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1 Introduction

In recent years, the tendency in studying the mechanical 
behavior of nanostructures has been grown. Among all 
nanostructures, the piezoelectric, for their unique mechani-
cal properties, proved to be capable of designing the nano-
electro-mechanical systems (NEMSs). It is apparent that 
these nanomaterials can be applicable for building blocks 
for nanodevices integrating mechanical and electrical func-
tionality at nanoscale size [1]. So, according to their wide 
range of application such as nano-sensors, actuators, gen-
erators, transistors, and diodes, investigating the vibrational 
behavior of piezoelectric nanomaterials is significant [2].

It is known that the classical continuum mechanics can-
not predict the size effects. Therefore, to inject the size-
dependent response of nanostructures, several non-classical 
higher-order continuum theories have been employed, such 
as nonlocal elasticity theory [3], stress theory [4], strain 
gradient theory [5], surface elasticity [6], and micropolar 
theory [7]. Among all these theories, the nonlocal elastic-
ity theory of Eringen [3] can be employed in a wide range 
of applications in the analysis of nanostructures. Due to 
simplicity and high computational efficiency of nonlocal 
elasticity theory, rapid extensions of this theory in vari-
ous mechanical analysis for different nanostructures can be 
observed as [8–10].

One of the main size-dependent factors of nanostruc-
tures is surface effects, which are happening for increas-
ing the surface-to-volume ratio in nanoscale. Due to high 
surface-to-volume ratio, the surface effects as well as the 
small scale effect become substantial, which leads to excep-
tional mechanical characteristics at the nanoscale. There-
fore, as the surface layers energy is negligible compared 
with the bulk energy of material at the macroscale, the 
classical continuum mechanics is not applicable to predict 
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the surface energy effect. Gurtin and Murdoch [11, 12], 
based on the continuum mechanics, developed a theoretical 
framework to take the surface energy effects into account. 
According to this theory, the surface layer is considered as 
an elastic two-dimensional membrane with zero thickness 
adhered to the underlying bulk material without slipping. It 
is also considered that the surface layers have distinct prop-
erties than the bulk of material which is characterized using 
the Lame constants of surface followed by surface residual 
stress. Many efforts have been done to investigate the sur-
face effects [13–18] and nonlocal effects [19–27] on the 
mechanical properties of nanobeam separately, and simul-
taneously [2, 28–36].

Also, remarkable attention has been paid to investigate 
the mechanical characteristic of piezoelectric nanostruc-
tures in high-temperature conditions. So, the influence of 
temperature changing in the mechanical analysis is studied 
extensively. As for instance, Ebrahimi et  al. [37] investi-
gated the vibration characteristic of smart piezoelectrically 
actuated nanobeams in the magneto-electrical field and 
thermal environment. Further, Ke et  al. [38] implemented 
the nonlocal elasticity theory into the thermo-electric-
mechanical vibration analysis of piezoelectric nanobeam. 
Furthermore, Mohammadimehr et  al. [39] studied the 
vibration and buckling analysis of triple-walled ZnO piezo-
electric nanobeam based on the Timoshenko beam theory 
resting on Pasternak foundation under magneto-electro-
thermo-mechanical loadings. In the work done by Marz-
banrad et  al. [40], the vibration behavior of size-depend-
ent piezoelectric nanobeam resting on elastic under axial 
preload was studied by considering surface and thermal 
effects. Moreover, Ansari et al. [41] implemented the ana-
lytical solution to predict the postbuckling characteristics 
of FGM nanobeams subjected to thermal environment and 
surface stress effect.

It should be noted that all the mentioned works pre-
sented the numerical results for various mechanical proper-
ties of nanostructures for conventional boundary conditions 
(BCs) including Simply–Simply (S–S), Clamped–Clamped 
(C–C), Clamped–Simply (C–S) and Clamped–Free (C–F). 
In continuous systems, the type of BCs from their direct 
effect on vibration response of structures is so important. 
Mostly, in real systems, one of the mentioned BCs which 
has the nearest manner are chosen and assumed to sat-
isfy the conditions exactly [42, 43]. Moreover, the rota-
tional and transitional springs will substitute at the ends 
to introduce small deflections and moments. Further, Wat-
tanasakulpong et  al. [44] studied the linear and nonlinear 
vibration behavior of nanobeams which are elastically 
end-restrained. The numerical results are presented for 
Elastic–Elastic (E–E) and Simply–Elastic (S–E) bound-
ary conditions. Besides, Zarepour et  al. [45] investigated 

the electro-thermo-mechanical nonlinear characteristic of 
nanobeams resting on Winkler–Pasternak elastic medium 
for E–E and S–S BCs.

The present paper makes the first attempt to investigate 
the magneto-thermo-electric-mechanical vibration of pie-
zoelectric nanobeam with elastic boundary condition by 
considering surface and nonlocal elasticity effects. Based 
on the Eringen’s nonlocal constitutive relations and using 
Gurtin–Murdoch theory to incorporate the surface effects, 
equilibrium equations of piezoelectric nanobeam subjected 
in magnet and thermal field is achieved. The differential 
transformation method (DTM) with an iterative algorithm 
on the basis of Taylor series expansion is utilized to solve 
resultant motion equations for various BCs. The natural 
frequencies for various elastic boundary conditions are 
obtained, while, by choosing right values for spring stiff-
ness at each end of nanobeam, the corresponding natural 
frequencies for classical BCs will be achieved. To validate 
the accuracy of motion equations and numerical results, 
the resultant natural frequencies are compared with well-
known literature which are in excellent agreement. The 
results are obtained for various spring stiffness constants, 
voltage values of piezoelectric field, temperature chang-
ing, magnetic field effect, nonlocal parameter, elastic foun-
dation including Pasternak and Winkler foundations and 
nanobeam length for various elastic boundary conditions. 
It is shown that making changes to spring stiffness value 
and surface effect of piezoelectric nanobeam are two main 
approaches to achieve desired natural frequencies.

2  Formulation and theories

2.1  Eringen’s nonlocal elasticity theory

Among various types of nonlocal elasticity theory, Erin-
gen’s theory proved to be capable and easy to use. The 
essence of nonlocal elasticity is that the stress field at a ref-
erence point x in an elastic medium does not only depend 
on the strain at that point, but also on the strains at all other 
points in the bulk of material [3].

This theory is based on the atomic theory of lattice 
dynamics and also the experimental observations of atomic 
and molecular scales which come from the observations 
on phonon dispersion. In this theory, the internal size as a 
material parameter is used to incorporate the scale effects 
into the equations [46]. The most general form of nonlocal 
elasticity relations will be indicated as an integral over the 
whole body of material, but by neglecting the body forces, 
the basic equations for stress tensor and electric displace-
ment will be obtained as [47]:

(1)�ij − �2∇2�ij = Cijkl�kl − ekijEk − �ijΔT ,
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where ∇2 is the Laplace operator, �ij, Di denote the com-
ponent of the stress, electric field; �kl, Cijkl, eikl

, �ij are the 
strain, elastic constant, piezoelectric constants and thermal 
module. ΔT  and pi are the temperature changes and piezo-
electric constants; and also, � = (e0a)

2 represent the nonlo-
cal parameter; moreover, e0a denotes the scale length coef-
ficient revealing the size effect in obtaining the response of 
nanostructures.

2.2  Surface effects

For the fact that the inter-atomic distance plays an impor-
tant role in elastic constant of crystals, the bound con-
traction in the surface layers has a dominant influence 
than that in the bulk. To increase the surface-to-bulk ratio 
in nanoscale, the surface effects will become more sig-
nificant and cannot be neglected. As this ratio increases, 
the surface effects role in response of nanobeam become 
more dominant. Accordingly, the energy which is pro-
duced by the atoms located in surface layers affects the 
mechanical properties of nanostructures which have been 
studied extensively by researchers. Gurtin et  al. [11] 
proposed a continuum model which considered the sur-
face layers as a zero-thickness film which subjected on 
the material body. In other words, the body and surface 
layers in the nanobeam are assumed such as a composite 
beam which is composed of a solid core with the bulk 
modulus and the surface shell with surface modulus as 
depicted in Fig. 1. The surface layer is assumed to be a 
two-dimensional thin film which attached perfectly to 
the bulk. Besides, the surface layers and the bulk mate-
rial considered to be bonded, accordingly, the displace-
ment field is continuous for both parts across the inter-
face. It should be noted that this assumption is only for 
the modeling purpose which means that these layers do 
not actually exist; for this reason, the type of surface is 
not defined. For isotropic surfaces, the local stresses and 
electric displacement will be defined for piezoelectric 
nanobeam based on Gurtin model as [29]:

(2)Di − �2∇2Di = eikl�kl + �ikEk + piΔT ,

where Cs
����

, ���,es��k and ks
ij
 express the surface elastic, sur-

face strains, surface piezoelectric and surface dielectric 
constants, respectively. �sl

��
, �0

��
 denote the nonlocal stress 

tensor and residual surface stress tensor, respectively.
By considering the same material properties for both top 

and bottom layers, the constitutive stress–strain relations 
for surface layers will be obtained as:

 while �zz is often neglected in classical beam theories, 
which is assumed to satisfy the equilibrium equations by its 
linear relation with the beam thickness:

2.3  Problem formulation

The vibration analysis of piezoelectric nanobeam embed-
ded in elastic medium using the nonlocal and surface 
effects under the magnet and thermal environment with 
various elastic boundary conditions will be presented. The 
piezoelectric nanobeam with length L (0 ≤ x ≤ L), thick-
ness h (−h∕2 ≤ z ≤ h∕2), and width b (−b⟋2 ≤ y ≤ b⟋2) sub-
jected to an applied voltage �(x, z) and uniform tempera-
ture change ΔT  is depicted in Fig. 1. The Euler–Bernoulli 
beam theory is utilized to obtain the motion equations. 
Following the Euler–Bernoulli beam theory (EBT), the dis-
placement field for nanobeam at any arbitrary point is [48]:

where u(x, t) and w(x, t) denote the axial and transverse 
components of displacement, respectively.

The only nonzero strain component which can be 
defined based on EBT is:

And also, the electric displacement field for piezoelec-
tric nanobeam can be expressed as [14]:

where �11 and �33 are the dielectric constants, while Dxand 
Dzexpress the electric displacements.

(3)�sl
��

= �0
��

+ Cs
����

��� − es
��k

Ek ,

(4)Dsl
i
= D0

i
+ es

��i
��� + ks

ij
Ej ,

(5)�xx = �0 + Esux,x , Es = 2�0 + �0, �nx = �0un,x ,

(6)�
��
=

2z�

h
(�o

�2w

�x2
− �o

�2w

�t2
)

(7)u1 = u(x, t) − z
�w(x, t)

�x
, u2 = 0, u3 = w(x, t) ,

(8)�xx =
�u

�x
− z

�2w

�2x

(9)
Ex = −

��

�x
; Ez = −

��

�z
,

Dx = �11Ex; Dz = e31�x + �33Ez,
�Dx

�x
+

�Dz

�z
= 0

Fig. 1  Schematic of the nanobeam with elastic boundary conditions 
with length L, width b and height h
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For the fact that �11and �33 are in the same order, 
Ex << Ez should be considered, Dx in compare with Dz 
should be ignored. The electrical BCs will be assumed 
as �(x, −h∕2) = 0, �(x, h∕2) = 2Vcombining with 
Eqs. (8) and (9), the electrical potential can be obtained as:

Furthermore, the equivalent piezoelectric load can be 
expressed as follows:

Accordingly, using Hamilton’s principle, the governing 
motion equations and relative BCs will be obtained as [48]:

where U, T and Wext are the strain energy, kinetic energy 
and the work done by external forces, respectively. The first 
variation of strain energy for piezoelectric nanobeams is:

where KRL, KTL,KRRand KTR express the corresponding 
rotational and translational spring constants at the left and 
right ends, respectively. Using Eq. (8) and Eq. (13) gives:

Accordingly, the axial force N and bending moment 
force M are defined as:

After that, the kinetic energy will be determined as:

Thus, the first variation of kinetic energy from Eq. (16) 
can be written as:

(10)�(x, z) = −
e31

�33

(
z2 − h2

2

)
�2w

�x2
+
(
1 +

z

h

)
V

(11)Pelectric(x, t) = b

h

∫
−h

�∗
x
dz = 2V b e31

(12)∫
t

0

�(U − T +Wext) dt = 0 ,

(13)�U =

L

∫
0

∫
h

2

−
h

2

⎛⎜⎜⎝

�xx��xx + �xz��xz − Dx�Ex − Dz�Ez + KTLw(0, t)�w(0, t)

+KRL
�w(0,t)

�x
�(

�w(0,t)

�x
) + KTRw(L, t)�w(L, t)

+KRR
�w(L,t)

�x
�(

�w(L,t)

�x
)

⎞⎟⎟⎠
dzdx ,

(14)

�U =

l

∫
0

∫
h∕2

−h∕2

⎡⎢⎢⎢⎣

N�u −M�

�
�2w

�x2

�
+ Dx�

�
��

�x

�
+ Dz�

�
��

�z

�

+KTLw(0, t)�w(0, t) + KRL
�w(0,t)

�x
�(

�w(0,t)

�x
)

+KTRw(L, t)�w(L, t) + KRR
�w(L,t)

�x
�(

�w(L,t)

�x
)

⎤⎥⎥⎥⎦
dx

(15)N = ∫ �xxdz , M = ∫ �xxzdz

(16)

T =
1

2
𝜌 ∬ (u̇2

1
+ u̇

2

2
+ u̇

2

3
) dA.dx

=
1

2
𝜌∫

(
I
1

(
𝜕u

𝜕t

)2

+ I
2

(
𝜕2w

𝜕x𝜕t

)2

+ I
1

(
𝜕w

𝜕t

)2

)
dx

where:

The axial load which is obtained by the elastic medium 
based on the Winkler–Pasternak foundation is considered to 
be as:

 where kw and kp are the Winkler and Pasternak elastic 
medium constants.

The first variation of the work done by external forces will 
be determined by:

where q is defined as:

Substituting Eqs. (14), (17) and (19) into Hamilton’s prin-
ciple [Eq. (12)], the motion equations are obtained as:

(17)

�T = −

l

∫
0

(
I1

(
�2w

�t2

)
�(w) − I2

(
�4w

�x2�t2

)
�(w) + I1

(
�2u

�t2

)
�(u)

)
dx

(18)I1 = ∫
h

2

−
h

2

� dz, I2 = ∫
h

2

−
h

2

� z2 dz

(19)f = −kww + kp
�2w

�x2

(20a)�Wext =

t

∫
0

(f �(u) + q�(w))dt ,

(20b)q =
(
H + NT + Pelectric + KP + qz

)(�2W

�x2

)
− Kw W ,

(21a)NT = −E�1 AΔT

(21b)fz = �H2
x

(
�2w

�x2

)

(21c)qz = ∫A

fz dz = � AH2
x

(
�2w

�x2

)

(21d)H = 2b�0

(22a)
�N

�x
+ f − I1

(
�2u

�t2

)
= 0

(22b)
�2M

�x2
+ q + I2

(
�4w

�x2�t2

)
− I1

(
�2w

�t2

)
= 0
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The bending moment and spring constants based on the 
obtained BCs from Hamilton’s principle will be described as:

The bending moment with considering surface and nonlo-
cal effects for piezoelectric nanobeam will be obtained as:

where the effective bending stiffness of nanobeam will be 
determined as (EI)∗ = E

(
bh3⟋12

)
+ Es (

h3⟋6 + b h2⟋2 ). The bend-
ing moment using the nonlocal elasticity will be obtained 
as:

Substituting Eqs.  (27) into (22), the constitutive motion 
equation is as:

For the free vibration response of piezoelectric nanobeam, 
a harmonic motion is assumed with the natural frequency of 
� as:

Substituting Eqs. (29) into (28) resulted to:

(23a)−M − KRL

�w

�x
= 0,

�M

�x
− KTL w = 0 at x = 0

(23b)M − KRR

�w

�x
= 0, −

�M

�x
− KTR w = 0 at x = L

(24)M = ∫ �xxzdA + ∫ �xxzdA − ∫ e31�zzdA

(25)

M = −(EI)∗
�2w

�x2
+

2I�

h

(
�0
�2w

�x2
− �0

�2w

�t2

)
+

e2
31

�33
I
�2w

�x2
,

(26)

M − �
�2M

�x2
= −(EI)∗

�2w

�x2
+

2I�

h

(
�0
�2w

�x2
− �0

�2w

�t2

)
+

e2
31

�33
I
�2w

�x2

(27)

M =�

(
−I

2

(
�4w

�x2�t2

)
+ I

1

(
�2w

�t2

)
− q

)
− (EI)∗

�2w

�x2

+
2I�

h

(
�
0

�2w

�x2
− �

0

�2w

�t2

)
+

e2
31

�
33

I
�2w

�x2

(28)

(
1 − �

�2

�x2

)(
−I

2

(
�4w

�x2�t2

)
+ I

1

(
�2w

�t2

)
− qw

)
− (EI)∗

�4w

�x4

+
2I�

h

(
�
0

�4w

�x4
− �

0

�4w

�x2�t2

)
+

e2
31

�
33

I
�4w

�x4
= 0

(29)w(x, t) = W(x)ei�t

(30)

(
1 − �

�2

�x2

)(
�2I

2

(
�2W

�x2

)
− �2I

1
W(x) − qw

)
− (EI)∗

�4W

�x4

+
2I�

h

(
�
0

�4W

�x4
+ �

0
�2 �

4W

�x2

)
+

e2
31

�
33

I
�4W

�x4
= 0

2.4  Solution procedure

To derive an analytical solution for Eq. (30) due to the nature 
homogeneity is relatively difficult. In this condition, the DTM 
is utilized to translate the governing equations into ordinary 
equation. The manner of differential transform method is 
explained briefly in the following. In this method, differential 
transformation of kth derivative function y(x) and inverse of 
differential transformation of Y(k) are explained as [49]:

where y(x) is the original function and Y(k) is the trans-
formed function. Equations (31) can be explored as:

The theory of the differential transformation is derived 
from Taylor’s series expansion that can be deduced from 
Eq. (31a). The function y(x) in Eq. (31b) can be written in a 
finite form as:

From the definitions of DTM in Equations (31), funda-
mental theorems of differential transforms method can be 
utilized that are listed in Table 1 and in Table 2 tabulated the 
differential transformation of boundary conditions. Applying 
the DTM into the equation of motion resulted as:

(31a)Y(k) =
1

k!

[
dk

dxk
y(x)

]

x=0

,

(31b)y(x) =

∞∑
k=0

xkY(k) ,

(32)y(x) =

∞∑
k=0

xk

k!

[
dk

dxk
y(x)

]

x=0

(33)y(x) =

N∑
k=0

xkY(k)

Table 1  Some basic theorems of DTM for equations of motion

Original function Transformed function

f (x) = g(x) ± h(x) F(K) = G(K) ± H(K)

f (x) = �g(x) F(K) = �G(K)

f (x) = g(x) h(x)
F(K) =

K∑
l=0

G(K − l)H(l)

f (x) =
dng(x)

dxn
F(K) =

(k+n)!

k!
G(K + n)

f (x) = xn
F(K) = �(K − n) =

{
1 k = n

0 k ≠ n
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By simplifying Eq.  (34), the following relation will be 
obtained:

Besides, applying the Table 2 relations to boundary condi-
tions results:

Clamped–Elastic supported (C–E):

Simply–Elastic supported (S–E):

Elastic–Elastic supported (E–E):

(34)

(
(EI)∗ +

2I3�

h
�0 −

e2
31

�33
− �2

(
NT + Pelectric + H + KP + qz

)) (k+4)!

k!
W[k + 4]

+
(

2I3��0�
2

h
+
(
NT + Pelectric + H + KP + qz

)
+ �2Kw − I1�

2�2
)

(k+2)!

k!
W[k + 2]

−
(
Kw + I1�

2
)
W[k] = 0

(35)W [k + 4] =
−
(

2I3��0�
2

h
+
(
NT + Pelectric + H + KP + qz

)
+ �2Kw − I1�

2�2
)

(k+2)!

k!
W [k + 2] +

(
Kw + I1�

2
)
W[k]

(
(EI)∗ +

2I3�

h
�0 −

e2
31

�33
− �2

(
NT + Pelectric + H + KP + qz

)) (k+4)!

k!

(36a)

W[0] = 0, W[1] = 0, W[2] = C1, W[3] = C2

∞∑
k=0

EIsk(k − 1) W[k] −

∞∑
k=0

KRRk W[k] = 0

∞∑
k=0

EIsk(k − 1)(k − 2) W[k] +

∞∑
k=0

KTR W[k] = 0

(36b)

W[0] = 0, W[2] = C1, W[1] = 0, W[3] = C2

∞∑
k=0

EIsk(k − 1) W[k] −

∞∑
k=0

KRRk W[k] = 0

∞∑
k=0

EIsk(k − 1)(k − 2) W[k] +

∞∑
k=0

KTR W[k] = 0

(36c)

W[0] = C1 , W[1] = C2 , W[2] = −
KRLC2

2EIs
, W[3] =

KTLC1

6EIs
∞∑
k=0

EIsk(k − 1) W[k] −
∞∑
k=0

KRRk W[k] = 0

∞∑
k=0

EIsk(k − 1)(k − 2) W[k] +
∞∑
k=0

KTR W[k] = 0

It should be noted that the transitional and rotational 
spring constants at each end of nanobeam will be expressed 
in the terms of moment of inertia and the Young’s modulus 
as:

where � denotes the spring constant factor.

3  Numerical results and discussion

This section is dedicated to results obtained for analysis of 
megneto-thermo-mechanical vibration behavior of piezo-
electric nanobeam incorporating nonlocal parameter, sur-
face effect, elastic foundation for various elastic boundary 
conditions based on the Euler–Bernoulli beam theory. The 
material properties of nanobeam made of AL are given in 
Table 3.

It should be noted that in the case in which the spring 
constants at each end in Elastic–Elastic boundary con-
dition set to be a high value as 106, the resultant natural 
frequencies correspond to the clamped boundary condi-
tion. Moreover, other conventional boundary conditions 
will be obtained for various values of spring constants, 

(37)

KTL =
�TLEc I

L3
, KRL =

�RLEc I

L
, KTR =

�TR Ec I

L3
, KRR =

�RR EcI

L
,

Table 2  Transformed boundary 
conditions (BC) based on DTM

X = 0 X = L

Original BC Transformed BC Original BC Transformed BC

f (0) = 0 F[0] = 0 f (L) = 0
∞∑
k=0

F[k] = 0

df (0)

dx
= 0 F[1] = 0 df (L)

dx
= 0

∞∑
k=0

k F[k] = 0

d
2f (0)

dx2
= 0 F[2] = 0 d

2f (L)

dx2
= 0

∞∑
k=0

k(k − 1) F[k] = 0

d
3f (0)

dx3
= 0 F[3] = 0 d

3f (L)

dx3
= 0

∞∑
k=0

k(k − 1)(k − 2)F[k] = 0
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for instance, in Simply–Elastic (S–E) boundary condi-
tion by substituting �RR = 10−6, �TR = 106 is correspond-
ing to S–S case and �RR = �TR = 106 related to S-C case. 
And also for clamped–elastic (C–E) boundary condition, 
by substituting �RR = �TR = 10−6 is equivalent to C-F 

boundary condition and if by assuming �RR = �TR = 106, 
the obtained boundary condition is C–C. To validate the 
accuracy of the numerical results, comparison between the 
present results and available results obtained by Reddy [48] 
for simply-supported boundary condition and Eltaher [50] 
for clamped–clamped, simply–clamped and clamped–free 
boundary condition are tabulated in Tables 4 and 5, respec-
tively. As it is indicated from Tables 4 and 5, an excellent 
agreement is obtained for all classical boundary conditions. 
And also, for the fact that the experimental tests do not 
exist in detail for various conditions, in this study, the first 
dimensional frequency versus aspect ratio is also compared 
with the results which are obtained by molecular dynamic 
simulation respresented in Ansari and Sahmani [51] and 
showed to be in acceptable agreement which is depicted in 
Fig. 2.

After that, the convergence study is performed to deter-
mine the minimum number of iterations required to obtain 
stable and accurate results for classical boundary condition 
as it is mentioned above in Table 6. As it can be observed 
for C–F boundary condition, the first three natural frequen-
cies converge after 17th, 23rd and 35th iterations with four 
digit precisions, respectively. And also for S–S case, these 
natural frequencies converge after 17th,  27th, and 35th iter-
ations, while for C-S, they converge after 19th, 29th, and 
37th iterations, and at last, for C–C boundary condition, 
the resultant natural frequencies converge after 23th, 33th, 
and 41st iterations. Therefore, the number of iterations is 
selected as k = 25 for the results reported here for first natu-
ral frequencies.

First, natural frequencies of nanobeam are presented in 
Table 7 for various elastic boundary condition with differ-
ent nonlocal parameter and spring constant factors. It can 
be found from the results that by incorporating the surface 
effects, the natural frequencies corresponding to all val-
ues of nonlocal parameters increase which indicates the 
fact that by considering the surface effects, the stiffness 
of nanobeam will be increased. Also, it is observed from 
Table 7 that for spring constant factor between  10−6 and 1, 
increasing nonlocal parameter causes an increase in natural 
frequencies for C–E and E–E boundary conditions. Also, 

Table 3  Al material properties

Properties Al [52, 53]

Young’s modules E 70 GPa
Poisson’s ratio � 0.3
Mass density � 2700 Kg/m3

Residual surface tensions �0 0.9108 N m
Elasticity surface modules Es 5.1882 N m
Density of surface layer �s 5.46 × 10−7 Kg  m2

Thermal coefficient �1 2.56 × 10−6 1/k
Piezoelectric coefficient e31 −10 C  m2

Dielectric constants �33 1.0275 × 10−8

Table 4  Comparison of the 
non-dimensional fundamental 
frequency for a nanobeam with 
various nonlocal parameters 
for simply-supported boundary 
condition (L = 10 nm, h/b = 2)

L/h � Reddy [48] Present

10 0 9.8696 9.8695
1 9.4159 9.4158
2 9.0195 9.0194
3 8.6693 8.6692
4 8.3569 8.3568
5 8.0761 8.0760

20 0 9.8696 9.8695
1 9.4159 9.4158
2 9.0195 9.0194
3 8.6693 8.6692
4 8.3569 8.3568
5 8.0761 8.0760

100 0 9.8696 9.8695
1 9.4159 9.4158
2 9.0195 9.0194
3 8.6693 8.6692
4 8.3569 8.3568
5 8.0761 8.0760

Table 5  Comparison of the 
non-dimensional fundamental 
frequency for a nanobeam with 
various nonlocal parameters for 
Clamped–Simply, Clamped–
Clamped, Clamped–Free 
boundary condition (L = 10 nm, 
h/b = 2)

� C–S C–C C–F

Present paper Eltaher [50] Present paper Eltaher [50] Present paper Eltaher [50]

0 15.4177 15.4189 22.3724 22.3744 3.5160 3.5161
1 14.5988 14.9929 21.1083 21.1096 3.5312 3.5314
2 13.8959 14.5997 20.0323 20.0330 3.5469 3.5470
3 13.2841 14.2353 19.1025 19.1028 3.5629 3.5630
4 12.7456 13.8965 18.2891 18.2890 3.5794 3.5795
5 12.2669 13.5803 17.5699 17.5696 3.5962 3.5963
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for spring constant factor between 1 and  106, the increase in 
nonlocal parameter tends to decrease the natural frequency 
in C–E and E–E boundary conditions and also for all values 
of spring stiffness in S-E boundary condition.

Table  8 illustrates the effect of the natural frequen-
cies for various elastic boundary conditions with different 
length and spring constant factors. As shown in Table 8, the 
surface effect is very sensitive to beam length and thick-
ness. At the nanoscale, the fundamental frequency of the 
nanobeam by considering surface effect is approximately 
3–4 orders higher than that of a classical beam including 
nonlocal parameters. At the microscale, the surface effect 
decreases and it is approximately 1.5–2 times greater than 
the classical. At a macroscale, surface effects are com-
pletely ignored and natural frequency of beam is similar to 
the classical beam.

Table  9 implies the influences of elastic foundation 
including Winkler and Pasternak foundation on the natu-
ral frequencies. It can be readily observed that the value 
of the natural frequency has a direct relation with the stiff-
ness of the elastic foundation. By increasing the value of 
Winkler–Pasternak foundation coefficients, the natural fre-
quency increases which indicates the fact that by consider-
ing the elastic foundation, the stiffness of nanobeam will be 
increased, and hence, natural frequency will be grown.

In Table 10, effects of temperature change on the natu-
ral frequency of nanobeam are tabulated. With the increase 
of temperature change, generally, the natural frequencies 

Fig. 2  The variation of the first frequency of classical beam versus 
aspect ratio in compare with the molecular dynamic results repre-
sented in Ref [51]

Table 6  Convergence study of nanobeam for the first three natural frequencies by considering surface effects 
(L∕h = 10, L = 20 nm, � = 2 nm2, h∕b = 2)

k C–F S–S C–S C–C

�̄� 1 �̄�2 �̄�3 �̄� 1 �̄�2 �̄�3 �̄� 1 �̄�2 �̄�3 �̄� 1 �̄�2 �̄�3

11 9.8174 – – 14.7937 – – 23.1375 – – – – –
13 9.8738 27.2969 – 14.7544 – – 22.6873 – – – – –
15 9.8705 28.8027 – 14.7568 35.5376 – 22.7261 – – 32.2324 63.7672 –
17 9.8707 28.4702 – 14.7567 38.2431 – 22.7231 – – 32.8312 45.1801 –
19 9.8707 28.5145 – 14.7567 37.4262 – 22.7233 45.6402 – 32.7439 75.0133 –
21 9.8707 28.5099 – 14.7567 37.4976 53.8799 22.7233 46.3445 – 32.7519 52.4444 –
23 9.8707 28.5102 – 14.7567 37.4906 3755.63 22.7233 46.2342 – 32.7513 56.3325 –
25 9.8707 28.5102 – 14.7567 37.4912 58.6594 22.7233 46.2452 – 32.7513 54.7216 –
27 9.8707 28.5102 58.6377 14.7567 37.4911 59.4117 22.7233 46.2442 – 32.7513 54.8436 –
29 9.8707 28.5102 59.9023 14.7567 37.4911 59.2893 22.7233 46.2443 68.2207 32.7513 54.8293 –
31 9.8707 28.5102 59.6625 14.7567 37.4911 59.3021 22.7233 46.2443 68.4173 32.7513 54.8307 76.5658
33 9.8707 28.5102 59.6865 14.7567 37.4911 59.3021 22.7233 46.2443 68.3926 32.7513 54.8306 78.7267
35 9.8707 28.5102 59.6842 14.7567 37.4911 59.3010 22.7233 46.2443 68.3951 32.7513 54.8306 78.1387
37 9.8707 28.5102 59.6844 14.7567 37.4911 59.3010 22.7233 46.2443 68.3949 32.7513 54.8306 78.1989
39 9.8707 28.5102 59.6844 14.7567 37.4911 59.3010 22.7233 46.2443 68.3949 32.7513 54.8306 78.1919
41 9.8707 28.5102 59.6844 14.7567 37.4911 59.3010 22.7233 46.2443 68.3949 32.7513 54.8306 78.1926
43 9.8707 28.5102 59.6844 14.7567 37.4911 59.3010 22.7233 46.2443 68.3949 32.7513 54.8306 78.1926
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Table 7  Non-dimensional fundamental frequency corresponding to first mode obtained with various elastic boundary condition (L = 20  nm, 
L/h = 10, T = 20, V = 0.02)

*NE nonlocal effect, NSE coupling nonlocal and surface effects

� µ=0 µ=1 µ=2 µ=3 µ=4 µ=5

NSE* NE* NSE* NE* NSE* NE* NSE* NE* NSE* NE* NSE* NE*

C–E
 10−6 9.9778 3.9528 9.9796 3.9463 9.9815 3.9397 9.9835 3.9332 9.9857 3.9267 9.9881 3.9202
 10−5 9.9778 3.9529 9.9796 3.9463 9.9815 3.9397 9.9835 3.9332 9.9858 3.9267 9.9881 3.9202
 10−4 9.9780 3.9529 9.9798 3.9464 9.9817 3.9398 9.9837 3.9333 9.9859 3.9267 9.9883 3.9202
 10−3 9.9798 3.9536 9.9815 3.9471 9.9834 3.9405 9.9854 3.9339 9.9876 3.9274 9.9899 3.9208
 10−2 9.9977 3.9608 9.9991 3.9540 10.0006 3.9473 10.0022 3.9405 10.0040 3.9338 10.0059 3.9271
 10−1 10.1661 4.0300 10.1639 4.0215 10.1618 4.0129 10.1599 4.0044 10.1581 3.9959 10.1563 3.9874
 1 11.2675 4.5629 11.2432 4.5418 11.2189 4.5207 11.1947 4.4996 11.1705 4.4784 11.1463 4.4572
 101 15.6067 6.97205 15.5388 6.9166 15.4713 6.86153 15.4041 6.8066 15.3373 6.7520 15.2708 6.6976
 102 29.4752 14.7494 29.3060 14.6149 29.1381 14.4814 28.9714 14.3487 28.8059 14.2169 28.6416 14.0860
 103 32.9045 20.6253 32.6549 20.2668 32.4089 19.9189 32.1665 19.5812 31.9275 19.2531 31.6918 18.9344
 104 33.1037 21.3705 32.8487 20.9584 32.5976 20.5618 32.3502 20.1798 32.1065 19.8113 31.8662 19.4557
 105 33.1225 21.4439 32.8670 21.0262 32.6154 20.6246 32.3676 20.2381 32.1233 19.8655 31.8827 19.5061
 106 33.1243 21.4512 32.8688 21.0330 32.6172 20.6309 32.3693 20.2439 32.1250 19.8709 31.8843 19.5111

S–E
 10−6 0.0051 0.0012 0.0051 0.0016 0.0051 0.0011 0.0051 0.0011 0.0051 0.0011 0.0050 0.0011
 10−5 0.0162 0.0037 0.0162 0.0037 0.0161 0.0036 0.0160 0.0035 0.0160 0.0034 0.0160 0.0033
 10−4 0.0512 0.0118 0.0511 0.0116 0.0509 0.0113 0.0508 0.0111 0.0506 0.0108 0.0505 0.0106
 10−3 0.1619 0.0374 0.1615 0.0366 0.1610 0.0358 0.1605 0.0351 0.1600 0.0343 0.1596 0.0335
 10−2 0.5110 0.1184 0.5095 0.1160 0.5080 0.1136 0.5065 0.1111 0.5050 0.1086 0.5035 0.1060
 10−1 1.5821 0.3787 1.5773 0.3715 1.5724 0.3642 1.5674 0.3567 1.5625 0.34906 1.5576 0.3412
 1 4.3380 1.2819 4.3213 1.26392 4.3047 1.24581 4.28815 1.22752 4.2715 1.20905 4.2549 1.19038
 101 10.3349 4.3342 10.2882 4.29522 10.2417 4.25632 10.1955 4.21753 10.1494 4.17885 10.1036 4.14027
 102 20.6655 10.7741 20.5323 10.6509 20.4004 10.5289 20.2698 10.4082 20.1405 10.2886 20.0125 10.1702
 103 22.7096 13.7547 22.5386 13.5090 22.3701 13.2710 22.2038 13.0404 22.0399 12.8166 21.8783 12.5994
 104 22.8789 14.1004 22.7045 13.8342 22.5327 13.5775 22.3634 13.3297 22.1965 13.0901 22.0319 12.8583
 105 22.8954 14.1350 22.7207 13.8667 22.5486 13.6081 22.3790 13.3584 22.2118 13.1172 22.0469 12.8839
 106 22.8970 14.1384 22.7223 13.8700 22.5502 13.6111 22.3805 13.3613 22.2133 13.1199 22.0484 12.8865

E–E
 10−6 10.3705 4.0853 10.3731 4.0785 10.3759 4.0716 10.3789 4.0649 10.3820 4.0581 10.3854 4.0513
 10−5 10.0155 3.9656 10.0173 3.9590 10.0193 3.9524 10.0215 3.9458 10.0238 3.9393 10.0262 3.9328
 10−4 9.9817 3.9542 9.9835 3.9476 9.9854 3.9411 9.9875 3.9345 9.9897 3.9280 9.9921 3.9215
 10−3 9.9802 3.9538 9.9819 3.9472 9.9838 3.9406 9.9858 3.9340 9.9879 3.9275 9.9903 3.9210
 10−2 9.9977 3.9608 9.9991 3.9540 10.0006 3.9473 10.0023 3.9405 10.0040 3.9338 10.0060 3.9271
 10−1 10.1661 4.0300 10.1639 4.0215 10.1619 4.0129 10.1599 4.0044 10.1581 3.9959 10.1563 3.9874
 1 11.2675 4.5629 11.2432 4.5418 11.2189 4.5207 11.1947 4.4996 11.1705 4.4784 11.1463 4.4572
 101 15.6067 6.9720 15.5388 6.9166 15.4713 6.8615 15.4041 6.8066 15.3373 6.7520 15.2708 6.6976
 102 29.4752 14.7494 29.3060 14.6149 29.1381 14.4814 28.9714 14.3487 28.8059 14.2169 28.6416 14.0860
 103 32.9045 20.6253 32.6549 20.2668 32.4089 19.9189 32.1665 19.5812 31.9275 19.2531 31.6918 18.9344
 104 33.1037 21.3705 32.8487 20.9584 32.5976 20.5618 32.3502 20.1798 32.1065 19.8113 31.8662 19.4557
 105 33.1225 21.4439 32.8670 21.0262 32.6154 20.6246 32.3676 20.2381 32.1233 19.8655 31.8827 19.5061
 106 33.1243 21.4512 32.8688 21.0330 32.6172 20.6309 32.3693 20.2439 32.1250 19.8709 31.8843 19.5111
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Table 8  The natural frequency of nanobeam with various length and spring constant factor by considering surface effect 
(L∕h = 10, b∕h = 2, ΔT = 20◦C, V = 0.02, � = 2 nm2)

� L

10 × 10−9 20 × 10−9 50 × 10−9 100 × 10−9 10−6 10 × 10−6 100 × 10−6 10−3 10−2

C–E
 10−6 13.4097 9.9815 7.5566 6.1365 3.8915 3.5393 3.5015 3.4977 3.4973
 10−5 13.4096 9.9815 7.5566 6.1365 3.8915 3.5393 3.5015 3.4977 3.4974
 10−4 13.4093 9.9817 7.5568 6.1367 3.8917 3.5395 3.5017 3.4979 3.4975
 10−3 13.4056 9.9834 7.5590 6.1388 3.8934 3.5411 3.5034 3.4996 3.4992
 10−2 13.3695 10.0006 7.5805 6.1591 3.9105 3.5578 3.5200 3.5162 3.5158
 10−1 13.0865 10.1618 7.7847 6.3522 4.0723 3.7152 3.6770 3.6732 3.6728
 1 12.4306 11.2189 9.14832 7.6521 5.1416 4.7466 4.7045 4.7002 4.6998
 101 15.1948 15.4713 13.6616 11.7843 8.2242 7.6398 7.5772 7.5709 7.5702
 102 26.5341 29.1381 27.0504 23.6660 16.5468 15.3288 15.1975 15.1842 15.1829
 103 27.8308 32.4089 33.2265 30.8225 23.1742 21.6626 21.4971 21.4804 21.4787
 104 27.9042 32.5976 33.6978 31.5010 24.0240 22.5080 22.3415 22.3246 22.3230
 105 27.9112 32.6154 33.7423 31.5657 24.1076 22.5915 22.4249 22.4081 22.4064
 106 27.9119 32.6172 33.7467 31.5722 24.1159 22.5999 22.4332 22.4164 22.4147

S–E
 10−6 0.0055 0.0050 0.0042 0.0036 0.0027 0.0026 0.0026 0.0026 0.0026
 10−5 0.0175 0.0161 0.0134 0.0115 0.0087 0.0083 0.0082 0.0082 0.0082
 10−4 0.0555 0.0509 0.0424 0.0366 0.0275 0.0262 0.0261 0.0261 0.0261
 10−3 0.1757 0.1610 0.1341 0.1157 0.0872 0.0831 0.0826 0.0826 0.0826
 10−2 0.5539 0.5080 0.4234 0.3653 0.2753 0.2623 0.2609 0.2608 0.2608
 10−1 1.6985 1.5724 1.3171 1.1377 0.8570 0.8162 0.8119 0.8115 0.8114
 1 4.4276 4.3047 3.7075 3.2195 2.4058 2.2837 2.2708 2.2695 2.2694
 101 10.0144 10.2417 9.0876 7.8838 5.6281 5.2638 5.2249 5.2210 5.2206
 102 18.2118 20.4004 19.6030 17.4727 12.5413 11.6730 11.5792 11.5697 11.5688
 103 19.2834 22.3701 22.8599 21.2239 16.1294 15.1323 15.0233 15.0123 15.0112
 104 19.3704 22.5327 23.1578 21.6015 16.5533 15.5510 15.4412 15.4302 15.4290
 105 19.3789 22.5486 23.1870 21.6387 16.5957 15.5929 15.4831 15.4720 15.4709
 106 19.3797 22.5502 23.1899 21.6424 16.5999 15.5971 15.4873 15.4762 15.4751

E–E
 10−6 13.7989 10.3759 8.3227 7.5799 – – – – –
 10−5 13.4472 10.0193 7.6248 6.2480 4.8471 – – – –
 10−4 13.4130 9.9855 7.5636 6.1477 3.9641 – – – –
 10−3 13.4059 9.9838 7.5597 6.1399 3.9005 3.6076 – – –
 10−2 13.3695 10.0006 7.5807 6.1593 3.9113 3.5644 3.5859 – –
 10−1 13.0865 10.1619 7.7848 6.3523 4.0724 3.7159 3.6835 3.7395 –
 1 12.4306 11.2189 9.1483 7.6521 5.1416 4.7468 4.7052 4.7073 4.7727
 101 15.1948 15.4713 13.6616 11.7843 8.2243 7.6399 7.5773 7.5718 7.5790
 102 26.5341 29.1381 27.0504 23.6660 16.5468 15.3288 15.1975 15.1844 15.1845
 103 27.8308 32.4089 33.2265 30.8225 23.1742 21.6626 21.4971 21.4804 21.4791
 104 27.9042 32.5976 33.6978 31.5010 24.0240 22.5080 22.3415 22.3246 22.3230
 105 27.9112 32.6154 33.7423 31.5657 24.1076 22.5915 22.4249 22.4081 22.4064
 106 27.9119 32.6172 33.7467 31.5722 24.1159 22.5999 22.4332 22.4164 22.4147
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Table 9  The natural frequency of nanobeam with various spring constant factor by considering surface effect and nonlocal effect for differenr 
values of elastic foundation (L = 20 nm, L∕h = 10, b∕h = 2, ΔT = 20 ◦C, V = 0.02, � = 2 nm2)

� Kp = 0 Kp = 10 Kp = 100

Kw = 0 Kw = 10 kw = 100 Kw = 0 Kw = 10 kw = 100 Kw = 0 Kw = 10 kw = 100

C–E
 10−6 9.9815 10.5671 14.9464 9.3370 9.9407 14.3494 6.0093 6.8243 11.8765
 10−5 9.9815 10.5671 14.9464 9.3370 9.9407 14.3494 6.0095 6.8245 11.8766
 10−4 9.9817 10.5672 14.9464 9.3373 9.9410 14.3494 6.0112 6.8260 11.8774
 10−3 9.9834 10.5687 14.9461 9.3405 9.9438 14.3503 6.0289 6.8415 11.8856
 10−2 10.0006 10.5832 14.9436 9.3719 9.9718 14.3590 6.2021 6.9931 11.9663
 10−1 10.1618 10.7200 14.9237 9.6631 10.2319 14.4416 7.6455 8.2893 12.7029
 1 11.2189 11.6451 14.9766 11.3734 11.7884 15.0420 13.5899 13.9213 16.6140
 101 15.4713 15.7106 17.7202 16.1267 16.3563 18.2940 21.1391 21.3147 22.8342
 102 29.1381 29.2385 30.1202 29.7701 29.8694 30.7425 34.7129 34.8040 35.6097
 103 32.4089 32.4693 33.0072 33.2230 33.2820 33.8080 39.7753 39.8255 40.2739
 104 32.5976 32.6558 33.1748 33.4222 33.4790 33.9858 40.0767 40.1244 40.5508
 105 32.6154 32.6734 33.1906 33.4410 33.4976 34.0026 40.1048 40.1523 40.5767
 106 32.6172 32.6752 33.1922 33.4429 33.4995 34.0043 40.1076 40.1550 40.5793

S–E
 10−6 0.0050 3.1623 10.0000 0.0065 3.1623 10.0000 0.0132 3.1623 10.0000
 10−5 0.0161 3.1623 10.0000 0.0205 3.1623 10.0000 0.0416 3.1626 10.0001
 10−4 0.0509 3.1627 10.0000 0.0647 3.1629 10.0001 0.1317 3.1650 10.0008
 10−3 0.1610 3.1660 10.0002 0.2045 3.1686 10.0010 0.4163 3.1893 10.0077
 10−2 0.5080 3.1995 10.0019 0.6450 3.2242 10.0102 1.3127 3.4212 10.0766
 10−1 1.5724 3.5031 10.0211 1.9883 3.7091 10.0978 4.0364 5.1105 10.7022
 1 4.3048 5.2255 10.3029 5.2583 6.0368 10.7456 10.2991 10.7212 13.9560
 101 10.2417 10.5997 13.3917 11.1536 11.4841 14.1100 17.1797 17.3993 19.2617
 102 20.4004 20.5274 21.6265 21.3239 21.4471 22.5162 27.9311 28.0352 28.9500
 103 22.3701 22.4606 23.2587 23.4159 23.5027 24.2683 31.2475 31.3138 31.9034
 104 22.5327 22.6206 23.3959 23.5878 23.6718 24.4145 31.5131 31.5765 32.1417
 105 22.5486 22.6362 23.4093 23.6045 23.6883 24.4288 31.5387 31.6019 32.1648
 106 22.5502 22.6378 23.4106 23.6062 23.6900 24.4302 31.5413 31.6044 32.1671

E–E
 10−6 10.3759 10.9448 15.2464 9.7270 10.3119 14.6374 6.3514 7.1301 12.0698
 10−5 10.0193 10.6032 14.9752 9.3742 9.9761 14.3768 6.0413 6.8528 11.8943
 10− 4 9.9855 10.5708 14.9493 9.3410 9.9445 14.3522 6.0144 6.8288 11.8792
 10−3 9.9838 10.5690 14.9464 9.3409 9.9441 14.3506 6.0292 6.8417 11.8858
 10−2 10.0006 10.5832 14.9437 9.3720 9.9718 14.3590 6.2021 6.9932 11.9663
 10−1 10.1619 10.7200 14.9237 9.6631 10.2319 14.4416 7.6455 8.2893 12.7029
 1 11.2189 11.6451 14.9766 11.3734 11.7884 15.0420 13.5899 13.9213 16.6140
 101 15.4713 15.7106 17.7202 16.1267 16.3563 18.2940 21.1391 21.3147 22.8342
 102 29.1381 29.2385 30.1202 29.7701 29.8694 30.7425 34.7129 34.8040 35.6097
 103 32.4089 32.4693 33.0072 33.2230 33.2820 33.8080 39.7753 39.8255 40.2739
 104 32.5976 32.6558 33.1748 33.4222 33.4790 33.9858 40.0767 40.1244 40.5508
 105 32.6154 32.6734 33.1906 33.4410 33.4976 34.0026 40.1048 40.1523 40.5767
 106 32.6172 32.6752 33.1922 33.4429 33.4995 34.0043 40.1076 40.1550 40.5793
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Table 10  The natural frequency of nanobeam by considering surface and nonlocal effects for various spring constant factor and temperature 
change (L = 20 nm, L∕h = 10, h∕b = 0.2, V = 0.2, � = 2 nm2)

� ΔT

0 10 20 50 100 150 200

C–E
 10−6 11.2168 11.2132 11.2096 11.1989 11.1811 11.1634 11.1458
 10−5 11.2168 11.2132 11.2096 11.1989 11.1811 11.1634 11.1458
 10−4 11.2167 11.2132 11.2096 11.1989 11.1811 11.1633 11.1457
 10−3 11.2161 11.2125 11.2089 11.1982 11.1805 11.1628 11.1452
 10−2 11.2097 11.2062 11.2027 11.1922 11.1747 11.1574 11.1401
 10−1 11.1550 11.1521 11.1491 11.1404 11.1259 11.1114 11.0970
 1 11.0787 11.0789 11.0790 11.0795 11.0804 11.0813 11.0822
 101 14.4191 14.4218 14.4245 14.4326 14.4461 14.4595 14.4730
 102 28.1328 28.1354 28.1379 28.1456 28.1584 28.1712 28.1839
 103 31.1273 31.1305 31.1338 31.1435 31.1597 31.1759 31.1921
 104 31.3003 31.3036 31.3069 31.3167 31.3331 31.3495 31.3658
 105 31.3167 31.3199 31.3232 31.3331 31.3495 31.3659 31.3823
 106 31.3183 31.3216 31.3248 31.3347 31.3511 31.3675 31.3839

S–E
 10−6 0.0008 0.0009 0.0009 0.0010 0.0012 0.0013 0.0014
 10−5 0.0026 0.0027 0.0029 0.0032 0.0037 0.0041 0.0044
 10−4 0.0083 0.0087 0.0091 0.0101 0.0116 0.0129 0.0141
 10−3 0.0264 0.0276 0.0287 0.0319 0.0366 0.0408 0.0445
 10−2 0.0870 0.0906 0.0941 0.1038 0.1182 0.1310 0.1426
 10−1 0.3623 0.3704 0.3784 0.4013 0.4368 0.4696 0.5003
 1 2.0900 2.0984 2.1069 2.1321 2.1734 2.2139 2.2537
 101 8.6518 8.6561 8.6604 8.6734 8.6950 8.7165 8.7380
 102 18.8807 18.8846 18.8886 18.9004 18.9202 18.9399 18.9596
 103 20.6738 20.6782 20.6826 20.6957 20.7176 20.7394 20.7612
 104 20.8232 20.8277 20.8321 20.8453 20.8673 20.8893 20.9113
 105 20.8379 20.8423 20.8467 20.8599 20.8819 20.9039 20.9259
 106 20.8393 20.8437 20.8481 20.8614 20.8834 20.9054 20.9274

E–E
 10−6 11.6153 11.6117 11.6081 11.5974 11.5796 11.5618 11.5442
 10−5 11.2554 11.2518 11.2482 11.2375 11.2197 11.2020 11.1843
 10−4 11.2206 11.2170 11.2134 11.2027 11.1849 11.1672 11.1495
 10−3 11.2165 11.2129 11.2093 11.1986 11.1809 11.1632 11.1456
 10−2 11.2098 11.2062 11.2027 11.1922 11.1748 11.1574 11.1401
 10−1 11.1550 11.1521 11.1491 11.1404 11.1259 11.1114 11.0970
 1 11.0787 11.0789 11.0790 11.0795 11.0804 11.0813 11.0822
 101 14.4191 14.4218 14.4245 14.4326 14.4461 14.4595 14.4730
 102 28.1328 28.1354 28.1379 28.1456 28.1584 28.1712 28.1839
 103 31.1273 31.1305 31.1338 31.1435 31.1597 31.1759 31.1921
 104 31.3003 31.3036 31.3069 31.3167 31.3331 31.3495 31.3658
 105 31.3166 31.3199 31.3232 31.3331 31.3495 31.3659 31.3823
 106 31.3183 31.3216 31.3248 31.3347 31.3511 31.3675 31.3839
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Table 11  The natural frequency of nanobeam by considering surface and nonlocal effects for various spring constant factor and voltage external 
(L = 20 nm, L∕h = 10, h∕b = 2, � = 2nm2, ΔT = 20

0
C)

� V

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

C–E
 10−6 8.8600 9.0887 9.3313 9.5896 9.8656 10.1619 10.4817 10.8291 11.2096
 10−5 8.8601 9.0887 9.3313 9.5896 9.8656 10.1619 10.4817 10.8291 11.2096
 10−4 8.8605 9.0891 9.3316 9.5899 9.8658 10.1621 10.4818 10.8291 11.2096
 10−3 8.8649 9.0929 9.3348 9.5924 9.8678 10.1634 10.4825 10.8292 11.2089
 10−2 8.9084 9.1304 9.3664 9.6180 9.8874 10.1769 10.4897 10.8299 11.2027
 10−1 9.3075 9.4763 9.6588 9.8564 10.0709 10.3044 10.5596 10.8397 11.1491
 1 11.5322 11.4510 11.3750 11.3051 11.2420 11.1868 11.1403 11.1039 11.0790
 101 16.6647 16.4009 16.1329 15.8605 15.5835 15.3016 15.0147 14.7224 14.4245
 102 30.2918 30.0357 29.7761 29.5129 29.2460 28.9752 28.7003 28.4213 28.1379
 103 33.8995 33.5668 33.2307 32.8909 32.5474 32.2000 31.8488 31.4934 31.1338
 104 34.1080 33.7707 33.4300 33.0858 32.7378 32.3861 32.0305 31.6708 31.3069
 105 34.1276 33.7899 33.4488 33.1041 32.7558 32.4037 32.0476 31.6875 31.3232
 106 34.1295 33.7918 33.4507 33.1060 32.7576 32.4054 32.0493 31.6892 31.3248

S–E
 10−6 0.0074 0.0070 0.0065 0.0059 0.0054 0.0047 0.0039 0.0028 0.0009
 10−5 0.0235 0.0220 0.0205 0.0188 0.0169 0.0148 0.0122 0.0089 0.0029
 10−4 0.0742 0.0697 0.0648 0.0595 0.0535 0.0467 0.0387 0.0282 0.0091
 10−3 0.2346 0.2203 0.2049 0.1880 0.1692 0.1478 0.1223 0.0892 0.0287
 10−2 0.7397 0.6947 0.6461 0.5930 0.5338 0.4664 0.3861 0.2821 0.0941
 10−1 2.2774 2.1400 1.9918 1.8301 1.6506 1.4465 1.2050 0.8959 0.3784
 1 5.9427 5.6157 5.2666 4.8905 4.4805 4.0259 3.5093 2.8970 2.1069
 101 11.8694 11.5217 11.1619 10.7890 10.4013 9.9971 9.5742 9.1298 8.6604
 102 22.0699 21.7054 21.3325 20.9507 20.5596 20.1585 19.7468 19.3237 18.8886
 103 24.2692 23.8513 23.4257 22.9919 22.5495 22.0980 21.6368 21.1652 20.6826
 104 24.4492 24.0273 23.5977 23.1600 22.7137 22.2584 21.7935 21.3183 20.8321
 105 24.4667 24.0444 23.6144 23.1764 22.7298 22.2741 21.8088 21.3332 20.8467
 106 24.4685 24.0461 23.6161 23.1780 22.7314 22.2757 21.8103 21.3347 20.8481

E–E
 10−6 9.2458 9.4766 9.7212 9.9815 10.2593 10.5573 10.8785 11.2270 11.6081
 10−5 8.8967 9.1256 9.3685 9.6270 9.9033 10.1999 10.5199 10.8675 11.2482
 10−4 8.8642 9.0928 9.3353 9.5936 9.8696 10.1658 10.4856 10.8330 11.2134
 10−3 8.8653 9.0932 9.3352 9.5928 9.8682 10.1638 10.4829 10.8296 11.2093
 10−2 8.9084 9.1304 9.3664 9.6181 9.8874 10.1769 10.4897 10.8299 11.2027
 10−1 9.3075 9.4763 9.6588 9.8564 10.0709 10.3044 10.5596 10.8397 11.1491
 1 11.5322 11.4510 11.3750 11.3051 11.2420 11.1868 11.1403 11.1039 11.0790
 101 16.6647 16.4009 16.1329 15.8605 15.5835 15.3016 15.0147 14.7224 14.4245
 102 30.2918 30.0357 29.7761 29.5129 29.2460 28.9752 28.7003 28.4213 28.1379
 103 33.8995 33.5668 33.2307 32.8909 32.5474 32.2001 31.8488 31.4934 31.1338
 104 34.1080 33.7707 33.4300 33.0858 32.7378 32.3861 32.0305 31.6708 31.3069
 105 34.1276 33.7899 33.4488 33.1041 32.7558 32.4037 32.0476 31.6875 31.3232
 106 34.1295 33.7918 33.4507 33.1060 32.7576 32.4054 32.0493 31.6892 31.3248
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increase; the reason is that the increase in temperature 
change brings in more increase in the nanobeam stiffness 
and finally tends to grow in natural frequency. This behav-
ior is right just for spring constant factor between 1 and 
 106 and for S–E completely. For C–E and E–E boundary 
condition, the natural frequency decreases in the range of 
 10−6–1.

Table  11 presents the effect of the external voltage on 
the first natural frequency of nanobeam for various elastic 
boundary conditions. As it is observed, the positive volt-
age decreases the natural frequency and negative voltage 
increases the natural frequency generally. This is due to 
the fact that positive voltage weakens the nanobeam stiff-
ness and negative voltage strengthens the nanobeam stiff-
ness. But for C–E and E–E, this is opposite in the range of 
 10−6–1 that natural frequency increases.

The effects of magnetic field on the natural frequency are 
examined in Table 12. It is found that natural frequency of 
nanobeam increases with increasing the value of magnetic 
potential. Obviously, the effect of external voltage is oppo-
site to the magnetic potential. For this analysis, the behav-
iors of C–E and E–E boundary conditions are opposite to 
S–E within  10−6–1 that the natural frequency decreases.

According to Tables  13, 14 and 15, the influences of 
each rotational and transitional spring constant factor 
change on the natural frequencies for C–E, S–E, and E–E 
boundary conditions are listed, respectively. As indicated 
from numerical results which are presented in detail, for a 
constant value of transitional spring, as the rotational spring 
increases, the natural frequencies increase. Moreover, for a 
constant value of transitional spring, with the increase in 
the value of rotational spring, the natural frequencies tend 
to increase.

The effects of external voltage and temperature change 
on the natural frequencies are investigated in Table  16. 
It can be seen that by increasing external voltage, for the 
spring stiffness within  10−6–1 in C–E and E–E, the natu-
ral frequencies increase and for S–E, natural frequency 
declines. Also, in the range of 1–106, by growing external 
voltage, for all boundary condition, the natural frequency 
decreases. Also, by rising temperature change for C–E 
and E–E within  10−6–1, the natural frequency decreases, 
whereas for S–E, natural frequency rises. Also, in the range 
of 1–106, growing temperature changes, natural frequency 
increases.

Depicted in Figs.  3, 4 and 5 are the variation of natu-
ral frequency for C–E, S–E, E–E boundary conditions by 
incorporating coupling of surface effect and nonlocal effect 
and just by considering nonlocal effect without surface 
effects, corresponding to various values of nonlocal param-
eters and spring constant factor. It can be observed that by 
considering the surface effect and by increasing the value 
of spring constant factor, natural frequency increases. It Ta
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Table 13  The natural frequency of nanobeam for C–E boundary condition (L = 20 nm, L∕h = 10, h∕b = 2, � = 2nm2, ΔT = 20)

�TR �RR

1 10 102 103 104 105 106

1 10.6732 10.0973 9.9625 9.9472 9.9456 9.9455 9.9455
10 15.8327 14.6525 14.3156 14.2754 14.2713 14.2709 14.2709
102 22.2031 26.0375 28.4937 28.8950 28.9378 28.9421 28.9425
103 23.1836 28.4689 31.2748 31.6534 31.6924 31.6963 31.6967
104 23.2793 28.6625 31.4314 31.7980 31.8357 31.8395 31.8398
105 23.2888 28.6813 31.4462 31.8116 31.8491 31.8529 31.8533
106 23.2898 28.6831 31.4477 31.8130 31.8505 31.8542 31.8546

Table 14  First natural frequency of nanobeam for S-E boundary condition (L = 20 nm, L∕h = 10, h∕b = 2, � = 2 nm2, ΔT = 20
0
C)

�TR �RR

1 10 102 103 104 105 106

1 4.4805 4.7923 4.8636 4.8716 4.8724 4.8725 4.8725
10 10.4749 10.4013 10.3787 10.3760 10.3757 10.3756 10.3756
102 15.4602 18.8116 20.5596 20.8124 20.8389 20.8415 20.8418
103 16.2193 20.3275 22.2874 22.5496 22.5766 22.5793 22.5796
104 16.2963 20.4674 22.4274 22.6870 22.7138 22.7164 22.7167
105 16.3040 20.4812 22.4411 22.7004 22.7271 22.7298 22.7300
106 16.3047 20.4826 22.4424 22.7017 22.7284 22.7311 22.7314

Table 15  First natural frequency of P-FG nanobeam for E-E boundary condition (L = 20 nm, L∕h = 10, h∕b = 2, � = 2 nm2, ΔT = 20)

�TL − �TR �RR − �RL

1 10 102 103 104 105 106

1 10.6732 10.0973 9.9625 9.9472 9.9456 9.9455 9.9455
10 15.8327 14.6525 14.3156 14.2754 14.2713 14.2709 14.2709
102 22.2031 26.0375 28.4937 28.8950 28.9378 28.9421 28.9425
103 23.1836 28.4689 31.2748 31.6534 31.6924 31.6963 31.6967
104 23.2793 28.6625 31.4314 31.7980 31.8357 31.8395 31.8398
105 23.2888 28.6813 31.4462 31.8116 31.8491 31.8529 31.8533
106 23.2898 28.6831 31.4477 31.8130 31.8505 31.8542 31.8546

means that surface energy effects and spring constant factor 
play more important role than the nonlocal parameter.

And also, the efficiency of piezoelectric material is 
described as follows:

The variation of efficiency of piezoelectric material ver-
sus voltage is depicted in Fig. 6 for various classical bound-
ary conditions. As it can be observed, the negative voltage 
tends to increase the natural frequency of nanobeam, while 

Efficiency of piezoelectric material

=
Natural frequency of piezoelectric nanobeam

Natural frequency of nanobeam

the positive voltage decreases the value of natural frequen-
cies. Also, for the C–F boundary condition, the voltage sign 
has inverse influence on the natural frequencies in compari-
son with other boundary conditions.

4  Conclusion

In the present study, the magneto-thermo-mechanical 
vibration analysis of piezoelectric nanobeam rested in elas-
tic medium is studied by considering surface and nonlocal 
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Table 16  The natural frequency of nanobeam with various spring constant factor by considering surface effect and nonlocal effect 
(L = 20 nm, L∕h = 10, h∕b = 2, � = 2 nm2)

� V = −0.2 V = 0 V = 0.2

T = 0 T = 25 T = 50 T = 0 T = 25 T = 50 T = 0 T = 25 T = 50

C–E
 10−6 8.8640 8.8590 8.8541 9.8707 9.8643 9.8579 11.2168 11.2079 11.1989
 10−5 8.8641 8.8591 8.8541 9.8707 9.8643 9.8579 11.2168 11.2079 11.1989
 10−4 8.8645 8.8595 8.8546 9.8709 9.8645 9.8581 11.2167 11.2078 11.1989
 10−3 8.8689 8.8639 8.8590 9.8729 9.8665 9.8601 11.2161 11.2072 11.1982
 10−2 8.9122 8.9074 8.9026 9.8924 9.8861 9.8799 11.2097 11.2009 11.1922
 10−1 9.3104 9.3068 9.3031 10.0749 10.0699 10.0649 11.1550 11.1477 11.1404
 1  11.5307 11.5326 11.5345 11.2410 11.2423 11.2436 11.0787 11.0791 11.0795
 101 16.6600 16.6659 16.6717 15.5785 15.5847 15.5910 14.4191 14.4259 14.4326
 102 30.2873 30.2930 30.2987 29.2412 29.2472 29.2532 28.1328 28.1392 28.1456
 103 33.8936 33.9010 33.9084 32.5412 32.5489 32.5567 31.1273 31.1354 31.1435
 104 34.1019 34.1095 34.1170 32.7316 32.7394 32.7472 31.3003 31.3085 31.3167
 105 34.1215 34.1291 34.1366 32.7495 32.7574 32.7652 31.3166 31.3249 31.3331
 106 34.1235 34.1310 34.1385 32.7513 32.7592 32.7670 31.3183 31.3265 31.3347

S–E
 10−6 0.0074 0.0074 0.0074 0.0053 0.0054 0.0054 0.0008 0.0009 0.0010
 10−5 0.0234 0.0235 0.0235 0.0169 0.0169 0.0170 0.0026 0.0029 0.0032
 10−4 0.0741 0.0742 0.0743 0.0534 0.0536 0.0537 0.0083 0.0092 0.0101
 10−3 0.2343 0.2346 0.2349 0.1689 0.1693 0.1698 0.0264 0.0293 0.0319
 10−2 0.7389 0.7399 0.7409 0.5327 0.5341 0.5355 0.0870 0.0958 0.1038
 10−1 2.2750 2.2779 2.2809 1.6472 1.6514 1.6557 0.3623 0.3823 0.4013
 1 5.9370 5.9441 5.9512 4.4728 4.4824 4.4920 2.0900 2.1111 2.1321
 101 11.8633 11.8710 11.8786 10.3942 10.4031 10.4120 8.6518 8.6626 8.6734
 102 22.0634 22.0715 22.0796 20.5525 20.5614 20.5702 18.8807 18.8906 18.9004
 103 24.2618 24.2711 24.2804 22.5415 22.5515 22.5615 20.6738 20.6848 20.6957
 104 24.4417 24.4511 24.4604 22.7057 22.7158 22.7259 20.8232 20.8343 20.8453
 105 24.4592 24.4686 24.4780 22.7217 22.7318 22.7419 20.8379 20.8489 20.8599
 106 24.461 24.4703 24.4797 22.7233 22.7334 22.7435 20.8393 20.8503 20.8614

E–E
 10−6 9.2498 9.2448 9.2398 10.2645 10.2580 10.2516 11.6153 11.6063 11.5974
 10−5 8.9007 8.8957 8.8908 9.9084 9.9020 9.8956 11.2554 11.2464 11.2375
 10−4 8.8682 8.8632 8.8582 9.8747 9.8683 9.8619 11.2206 11.2116 11.2027
 10−3 8.8692 8.8643 8.8593 9.8733 9.8669 9.8605 11.2165 11.2075 11.1986
 10−2 8.9123 8.9074 8.9026 9.8924 9.8862 9.8799 11.2098 11.2010 11.1922
 10−1 9.3104 9.3068 9.3032 10.0749 10.0699 10.0649 11.1550 11.1477 11.1404
 1 11.5307 11.5326 11.5345 11.2410 11.2423 11.2436 11.0787 11.0791 11.0795
 101 16.6600 16.6659 16.6717 15.5785 15.5847 15.5910 14.4191 14.4259 14.4326
 102 30.2873 30.2930 30.2987 29.2412 29.2472 29.2532 28.1328 28.1392 28.1456
 103 33.8936 33.9010 33.9084 32.5412 32.5489 32.5567 31.1273 31.1354 31.1435
 104 34.1019 34.1095 34.1170 32.7316 32.7394 32.7472 31.3003 31.3085 31.3167
 105 34.1215 34.1291 34.1366 32.7495 32.7574 32.7652 31.3166 31.3249 31.3331
 106 34.1235 34.1310 34.1385 32.7513 32.7592 32.7670 31.3183 31.3265 31.3347
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Fig. 3  The variation of the first 
dimensionless frequency of 
nanobeam with spring constant 
factor for different nonlocal 
parameters for C–E boundary 
condition (L = 20 nm, L/h = 10, 
h/b = 2)

effects for various elastic boundary conditions. To assume 
the elastic boundary condition, the rotational and tran-
sitional springs at each end are located which are used to 
introduce small deflections and moments. The main goal of 
the presented study is to investigate the influence of non-
local parameter, piezoelectric voltage, temperature change, 
surface effects, elastic medium, magnetic field and length 
of nanobeam natural frequencies for different values of 
spring constants in elastic supports. As it is shown, the 
Hamilton’s principle is used to derive the motion equations 

based on the Euler–Bernoulli beam model. Then, DTM as 
an efficient and accurate numerical tool was implemented 
to solve vibration equations of piezoelectric nanobeam with 
elastic boundary condition. The convergence study and val-
idation were also presented as well as the numerical results 
which clarified the influence of nonlocal parameter, piezo-
electric voltage, temperature change, surface effects, elas-
tic medium, magnetic field, length of nanobeam and spring 
constants on the first dimensionless natural frequency of 
piezoelectric nanobeam. Based on the presented numrecal 
results:
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Fig. 4  The variation of the first 
dimensionless frequency of 
nanobeam with spring constant 
factor for different nonlocal 
parameters with considering 
surface effect for S–E boundary 
condition (L = 20 nm, L/h = 10, 
h/b = 2)

1. Increasing the spring constants leads to increase in the 
natural frequencies for all named boundary conditions.

2. For the variation of spring constant from 10−6 to 1 in 
C–E and E–E, the obtained result has the manner near 
the C–F boundary condition which shows different 
behavior in each case.

3. As the temperature change increases, the natural fre-
quencies increase.

4. Increasing the voltage parameter from negative to posi-
tive amount tends to decrease the fundamental natural 
frequencies.

5. The natural frequencies decrease in the case that the 
nonlocal parameter increases.
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6. As the length of nanobeam increases from the 
nanoscale to macroscale, the natural frequencies 
decrease and reach the classical value.

7. The surface effects tend to increase the natural frequen-
cies which means the stiffness of nanobeam increases.
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