ko:OO k=0 -
Y ELk(k—1)(k—2) Wkl + Y Kz Wkl =0
k= =

0 k=0 (360)
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It should be noted that the transitional and rotational
spring constants at each end of nanobeam will be expressed
in the terms of moment of inertia and the Young’s modulus
as:

- ﬂTLEc] - ﬁRLEc] - ﬁTR Ecl K. - ﬂRR ECI
TL L3 ’ RL L > TR L3 > RR L ’
(37

where f denotes the spring constant factor.

3 Numerical results and discussion

This section is dedicated to results obtained for analysis of
megneto-thermo-mechanical vibration behavior of piezo-
electric nanobeam incorporating nonlocal parameter, sur-
face effect, elastic foundation for various elastic boundary
conditions based on the Euler—Bernoulli beam theory. The
material properties of nanobeam made of AL are given in
Table 3.

It should be noted that in the case in which the spring
constants at each end in FElastic—Elastic boundary con-
dition set to be a high value as 106, the resultant natural
frequencies correspond to the clamped boundary condi-
tion. Moreover, other conventional boundary conditions
will be obtained for various values of spring constants,
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Table 3 Al material properties

Properties Al [52, 53]

Young’s modules E 70 GPa

Poisson’s ratio v 0.3

Mass density 2700 Kg/m®

Residual surface tensions 70 0.9108 N m

Elasticity surface modules E* 5.1882 N m

Density of surface layer P 5.46x 1077 Kg m?

Thermal coefficient A 2.56x107° 1/k

Piezoelectric coefficient s -10Cm?

Dielectric constants Az 1.0275x1078

Table.4 Cqmparison of the L/h u Reddy[48] Present

non-dimensional  fundamental

frequency for a nanobeam with 10 0 98696 9.8695

i local

o poloal pammes 4 oy oy

condition (L =10 nm, h/b=2) 2 9019 9.0194
3 8.6693 8.6692
4 8.3569 8.3568
5 8.0761 8.0760

20 0 9.8696 9.8695
1 9.4159 9.4158
2 9.0195 9.0194
3 8.6693 8.6692
4 8.3569 8.3568
5 8.0761 8.0760
100 0 9.8696 9.8695

1 94159 9.4158
2 9.0195 9.0194
3 8.6693 8.6692
4 8.3569 8.3568
5 8.0761 8.0760

for instance, in Simply—FElastic (S-E) boundary condi-
tion by substituting fizg = 107, f = 10° is correspond-
ing to S-S case and fgg = frg = 10° related to S-C case.
And also for clamped—elastic (C-E) boundary condition,
by substituting frg = frg = 107® is equivalent to C-F

boundary condition and if by assuming fpg = fg = 10°,
the obtained boundary condition is C—C. To validate the
accuracy of the numerical results, comparison between the
present results and available results obtained by Reddy [48]
for simply-supported boundary condition and Eltaher [50]
for clamped—clamped, simply—clamped and clamped—free
boundary condition are tabulated in Tables 4 and 5, respec-
tively. As it is indicated from Tables 4 and 5, an excellent
agreement is obtained for all classical boundary conditions.
And also, for the fact that the experimental tests do not
exist in detail for various conditions, in this study, the first
dimensional frequency versus aspect ratio is also compared
with the results which are obtained by molecular dynamic
simulation respresented in Ansari and Sahmani [51] and
showed to be in acceptable agreement which is depicted in
Fig. 2.

After that, the convergence study is performed to deter-
mine the minimum number of iterations required to obtain
stable and accurate results for classical boundary condition
as it is mentioned above in Table 6. As it can be observed
for C-F boundary condition, the first three natural frequen-
cies converge after 17th, 23rd and 35th iterations with four
digit precisions, respectively. And also for S-S case, these
natural frequencies converge after 17th, 27th’ and 35th iter-
ations, while for C-S, they converge after 19th, 29th, and
37th iterations, and at last, for C—C boundary condition,
the resultant natural frequencies converge after 23th, 33th,
and 41st iterations. Therefore, the number of iterations is
selected as k=25 for the results reported here for first natu-
ral frequencies.

First, natural frequencies of nanobeam are presented in
Table 7 for various elastic boundary condition with differ-
ent nonlocal parameter and spring constant factors. It can
be found from the results that by incorporating the surface
effects, the natural frequencies corresponding to all val-
ues of nonlocal parameters increase which indicates the
fact that by considering the surface effects, the stiffness
of nanobeam will be increased. Also, it is observed from
Table 7 that for spring constant factor between 107 and 1,
increasing nonlocal parameter causes an increase in natural
frequencies for C-E and E-E boundary conditions. Also,

Table 5 Comparison of the

R . u C-S
non-dimensional fundamental

c-C C-F

frequency for a nanobeam with Present paper

Eltaher [50]

Present paper Eltaher [50] Present paper Eltaher [50]

various nonlocal parameters for

Clamped-Simply, Clamped— 0 154177 15.4189
Clamped, Clamped—Free 1 14.5988 14.9929
boundary condition (L=10 nm, 2 13.8959 14.5997
hib=2) ‘ '
3 13.2841 14.2353
4 12.7456 13.8965
5 12.2669 13.5803

22.3724 22.3744 3.5160 3.5161
21.1083 21.1096 3.5312 3.5314
20.0323 20.0330 3.5469 3.5470
19.1025 19.1028 3.5629 3.5630
18.2891 18.2890 3.579%4 3.5795
17.5699 17.5696 3.5962 3.5963
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[ — Classical beam
0.5- — MD

0.4-
0.3-
0.2

0.1

Fundamental frequency (THz)

0.0-

10 15 20 25 30 35
aspect ratio (L/D)

Fig. 2 The variation of the first frequency of classical beam versus
aspect ratio in compare with the molecular dynamic results repre-
sented in Ref [51]

for spring constant factor between 1 and 10, the increase in
nonlocal parameter tends to decrease the natural frequency
in C-E and E-E boundary conditions and also for all values
of spring stiffness in S-E boundary condition.

Table 8 illustrates the effect of the natural frequen-
cies for various elastic boundary conditions with different
length and spring constant factors. As shown in Table 8, the
surface effect is very sensitive to beam length and thick-
ness. At the nanoscale, the fundamental frequency of the
nanobeam by considering surface effect is approximately
3—4 orders higher than that of a classical beam including
nonlocal parameters. At the microscale, the surface effect
decreases and it is approximately 1.5-2 times greater than
the classical. At a macroscale, surface effects are com-
pletely ignored and natural frequency of beam is similar to
the classical beam.

Table 9 implies the influences of elastic foundation
including Winkler and Pasternak foundation on the natu-
ral frequencies. It can be readily observed that the value
of the natural frequency has a direct relation with the stiff-
ness of the elastic foundation. By increasing the value of
Winkler—Pasternak foundation coefficients, the natural fre-
quency increases which indicates the fact that by consider-
ing the elastic foundation, the stiffness of nanobeam will be
increased, and hence, natural frequency will be grown.

In Table 10, effects of temperature change on the natu-
ral frequency of nanobeam are tabulated. With the increase
of temperature change, generally, the natural frequencies

Table 6 Convergence study of nanobeam for the first three natural frequencies by considering surface effects
(L/h=10, L=20nm, u=2nm? h/b=2)
k C-F S-S C-S c-C

@, @, @, @, @, @, @, @, @, @, @, @,
11 98174 - - 147937 - - 23.1375 - - - - -
13 9.8738 27.2969 - 14.7544 - - 22.6873 - - - - -
15 9.8705 28.8027 - 147568  35.5376 - 22.7261 - - 32.2324  63.7672 -
17 9.8707 284702 - 147567  38.2431 - 227231 - - 32.8312 45.1801 -
19 9.8707 285145 - 14.7567 374262 - 227233 45.6402 - 327439  75.0133 -
21  9.8707 285099 - 14.7567 374976  53.8799  22.7233  46.3445 - 327519 524444 -
23 9.8707 285102 - 14.7567 37.4906  3755.63  22.7233 462342 - 327513  56.3325 -
25 9.8707 285102 - 14.7567 374912  58.6594  22.7233  46.2452 - 327513  54.7216 -
27 9.8707 285102 58.6377 147567 37.4911 594117 22.7233  46.2442 - 327513 54.8436 -
29 9.8707 285102 59.9023 14.7567 37.4911 59.2893  22.7233  46.2443  68.2207 32.7513  54.8293 -
31  9.8707 285102 59.6625 147567 37.4911 593021 22.7233  46.2443  68.4173 327513 54.8307 76.5658
33 9.8707 285102 59.6865 14.7567 37.4911 593021 22.7233  46.2443  68.3926  32.7513 54.8306  78.7267
35  9.8707 285102 59.6842 147567 37.4911 593010 22.7233  46.2443  68.3951  32.7513 54.8306  78.1387
37 9.8707 285102 59.6844 147567 37.4911 593010 22.7233  46.2443  68.3949 327513 54.8306  78.1989
39  9.8707 285102 59.6844 147567 37.4911 593010 22.7233  46.2443  68.3949 327513 54.8306 78.1919
41 9.8707 28.5102 59.6844  14.7567 37.4911 59.3010 22.7233 46.2443  68.3949 327513  54.8306  78.1926
43 9.8707 28.5102 59.6844  14.7567 37.4911 59.3010 22.7233 46.2443  68.3949 327513 54.8306  78.1926
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Table 7 Non-dimensional fundamental frequency corresponding to first mode obtained with various elastic boundary condition (L=20 nm,
L/h=10, T=20, V=0.02)

B u=0 u=1 u=2 u=3 u=4 u=5
NSE* NE* NSE* NE* NSE* NE* NSE* NE* NSE* NE* NSE* NE*

C-E

107 99778 39528  9.9796  3.9463  9.9815 39397 99835 39332 99857 39267 99881  3.9202
1075 99778 39529  9.9796  3.9463  9.9815 39397 99835 39332 99858 39267 99881  3.9202
107 99780  3.9529  9.9798 39464 99817 39398 99837 39333 99859 39267 99883  3.9202
1073 99798 39536  9.9815  3.9471  9.9834  3.9405  9.9854  3.9339 99876  3.9274  9.9899  3.9208
1072 9.9977  3.9608  9.9991  3.9540 10.0006  3.9473 10.0022  3.9405 10.0040  3.9338 10.0059  3.9271
107" 10.1661  4.0300 10.1639  4.0215 10.1618  4.0129 10.1599  4.0044 10.1581  3.9959 10.1563  3.9874
1 112675  4.5629 11.2432  4.5418 11.2189  4.5207 11.1947  4.4996 11.1705  4.4784 11.1463  4.4572
100 15.6067  6.97205 15.5388 69166 154713  6.86153 154041  6.8066 153373  6.7520 152708  6.6976
102 29.4752 147494 293060 14.6149 29.1381 14.4814 289714 143487 28.8059 142169 28.6416 14.0860
10> 329045 20.6253 32.6549 202668 324089 199189 32.1665 19.5812 319275 19.2531 31.6918 18.9344
10+ 33.1037 21.3705 32.8487 20.9584 32.5976 20.5618 32.3502 20.1798 32.1065 19.8113 31.8662 19.4557
10°  33.1225 214439 32.8670 21.0262 32.6154 20.6246 323676 20.2381 32.1233 19.8655 31.8827 19.5061
106 33.1243 214512 32.8688 21.0330 32.6172 20.6309 323693 202439 32.1250 19.8709 31.8843 19.5111
S-E

107 0.0051 0.0012 00051 00016 00051 00011 00051 00011 00051 0.0011 0.0050 0.0011
107°  0.0162  0.0037 00162 0.0037 00161 00036 00160 00035 00160 00034 00160  0.0033
107 00512 00118 00511 00116 00509 00113 00508 00111 00506 0.0108 0.0505  0.0106
1073 0.1619  0.0374  0.1615  0.0366  0.1610  0.0358  0.1605  0.0351  0.1600  0.0343  0.1596  0.0335
1072 05110 0.1184 05095  0.1160  0.5080  0.1136  0.5065  0.1111  0.5050  0.1086  0.5035  0.1060
107! 15821 03787 15773 03715 15724 03642 15674 03567 15625 034906 1.5576  0.3412
1 43380 12819 43213 126392 43047  1.24581 428815 122752 42715 120905 4.2549  1.19038
10" 103349 43342 102882  4.29522 102417 425632 10.1955  4.21753 10.1494  4.17885 10.1036  4.14027
102 20.6655 10.7741 20.5323 10.6509 20.4004 10.5289 20.2698 10.4082 20.1405 10.2886 20.0125 10.1702
10> 227096 137547 22.5386 13.5090 22.3701 132710 222038 13.0404 22.0399 12.8166 21.8783  12.5994
104 228780 14.1004 22.7045 13.8342 22.5327 13.5775 223634 133297 221965 13.0901 22.0319 12.8583
105 22.8954 141350 22.7207 13.8667 22.5486 13.6081 22.3790 133584 222118 13.1172 22.0469 12.8839
105 22.8970 14.1384 22.7223 13.8700 22.5502 13.6111 223805 133613 222133 13.1199 22.0484 12.8865
E-E

107 103705  4.0853 103731  4.0785 10.3759  4.0716 10.3789  4.0649 103820  4.0581 10.3854  4.0513
1075 10.0155  3.9656 10.0173  3.9590 10.0193  3.9524 10.0215  3.9458 10.0238  3.9393 10.0262  3.9328
1074 99817 39542 99835 39476 99854 39411 99875 39345 99897  3.9280  9.9921  3.9215
1073 99802 39538 99819  3.9472 99838  3.9406  9.9858 39340 99879  3.9275  9.9903  3.9210
1072 99977 39608  9.9991  3.9540 10.0006  3.9473 10.0023  3.9405 10.0040  3.9338 10.0060  3.9271
107" 10.1661  4.0300 10.1639  4.0215 10.1619  4.0129 10.1599  4.0044 10.1581  3.9959 10.1563  3.9874
1 112675 45629 11.2432  4.5418 11.2189  4.5207 11.1947 44996 11.1705  4.4784 11.1463  4.4572
100 15.6067 69720 155388 69166 154713  6.8615 154041  6.8066 153373  6.7520 152708  6.6976
102 294752 147494 293060 14.6149 29.1381 14.4814 289714 143487 28.8059 142169 28.6416 14.0860
10> 329045 20.6253 32.6549 202668 324089 19.9189 32.1665 19.5812 319275 19.2531 31.6918 18.9344
104 33.1037 213705 32.8487 20.9584 325976 20.5618 323502 20.1798 32.1065 19.8113 31.8662 19.4557
10°  33.1225 214439 328670 21.0262 326154 20.6246 323676 20.2381 32.1233 19.8655 31.8827 19.5061
105 33.1243 214512 32.8688 21.0330 32.6172 20.6309 323693 202439 32.1250 19.8709 31.8843 19.5111

*NE nonlocal effect, NSE coupling nonlocal and surface effects
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Table 8 The natural frequency of nanobeam with various length and spring constant factor by considering surface effect
(L/h =10, b/h =2, AT =20°C, V =0.02, p=2nm?

B L
10x107° 20x107° 50x107° 100x107° 107° 10x 107 100x107° 1073 1072
C-E
107° 13.4097 9.9815 7.5566 6.1365 3.8915 3.5393 3.5015 3.4977 3.4973
107 13.4096 9.9815 7.5566 6.1365 3.8915 3.5393 3.5015 3.4977 3.4974
10~ 13.4093 9.9817 7.5568 6.1367 3.8917 3.5395 3.5017 3.4979 3.4975
1073 13.4056 9.9834 7.5590 6.1388 3.8934 3.5411 3.5034 3.4996 3.4992
1072 13.3695 10.0006 7.5805 6.1591 3.9105 3.5578 3.5200 3.5162 3.5158
107! 13.0865 10.1618 7.7847 6.3522 4.0723 3.7152 3.6770 3.6732 3.6728
1 12.4306 11.2189 9.14832 7.6521 5.1416 4.7466 4.7045 47002 4.6998
10! 15.1948 15.4713 13.6616 11.7843 8.2242 7.6398 7.5772 7.5709 7.5702
107 26.5341 29.1381 27.0504 23.6660 16.5468 15.3288 15.1975 15.1842 15.1829
103 27.8308 32.4089 33.2265 30.8225 23.1742 21.6626 21.4971 21.4804 21.4787
10* 27.9042 32.5976 33.6978 31.5010 24.0240 22.5080 22.3415 22.3246 22.3230
10° 279112 32.6154 33.7423 31.5657 24.1076 22.5915 22.4249 22.4081 22.4064
100 27.9119 32.6172 33.7467 31.5722 24.1159 22.5999 22.4332 22.4164 22.4147
S-E
107° 0.0055 0.0050 0.0042 0.0036 0.0027 0.0026 0.0026 0.0026 0.0026
107 0.0175 0.0161 0.0134 0.0115 0.0087 0.0083 0.0082 0.0082 0.0082
1074 0.0555 0.0509 0.0424 0.0366 0.0275 0.0262 0.0261 0.0261 0.0261
1073 0.1757 0.1610 0.1341 0.1157 0.0872 0.0831 0.0826 0.0826 0.0826
1072 0.5539 0.5080 0.4234 0.3653 0.2753 0.2623 0.2609 0.2608 0.2608
107! 1.6985 1.5724 1.3171 1.1377 0.8570 0.8162 0.8119 0.8115 0.8114
1 44276 4.3047 3.7075 3.2195 2.4058 2.2837 2.2708 2.2695 2.2694
10! 10.0144 10.2417 9.0876 7.8838 5.6281 5.2638 5.2249 5.2210 5.2206
10? 18.2118 20.4004 19.6030 17.4727 12.5413 11.6730 11.5792 11.5697 11.5688
10° 19.2834 22.3701 22.8599 21.2239 16.1294 15.1323 15.0233 15.0123 15.0112
10* 19.3704 22.5327 23.1578 21.6015 16.5533 15.5510 15.4412 15.4302 15.4290
10° 19.3789 22.5486 23.1870 21.6387 16.5957 15.5929 15.4831 15.4720 15.4709
10° 19.3797 22.5502 23.1899 21.6424 16.5999 15.5971 15.4873 15.4762 15.4751
E-E
1076 13.7989 10.3759 8.3227 7.5799 - - - - -
1073 13.4472 10.0193 7.6248 6.2480 4.8471 - - - -
1074 13.4130 9.9855 7.5636 6.1477 3.9641 - - - -
1073 13.4059 9.9838 7.5597 6.1399 3.9005 3.6076 - - -
1072 13.3695 10.0006 7.5807 6.1593 3.9113 3.5644 3.5859 - -
107! 13.0865 10.1619 7.7848 6.3523 4.0724 3.7159 3.6835 3.7395 -
1 12.4306 11.2189 9.1483 7.6521 5.1416 4.7468 47052 47073 47727
10! 15.1948 15.4713 13.6616 11.7843 8.2243 7.6399 7.5773 7.5718 7.5790
10? 26.5341 29.1381 27.0504 23.6660 16.5468 15.3288 15.1975 15.1844 15.1845
10° 27.8308 32.4089 33.2265 30.8225 23.1742 21.6626 21.4971 21.4804 21.4791
10* 27.9042 32.5976 33.6978 31.5010 24.0240 22.5080 22.3415 22.3246 22.3230
10° 279112 32.6154 33.7423 31.5657 24.1076 22.5915 22.4249 22.4081 22.4064
10° 279119 32.6172 33.7467 31.5722 24.1159 22.5999 22.4332 22.4164 22.4147
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Table 9 The natural frequency of nanobeam with various spring constant factor by considering surface effect and nonlocal effect for differenr

values of elastic foundation (L =20 nm, L/h =10, b/h =2, AT =20°C, V=0.02, u =2 nm?)

p Kp=0 Kp=10 Kp=100
Kw=0 Kw=10 kew =100 Kw=0 Kw=10 kw=100 Kw=0 Kw=10 kew =100
C-E
107 9.9815 10.5671 14.9464 9.3370 9.9407 14.3494 6.0093 6.8243 11.8765
107 9.9815 10.5671 14.9464 9.3370 9.9407 14.3494 6.0095 6.8245 11.8766
107 9.9817 10.5672 14.9464 9.3373 9.9410 14.3494 6.0112 6.8260 11.8774
107 9.9834 10.5687 14.9461 9.3405 9.9438 14.3503 6.0289 6.8415 11.8856
1072 10.0006 10.5832 14.9436 9.3719 9.9718 14.3590 6.2021 6.9931 11.9663
107! 10.1618 10.7200 14.9237 9.6631 10.2319 14.4416 7.6455 8.2893 12.7029
1 11.2189 11.6451 14.9766 11.3734 11.7884 15.0420 13.5899 13.9213 16.6140
10! 15.4713 15.7106 17.7202 16.1267 16.3563 18.2940 21.1391 21.3147 22.8342
102 29.1381 29.2385 30.1202 29.7701 29.8694 30.7425 347129 34.8040 35.6097
10° 32.4089 32.4693 33.0072 33.2230 33.2820 33.8080 39.7753 39.8255 40.2739
10* 32.5976 32.6558 33.1748 33.4222 33.4790 33.9858 40.0767 40.1244 40.5508
10° 32.6154 32.6734 33.1906 33.4410 33.4976 34.0026 40.1048 40.1523 40.5767
10 32.6172 32.6752 33.1922 33.4429 33.4995 34.0043 40.1076 40.1550 40.5793
S-E
107 0.0050 3.1623 10.0000 0.0065 3.1623 10.0000 0.0132 3.1623 10.0000
107 0.0161 3.1623 10.0000 0.0205 3.1623 10.0000 0.0416 3.1626 10.0001
107 0.0509 3.1627 10.0000 0.0647 3.1629 10.0001 0.1317 3.1650 10.0008
107 0.1610 3.1660 10.0002 0.2045 3.1686 10.0010 0.4163 3.1893 10.0077
1072 0.5080 3.1995 10.0019 0.6450 3.2242 10.0102 1.3127 3.4212 10.0766
107! 1.5724 3.5031 10.0211 1.9883 3.7091 10.0978 4.0364 5.1105 10.7022
1 43048 5.2255 10.3029 5.2583 6.0368 10.7456 10.2991 10.7212 13.9560
10! 10.2417 10.5997 13.3917 11.1536 11.4841 14.1100 17.1797 17.3993 19.2617
102 20.4004 20.5274 21.6265 21.3239 21.4471 22.5162 27.9311 28.0352 28.9500
103 22.3701 22.4606 23.2587 23.4159 23.5027 24.2683 31.2475 31.3138 31.9034
10* 22.5327 22.6206 23.3959 23.5878 23.6718 24.4145 31.5131 31.5765 32.1417
10° 22.5486 22.6362 23.4093 23.6045 23.6883 24.4288 31.5387 31.6019 32.1648
10 22.5502 22.6378 23.4106 23.6062 23.6900 24.4302 31.5413 31.6044 32.1671
E-E
107 10.3759 10.9448 15.2464 9.7270 10.3119 14.6374 6.3514 7.1301 12.0698
10°° 10.0193 10.6032 14.9752 9.3742 9.9761 14.3768 6.0413 6.8528 11.8943
1074 9.9855 10.5708 14.9493 9.3410 9.9445 14.3522 6.0144 6.8288 11.8792
107 9.9838 10.5690 14.9464 9.3409 9.9441 14.3506 6.0292 6.8417 11.8858
1072 10.0006 10.5832 14.9437 9.3720 9.9718 14.3590 6.2021 6.9932 11.9663
107! 10.1619 10.7200 14.9237 9.6631 10.2319 14.4416 7.6455 8.2893 12.7029
1 11.2189 11.6451 14.9766 11.3734 11.7884 15.0420 13.5899 13.9213 16.6140
10 15.4713 15.7106 17.7202 16.1267 16.3563 18.2940 21.1391 21.3147 22.8342
10 29.1381 29.2385 30.1202 29.7701 29.8694 30.7425 34.7129 34.8040 35.6097
103 32.4089 32.4693 33.0072 33.2230 33.2820 33.8080 39.7753 39.8255 40.2739
10* 32.5976 32.6558 33.1748 33.4222 33.4790 33.9858 40.0767 40.1244 40.5508
103 32.6154 32.6734 33.1906 33.4410 33.4976 34.0026 40.1048 40.1523 40.5767
10 32.6172 32.6752 33.1922 33.4429 33.4995 34.0043 40.1076 40.1550 40.5793
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Table 10 The natural frequency of nanobeam by considering surface and nonlocal effects for various spring constant factor and temperature
change (L =20 nm, L/h =10, h/b=0.2, V=02, u =2nm?)

i AT
0 10 20 50 100 150 200
C-E
1076 11.2168 11.2132 11.2096 11.1989 11.1811 11.1634 11.1458
1075 11.2168 11.2132 11.2096 11.1989 11.1811 11.1634 11.1458
10~ 11.2167 11.2132 11.2096 11.1989 11.1811 11.1633 11.1457
1073 11.2161 11.2125 11.2089 11.1982 11.1805 11.1628 11.1452
102 11.2097 11.2062 11.2027 11.1922 11.1747 11.1574 11.1401
107! 11.1550 11.1521 11.1491 11.1404 11.1259 11.1114 11.0970
1 11.0787 11.0789 11.0790 11.0795 11.0804 11.0813 11.0822
10! 14.4191 14.4218 14.4245 14.4326 14.4461 14.4595 14.4730
102 28.1328 28.1354 28.1379 28.1456 28.1584 28.1712 28.1839
103 31.1273 31.1305 31.1338 31.1435 31.1597 31.1759 31.1921
10* 31.3003 31.3036 31.3069 31.3167 31.3331 31.3495 31.3658
10° 31.3167 31.3199 31.3232 31.3331 31.3495 31.3659 31.3823
10° 31.3183 31.3216 31.3248 31.3347 31.3511 31.3675 31.3839
S-E
107 0.0008 0.0009 0.0009 0.0010 0.0012 0.0013 0.0014
1075 0.0026 0.0027 0.0029 0.0032 0.0037 0.0041 0.0044
107 0.0083 0.0087 0.0091 0.0101 0.0116 0.0129 0.0141
1073 0.0264 0.0276 0.0287 0.0319 0.0366 0.0408 0.0445
1072 0.0870 0.0906 0.0941 0.1038 0.1182 0.1310 0.1426
107! 0.3623 0.3704 0.3784 0.4013 0.4368 0.4696 0.5003
1 2.0900 2.0984 2.1069 2.1321 2.1734 2.2139 2.2537
10! 8.6518 8.6561 8.6604 8.6734 8.6950 8.7165 8.7380
10 18.8807 18.8846 18.8886 18.9004 18.9202 18.9399 18.9596
103 20.6738 20.6782 20.6826 20.6957 20.7176 20.7394 20.7612
10 20.8232 20.8277 20.8321 20.8453 20.8673 20.8893 20.9113
10° 20.8379 20.8423 20.8467 20.8599 20.8819 20.9039 20.9259
106 20.8393 20.8437 20.8481 20.8614 20.8834 20.9054 20.9274
E-E
1076 11.6153 11.6117 11.6081 11.5974 11.5796 11.5618 11.5442
1075 11.2554 11.2518 11.2482 11.2375 11.2197 11.2020 11.1843
10 11.2206 11.2170 11.2134 11.2027 11.1849 11.1672 11.1495
1073 11.2165 11.2129 11.2093 11.1986 11.1809 11.1632 11.1456
1072 11.2098 11.2062 11.2027 11.1922 11.1748 11.1574 11.1401
107! 11.1550 11.1521 11.1491 11.1404 11.1259 11.1114 11.0970
1 11.0787 11.0789 11.0790 11.0795 11.0804 11.0813 11.0822
10" 14.4191 14.4218 14.4245 14.4326 14.4461 14.4595 14.4730
102 28.1328 28.1354 28.1379 28.1456 28.1584 28.1712 28.1839
103 31.1273 31.1305 31.1338 31.1435 31.1597 31.1759 31.1921
10 31.3003 31.3036 31.3069 31.3167 31.3331 31.3495 31.3658
10° 31.3166 31.3199 31.3232 31.3331 31.3495 31.3659 31.3823
106 31.3183 31.3216 31.3248 31.3347 31.3511 31.3675 31.3839
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Table 11 The natural frequency of nanobeam by considering surface and nonlocal effects for various spring constant factor and voltage external

(L=20nm, L/h =10, h/b=2, u =2nm?, AT =20°C)

i 1%
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
C-E
1076 8.8600 9.0887 9.3313 9.5896 9.8656 10.1619 10.4817 10.8291 11.2096
1075 3.8601 9.0887 9.3313 9.5896 9.8656 10.1619 10.4817 10.8291 11.2096
1074 3.8605 9.0891 9.3316 9.5899 9.8658 10.1621 10.4818 10.8291 11.2096
1073 3.8649 9.0929 9.3348 9.5924 9.8678 10.1634 10.4825 10.8292 11.2089
1072 8.9084 9.1304 9.3664 9.6180 9.8874 10.1769 10.4897 10.8299 11.2027
107! 9.3075 9.4763 9.6588 9.8564 10.0709 10.3044 10.5596 10.8397 11.1491
1 11.5322 11.4510 11.3750 11.3051 11.2420 11.1868 11.1403 11.1039 11.0790
10! 16.6647 16.4009 16.1329 15.8605 15.5835 15.3016 15.0147 14.7224 14.4245
102 30.2918 30.0357 29.7761 29.5129 29.2460 28.9752 28.7003 28.4213 28.1379
103 33.8995 33.5668 33.2307 32.8909 32.5474 32.2000 31.8488 31.4934 31.1338
10 34.1080 33.7707 33.4300 33.0858 32.7378 32.3861 32.0305 31.6708 31.3069
10° 34.1276 33.7899 33.4488 33.1041 32.7558 32.4037 32.0476 31.6875 31.3232
10° 34.1295 33.7918 33.4507 33.1060 32.7576 32.4054 32.0493 31.6892 31.3248
S-E
10° 0.0074 0.0070 0.0065 0.0059 0.0054 0.0047 0.0039 0.0028 0.0009
107 0.0235 0.0220 0.0205 0.0188 0.0169 0.0148 0.0122 0.0089 0.0029
107 0.0742 0.0697 0.0648 0.0595 0.0535 0.0467 0.0387 0.0282 0.0091
107 0.2346 0.2203 0.2049 0.1880 0.1692 0.1478 0.1223 0.0892 0.0287
102 0.7397 0.6947 0.6461 0.5930 0.5338 0.4664 0.3861 0.2821 0.0941
107! 22774 2.1400 1.9918 1.8301 1.6506 1.4465 1.2050 0.8959 0.3784
1 5.9427 5.6157 5.2666 4.8905 4.4805 4.0259 3.5093 2.8970 2.1069
10! 11.8694 11.5217 11.1619 10.7890 10.4013 9.9971 9.5742 9.1298 8.6604
102 22.0699 21.7054 21.3325 20.9507 20.5596 20.1585 19.7468 19.3237 18.8886
103 24.2692 23.8513 23.4257 22.9919 22.5495 22.0980 21.6368 21.1652 20.6826
10 24.4492 24.0273 23.5977 23.1600 22.7137 22.2584 21.7935 21.3183 20.8321
10° 24.4667 24.0444 23.6144 23.1764 22.7298 22,2741 21.8088 21.3332 20.8467
10° 24.4685 24.0461 23.6161 23.1780 22.7314 222757 21.8103 21.3347 20.8481
E-E
1076 9.2458 9.4766 9.7212 9.9815 10.2593 10.5573 10.8785 11.2270 11.6081
1075 8.8967 9.1256 9.3685 9.6270 9.9033 10.1999 10.5199 10.8675 11.2482
1074 8.8642 9.0928 9.3353 9.5936 9.8696 10.1658 10.4856 10.8330 11.2134
1073 8.8653 9.0932 9.3352 9.5928 9.8682 10.1638 10.4829 10.8296 11.2093
1072 8.9084 9.1304 9.3664 9.6181 9.8874 10.1769 10.4897 10.8299 11.2027
107! 9.3075 9.4763 9.6588 9.8564 10.0709 10.3044 10.5596 10.8397 11.1491
1 11.5322 11.4510 11.3750 11.3051 11.2420 11.1868 11.1403 11.1039 11.0790
10! 16.6647 16.4009 16.1329 15.8605 15.5835 15.3016 15.0147 14.7224 14.4245
102 30.2918 30.0357 29.7761 29.5129 29.2460 28.9752 28.7003 28.4213 28.1379
103 33.8995 33.5668 33.2307 32.8909 32.5474 32.2001 31.8488 31.4934 31.1338
104 34.1080 33.7707 33.4300 33.0858 32.7378 32.3861 32.0305 31.6708 31.3069
103 34.1276 33.7899 33.4488 33.1041 32.7558 32.4037 32.0476 31.6875 31.3232
108 34.1295 33.7918 33.4507 33.1060 32.7576 32.4054 32.0493 31.6892 31.3248
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Table 12 (continued)

10

11.2733
15.7255
29.3827

11.2670
15.6976
29.3559

11.2614
15.6727
29.3319

11.2566
15.6507
29.3106

11.2524
15.6315

11.2489
15.6153

11.2460
15.6021

11.2438
15.5917
29.2539

11.2422
15.5844
29.2468
32.5485
32.7390
32.7569
32.7587

11.2413
15.5799
29.2426
32.5430
32.7334

10!
10%

29.2922

29.2766
32.5868
32.7778

29.2639
32.5704
32.7611

32.7232
329159

32.6305 32.6578 32.6887

32.6068
32.7981

32.5576
32.7482
32.7662
32.7680

103

32.8810

32.8497
32.8678
32.8696

32.8220
32.8401

10*

32.9341

32.8991

32.7958 32.8161

32.7791

327514

10°
100

32.9359

32.9009

32.7975 32.8179 32.8419

32.7809

32.7532

increase; the reason is that the increase in temperature
change brings in more increase in the nanobeam stiffness
and finally tends to grow in natural frequency. This behav-
ior is right just for spring constant factor between 1 and
10% and for S—E completely. For C-E and E-E boundary
condition, the natural frequency decreases in the range of
1070-1.

Table 11 presents the effect of the external voltage on
the first natural frequency of nanobeam for various elastic
boundary conditions. As it is observed, the positive volt-
age decreases the natural frequency and negative voltage
increases the natural frequency generally. This is due to
the fact that positive voltage weakens the nanobeam stiff-
ness and negative voltage strengthens the nanobeam stiff-
ness. But for C-E and E-E, this is opposite in the range of
10761 that natural frequency increases.

The effects of magnetic field on the natural frequency are
examined in Table 12. It is found that natural frequency of
nanobeam increases with increasing the value of magnetic
potential. Obviously, the effect of external voltage is oppo-
site to the magnetic potential. For this analysis, the behav-
iors of C-E and E-E boundary conditions are opposite to
S—E within 1071 that the natural frequency decreases.

According to Tables 13, 14 and 15, the influences of
each rotational and transitional spring constant factor
change on the natural frequencies for C-E, S-E, and E-E
boundary conditions are listed, respectively. As indicated
from numerical results which are presented in detail, for a
constant value of transitional spring, as the rotational spring
increases, the natural frequencies increase. Moreover, for a
constant value of transitional spring, with the increase in
the value of rotational spring, the natural frequencies tend
to increase.

The effects of external voltage and temperature change
on the natural frequencies are investigated in Table 16.
It can be seen that by increasing external voltage, for the
spring stiffness within 107°~1 in C-E and E-E, the natu-
ral frequencies increase and for S—E, natural frequency
declines. Also, in the range of 1-10%, by growing external
voltage, for all boundary condition, the natural frequency
decreases. Also, by rising temperature change for C-E
and E-E within 107°-1, the natural frequency decreases,
whereas for S-E, natural frequency rises. Also, in the range
of 1-10°, growing temperature changes, natural frequency
increases.

Depicted in Figs. 3, 4 and 5 are the variation of natu-
ral frequency for C-E, S-E, E-E boundary conditions by
incorporating coupling of surface effect and nonlocal effect
and just by considering nonlocal effect without surface
effects, corresponding to various values of nonlocal param-
eters and spring constant factor. It can be observed that by
considering the surface effect and by increasing the value
of spring constant factor, natural frequency increases. It
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Table 13 The natural frequency of nanobeam for C—E boundary condition (L = 20 nm, L/h =10, h/b =2, u = 2nm?, AT = 20)

ﬂTR ﬂRR
1 10 10? 103 10* 10° 109

1 10.6732 10.0973 9.9625 9.9472 9.9456 9.9455 9.9455
10 15.8327 14.6525 14.3156 14.2754 14.2713 14.2709 14.2709
10? 22.2031 26.0375 28.4937 28.8950 28.9378 28.9421 28.9425
103 23.1836 28.4689 31.2748 31.6534 31.6924 31.6963 31.6967
104 23.2793 28.6625 31.4314 31.7980 31.8357 31.8395 31.8398
10° 23.2888 28.6813 31.4462 31.8116 31.8491 31.8529 31.8533
10° 23.2898 28.6831 31.4477 31.8130 31.8505 31.8542 31.8546

Table 14 First natural frequency of nanobeam for S-E boundary condition (L = 20 nm, L/h = 10, h/b =2, y =2nm?2, AT =20°C)

ﬂTR ﬁRR
1 10 10° 10° 10* 10° 100

1 4.4805 47923 4.8636 4.8716 4.8724 4.8725 4.8725
10 10.4749 10.4013 10.3787 10.3760 10.3757 10.3756 103756
107 15.4602 18.8116 20.5596 20.8124 20.8389 20.8415 20.8418
10° 16.2193 20.3275 22.2874 22.5496 22.5766 22.5793 22.5796
10* 16.2963 20.4674 22.4274 22.6870 22.7138 227164 22.7167
10° 16.3040 20.4812 22,4411 22.7004 22.7271 22.7298 22.7300
10° 16.3047 20.4826 22.4424 22.7017 22.7284 227311 227314

Table 15 First natural frequency of P-FG nanobeam for E-E boundary condition (L = 20 nm, L/h = 10, h/b =2, u = 2nm?, AT = 20)

ﬁTL - ﬁTR ﬂRR - ﬁRL
1 10 10? 103 10* 10° 109

1 10.6732 10.0973 9.9625 9.9472 9.9456 9.9455 9.9455
10 15.8327 14.6525 14.3156 14.2754 14.2713 14.2709 14.2709
102 22.2031 26.0375 28.4937 28.8950 28.9378 28.9421 28.9425
103 23.1836 28.4689 31.2748 31.6534 31.6924 31.6963 31.6967
104 23.2793 28.6625 314314 31.7980 31.8357 31.8395 31.8398
10° 23.2888 28.6813 31.4462 31.8116 31.8491 31.8529 31.8533
10% 23.2898 28.6831 31.4477 31.8130 31.8505 31.8542 31.8546

means that surface energy effects and spring constant factor
play more important role than the nonlocal parameter.

And also, the efficiency of piezoelectric material is
described as follows:

Efficiency of piezoelectric material

_ Natural frequency of piezoelectric nanobeam

- Natural frequency of nanobeam

The variation of efficiency of piezoelectric material ver-
sus voltage is depicted in Fig. 6 for various classical bound-
ary conditions. As it can be observed, the negative voltage
tends to increase the natural frequency of nanobeam, while

@ Springer

the positive voltage decreases the value of natural frequen-
cies. Also, for the C—F boundary condition, the voltage sign
has inverse influence on the natural frequencies in compari-
son with other boundary conditions.

4 Conclusion

In the present study, the magneto-thermo-mechanical
vibration analysis of piezoelectric nanobeam rested in elas-
tic medium is studied by considering surface and nonlocal
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Table 16 The natural frequency of nanobeam with various spring constant factor by considering surface effect and nonlocal effect
(L=20nm, L/h =10, h/b =2, u =2nm?

p V=-0.2 V=0 V=0.2
T=0 T=25 T=50 T= T=25 T=50 T=0 T=25 T=50
C-E
1076 8.8640 8.8590 8.8541 9.8707 9.8643 9.8579 11.2168 11.2079 11.1989
1073 8.8641 8.8591 8.8541 9.8707 9.8643 9.8579 11.2168 11.2079 11.1989
1074 8.8645 8.8595 8.8546 9.8709 9.8645 9.8581 11.2167 11.2078 11.1989
1073 8.8689 8.8639 8.8590 9.8729 9.8665 9.8601 11.2161 11.2072 11.1982
1072 8.9122 8.9074 8.9026 9.8924 9.8861 9.8799 11.2097 11.2009 11.1922
107! 9.3104 9.3068 9.3031 10.0749 10.0699 10.0649 11.1550 11.1477 11.1404
1 11.5307 11.5326 11.5345 11.2410 11.2423 11.2436 11.0787 11.0791 11.0795
10! 16.6600 16.6659 16.6717 15.5785 15.5847 15.5910 14.4191 14.4259 14.4326
107 30.2873 30.2930 30.2987 29.2412 29.2472 29.2532 28.1328 28.1392 28.1456
103 33.8936 33.9010 33.9084 32.5412 32.5489 32.5567 31.1273 31.1354 31.1435
10* 34.1019 34.1095 34.1170 32.7316 32.7394 32.7472 31.3003 31.3085 31.3167
10° 34.1215 34.1291 34.1366 32.7495 32.7574 32.7652 31.3166 31.3249 31.3331
10° 34.1235 34.1310 34.1385 32.7513 32.7592 32.7670 31.3183 31.3265 31.3347
S-E
107° 0.0074 0.0074 0.0074 0.0053 0.0054 0.0054 0.0008 0.0009 0.0010
107 0.0234 0.0235 0.0235 0.0169 0.0169 0.0170 0.0026 0.0029 0.0032
1074 0.0741 0.0742 0.0743 0.0534 0.0536 0.0537 0.0083 0.0092 0.0101
1073 0.2343 0.2346 0.2349 0.1689 0.1693 0.1698 0.0264 0.0293 0.0319
1072 0.7389 0.7399 0.7409 0.5327 0.5341 0.5355 0.0870 0.0958 0.1038
107! 2.2750 2.2779 2.2809 1.6472 1.6514 1.6557 0.3623 0.3823 0.4013
1 5.9370 5.9441 5.9512 44728 4.4824 4.4920 2.0900 2.1111 2.1321
10! 11.8633 11.8710 11.8786 10.3942 10.4031 10.4120 8.6518 8.6626 8.6734
10? 22.0634 22.0715 22.0796 20.5525 20.5614 20.5702 18.8807 18.8906 18.9004
10° 24.2618 242711 24.2804 22.5415 22.5515 22.5615 20.6738 20.6848 20.6957
10* 24.4417 244511 24.4604 22.7057 22.7158 22.7259 20.8232 20.8343 20.8453
10° 24.4592 24.4686 24.4780 22.7217 22.7318 22.7419 20.8379 20.8489 20.8599
10° 24.461 24.4703 24.4797 22.7233 22.7334 22.7435 20.8393 20.8503 20.8614
E-E
107° 9.2498 9.2448 9.2398 10.2645 10.2580 10.2516 11.6153 11.6063 11.5974
1073 8.9007 8.8957 8.8908 9.9084 9.9020 9.8956 11.2554 11.2464 11.2375
1074 8.8682 8.8632 8.8582 9.8747 9.8683 9.8619 11.2206 11.2116 11.2027
1073 8.8692 8.8643 8.8593 9.8733 9.8669 9.8605 11.2165 11.2075 11.1986
1072 8.9123 8.9074 8.9026 9.8924 9.8862 9.8799 11.2098 11.2010 11.1922
107! 9.3104 9.3068 9.3032 10.0749 10.0699 10.0649 11.1550 11.1477 11.1404
1 11.5307 11.5326 11.5345 11.2410 11.2423 11.2436 11.0787 11.0791 11.0795
10! 16.6600 16.6659 16.6717 15.5785 15.5847 15.5910 14.4191 14.4259 14.4326
10? 30.2873 30.2930 30.2987 29.2412 29.2472 29.2532 28.1328 28.1392 28.1456
10° 33.8936 33.9010 33.9084 32.5412 32.5489 32.5567 31.1273 31.1354 31.1435
10* 34.1019 34.1095 34.1170 32.7316 32.7394 32.7472 31.3003 31.3085 31.3167
10° 34.1215 34.1291 34.1366 32.7495 32.7574 32.7652 31.3166 31.3249 31.3331
10° 34.1235 34.1310 34.1385 32.7513 32.7592 32.7670 31.3183 31.3265 31.3347
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Fig. 3 The variation of the first 35 T
dimensionless frequency of

nanobeam with spring constant sl 33
factor for different nonlocal 28

parameters for C—E boundary
condition (L=20 nm, L/h=10,
hib=2)

326

[
a
T

324
322
32

Frequency
3
T

318

316

a
T

1=0 .

o
......

10 ==t
=2
——i3

u=5

Brr=Btr

(a) with considering surface effect

T T i

Frequency
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T

effects for various elastic boundary conditions. To assume
the elastic boundary condition, the rotational and tran-
sitional springs at each end are located which are used to
introduce small deflections and moments. The main goal of
the presented study is to investigate the influence of non-
local parameter, piezoelectric voltage, temperature change,
surface effects, elastic medium, magnetic field and length
of nanobeam natural frequencies for different values of
spring constants in elastic supports. As it is shown, the
Hamilton’s principle is used to derive the motion equations

@ Springer

Brr=Btr

(b) without considering surface effect

based on the Euler—-Bernoulli beam model. Then, DTM as
an efficient and accurate numerical tool was implemented
to solve vibration equations of piezoelectric nanobeam with
elastic boundary condition. The convergence study and val-
idation were also presented as well as the numerical results
which clarified the influence of nonlocal parameter, piezo-
electric voltage, temperature change, surface effects, elas-
tic medium, magnetic field, length of nanobeam and spring
constants on the first dimensionless natural frequency of
piezoelectric nanobeam. Based on the presented numrecal
results:
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Fig. 4 The variation of the first 2 T T
dimensionless frequency of 28 I iR e
nanobeam with spring constant RPN L bt
factor for different nonlocal 20p 226 s .
parameters with considering 24 TTTmT e
surface effect for S—E boundary _
condition (L =20 nm, L/h=10, w15 220 4
hib=2) S i
g 221 s
-3
O | e A T u=1
i oL 218 _
) u=2
10*
— =3
5r //' ------------ =4 ||
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1. Increasing the spring constants leads to increase in the 4.

natural frequencies for all named boundary conditions.
2. For the variation of spring constant from 107 to 1 in

C-E and E-E, the obtained result has the manner near 5.

the C-F boundary condition which shows different
behavior in each case.

3. As the temperature change increases, the natural fre-
quencies increase.

Brr=Btr

(b) without considering surface effect

Increasing the voltage parameter from negative to posi-
tive amount tends to decrease the fundamental natural
frequencies.

The natural frequencies decrease in the case that the
nonlocal parameter increases.
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Fig. 5 The variation of the first 35 T T : T
dimensionless frequency of e
nanobeam with spring constant i o
factor for different nonlocal
parameters with considering
surface effect for E-E boundary
condition (L=20 nm, L/h= 10,
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Lishe Clamped-Simply .- Clamped—Free nanoscale to macroscale, the natural frequencies
o I s decrease and reach the classical value.
§ 110 \\ ~ 7. The surface effects tend to increase the natural frequen-
2 ost \‘\\ A cies which means the stiffness of nanobeam increases.
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