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Abstract Locally resonant acoustic metamaterials with

multi-resonators are generally regarded as a fine trend for

managing the bandgaps, the different effects of relevant

structural parameters on the bandgaps, which will be

numerically investigated in this paper. A two-step

homogenization method is extended to achieve the effec-

tive mass of multi-resonators metamaterial in the lattice

system. As comparison, the dispersive wave propagation in

lattice system and continuum model is studied. Then, the

different effects of relevant parameters on the center fre-

quencies and bandwidth of bandgaps are perfectly

revealed, and the steady-state responses in the continuum

models with purposed relevant parameters are additionally

clarified. The related results can well confirm that the

bandgaps exist around the undamped natural frequencies of

internal resonators, and also their bandwidth can be effi-

ciently controlled with the ensured center frequencies.

Moreover, the design of purposed multi-resonators acoustic

metamaterial in vibration control is presented and dis-

cussed by an example.

1 Introduction

The acoustic metamaterials (AMs), which have attracted

many significant attentions due to their distinctive proper-

ties recently, mainly focus on their negative dynamic

effective parameters, such as the negative bulk modulus

and mass density that are hardly observed in the traditional

natural materials [1]. In 2000, a seminal paper was pub-

lished for conceptually realizing an AM involving the

locally resonant structural units [2], which can exhibit the

negative mass near the natural frequency of internal res-

onator. Fang et al. [3] reported a class of ultrasonic meta-

materials with the subwavelength Helmholtz resonators

that can possess negative dynamic modulus near the reso-

nance frequency. The metamaterial simultaneously owning

double negativity was achieved by the independent com-

bination of structures consisting of the negative modulus

and mass density unit [4]. Subsequently, various metama-

terials with single or double negativity have been presented

based on different mechanisms [5–7]. When the wave-

length of elastic waves is long compared to the feature size

of metamaterials, the homogenization theories can be

employed because the metamaterials behave as effective

homogeneous media [8] in this situation. The lattice

models of metamaterials were constructed with concen-

trated masses and connected springs to investigate the

effective parameters [9]. Currently, a two-step homoge-

nization method (HM) was introduced to obtain the

effective parameters of single-resonator metamaterials,

which was more convenient for further analysis [10].

Meanwhile, many researchers have also devoted them-

selves to exploring various significant applications of the

AMs, such as the vibration/noise isolation [11–13], cloak

[14], waveguiding [15] and sensors applying in measuring

liquid properties [16] or nondestructive testing [17].

For locally resonant AMs with single resonator, the

frequency region of negative effective parameters is not

enough for their practical applications generally [10];

therefore, the optimizing process for the bandgaps of these

AMs is very necessary. For example, Lee et al. [18] and
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Yang et al. [19] presented a type of thin membrane-type

structures to construct broadband metamaterials, as well as

Ding et al. [6] achieved the negative effective bulk mod-

ulus based on the split hollow sphere. Besides traditionally

searching novel complex structures, the existing structures

with multi-resonators are fine trends for managing the

bandgaps. For instance, Huang and Sun [20] demonstrated

that there are three bandgaps in mass-in-mass lattice sys-

tems with dual resonators that have been found to be

available to optimize the negative effective mass density by

Tan et al. [21]. In addition, Pai et al. [22] also demonstrated

that two stop bands exist around the high-frequency side of

the local resonance frequencies of two-mass absorber,

respectively, on a metamaterial beam. Here, we present

some extensive works from the previous works and clarify

the different effects of structure parameters in continuum

model.

In this paper, a one-dimensional (1-D) lattice model of

the AMs with multi-resonators will be fully considered,

and the convenient two-step HM which can accurately

match the dispersion relations will be expanded to acquire

the effective parameters of AMs in Sect. 2. Then, the

effects of relevant parameters on the center frequency and

bandwidth of the bandgaps are analytically revealed in

Sect. 3. In Sect. 4, the wave propagation in specific con-

tinuum models based on mimicking lattice systems [10] is

analyzed by the finite element method (FEM), and an

application example of the purposed multi-resonators AM

in vibration control is presented and discussed.

2 Locally resonant acoustic metamaterials

2.1 Effective mass and bandgaps in lattice model

with single resonator

The negativity effective mass in a lattice model of mass-in-

mass unit was demonstrated by Huang et al. [9], the unit

employed a 1-D monatomic lattice with a single internal

resonator, as shown in Fig. 1. For the harmonic input F(t)

and the response ui(t), the equation of motion for the unit is

derived as Eq. (1).

m1 0

0 m2

� �
€u1
€u2

� �
þ k2 �k2

�k2 k2

� �
u1
u2

� �
¼ F

0

� �
ð1Þ

Then, the effective mass meff is expressed by

meff ¼ m1 þ
m2

1� x2=x2
n

ð2Þ

where xn ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
k2=m2

p
is the natural frequency of internal

resonator, x is the angular frequency. In the case of

h = m2/m1 = 1, the negative effective mass meff/mst

becomes negative within the range of 1\x=xn\
ffiffiffiffiffiffiffiffiffiffiffi
1þ h

p
,

as shown in Fig. 2a.

Taking the harmonic wave propagation into account, the

dispersion equation of this mass-in-mass chain with single

resonator can be derived by below:

m1m2x
4 � ðm1 þ m2Þk2x2 � k1ðm2x

2 þ k2Þ
� ð2� e�iqL � eiqLÞ ¼ 0 ð3Þ

where q denotes the wave number, L represents the length

of each unit cell. There are two obvious bandgaps of the

dispersion curves, namely 0.7654\x/xn\ 1.414 and

1.848\x/xn, as shown in Fig. 2b. The negative effective

mass region is smaller than the first bandgap, for the reason

that the negative effective mass meff of the mass-in-mass

unit results from the inertia force of the internal lumped

mass which is unrelated to spring k1. The upper frequency

of the first bandgap is equal to that of the negative effective

mass; meanwhile, the starting frequency x = xn of the

negative effective mass is same with the center frequency

of the first bandgap with the maximum attenuation coeffi-

cient. In other words, the center frequency of bandgaps

mainly depends on the natural frequency of internal res-

onator, which is generally insensitive to other outer struc-

ture, while the bandwidth needs to be future investigated.

Fig. 1 Mass-in-mass lattice

unit with single internal

resonator

Fig. 2 Comparison of the results, mst = m1 ? m2, h = m2/m1,

d = k2/k1 a effective mass obtained by Eq. (2) with h = 1, b disper-

sion curves by Eq. (3) with h = 1, d = 2
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2.2 Acoustic metamaterials with multi-resonators

The multi-resonant lattice unit is a n-degree-of-freedom (n-

DOF) system, as shown in Fig. 3a, where n = 3, 4, …,

which consists of n - 1 coupled lumped masses inside.

The corresponding undamped equation of motion is

expressed as Eq. (4).

m1 0 0 � � � 0

0 m2 0 � � � 0

0 0 m3 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � mn

2
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77777775
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0

..
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8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð4Þ

For the harmonic input F(t) and the response ui(t)

FðtÞ � F0e
ixt; un � Une

ixt ð5Þ

Then, Eq. (4) can be rewritten as follows:

�x2½M� þ ½K�
� �

Uf g ¼ Ff g ð6Þ

where

½M� ¼

m1 0 0 � � � 0

0 m2 0 � � � 0

0 0 m3 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � mn

2
66666664

3
77777775
;

½K� ¼

k2 þ knþ1 �k2 0 � � � �knþ1

�k2 k2 þ k3 �k3 � � � 0

0 �k3 k3 þ k4 � � � ..
.

..

. ..
. ..

. . .
.

�kn

�knþ1 0 � � � �kn kn þ knþ1

2
66666664

3
77777775
;

fFg ¼

F0

0

0

..

.

0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
:

Therefore, the frequency response function matrix [H]

can be expressed as follows:

½H� ¼ �x2½M� þ ½K�
	 
�1 ð7Þ

For meff ¼ FðtÞ
€ueff

¼ F0

�x2U1
, the effective mass in the first-

step homogenization, as shown in Fig. 3b, can be obtained

as follows:

meff ¼
1

�x2Hð1; 1Þ ð8Þ

For the edges of bandgaps in lattice model with single

resonator, a two-step HM has been introduced by Liu et al.

[10]. In the first-step homogenization, the effective mass

meff of the mass-in-mass unit above is obtained. Next in the

Fig. 3 a Multi-resonant lattice

unit, b effective mass in the

first-step homogenization,

c effective mass in the second-

step homogenization
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second-step HM, the infinite lattice system of the effective

mass meff connected by the spring k1 can be regarded as an

equivalent homogeneous material with mass Meff and

constant elastic coefficient k1, as shown in Fig. 3c. On the

other hand, the equivalent homogeneous material can be

treated with the effective mass meff and effective elastic

coefficient keff, where keff = F/2A would be obtained by

the kinematic equation of the unit cell �meffx2A=2 ¼
F � 2k1A, where A is the vibration amplitude of mass. By

setting Meff=k1 ¼ meff=keff , the effective mass Meff in the

second-step HM is derived to be

Meff ¼
meffk1

k1 � meffx2=4
ð9Þ

For example, the effective mass of lattice model with

two and three resonators in the two-step HM is illustrated

in Fig. 4a, b, respectively, which correspond to n = 3 and

n = 4. In contrast, the same referred frequency x0 ¼ffiffiffiffiffiffiffiffiffiffiffiffi
k2=m2

p
is adopted here, which is also the nature fre-

quency of single internal resonator in Sect. 2.1. Then, the

relevant parameters for the added second and third

resonators are set directly here: h1 = m2/m3 = 2, d2 =
k2/k4 = 1 and h2 = m2/m4 = 4, d3 = k2/k5 = 1. There are

two negative ranges of the effective mass meff and three

negative ranges of the effective mass Meff with two res-

onators. When the third internal resonator is added, the

effective mass meff becomes negative in three ranges and

the effective mass Meff has four negative ranges. It is

obvious that the added coupled resonators gain more stop

bands and broader bandwidth beyond the cutoff frequency

of the lattice chain, which would be useful in designing

AMs structures like bars or beams. However, the more

resonators in the confined space of single unit will demand

more complex manufacturing techniques.

For comparison, the dispersion equation of this multi-

resonant lattice model for harmonic wave propagation is

achieved by the Bloch–Floquet theory [23] as follows:

There are three stop bands for double resonators and four

stop bands for three resonators as shown in Fig. 4c. The fre-

quency range of negative effectivemeff is included in the stop

bands, while the negative effective massMeff can agree well

with the bandgaps.

3 Relevant parameters on bandgaps of dual-
resonator acoustic metamaterials

3.1 Relevant parameters on the center frequencies

of bandgaps

The center frequencies and bandwidth of bandgaps are the

primary considerations on designing AMs. The effects of

relevant parameters on the center frequencies of dual-res-

onator AMs are analyzed here. Under the parameters

mentioned in the last chapter, Eq. (8) becomes

meff=mst ¼
ð9hþ 6Þx4

0�ð2hþ 6Þx2x2
0þx4

ð1þ 1:5hÞðx2�x2
n1Þðx2�x2

n2Þ

x2
n1;x

2
n2 ¼

1

2
X�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2� 4h1½ð1þ 1=d1Þð1=d1þ 1=d2Þ� 1=d21�

q� �

x2
0 ¼ 3�

ffiffiffi
3

p
x2

0

ð11Þ

Fig. 4 Comparison of the results, here mst = m1 ? m2? ��� ? mn

a effective mass meff in the first-step HM; b effective mass Meff in the

second-step HM; c the dispersion curves. The solid and dashed lines

represent two and three resonators, respectively. The points describe

the dispersion curves of the unit cell of continuum model by FEM

k2 þ knþ1 þ 2k1ð1� cosðqLÞÞ � m1x2 �k2 0 � � � �knþ1

�k2 k2 þ k3 � m2x2 �k3 � � � 0

0 �k3 k3 þ k4 � m3x2 � � � ..
.

..

. ..
. ..

. . .
.

�kn
�knþ1 0 � � � �kn kn þ knþ1 � mnx2

�����������

�����������
¼ 0 ð10Þ
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where X = 1?1/d1 ? h1/d1 ? h1/d2. Here, xn1 and xn2

are the two undamped natural frequencies of internal res-

onators, which correspond to the two locations of asymp-

totes as the effective mass meff tends to infinity and the

center frequencies of the first two bandgaps, respectively.

The effects of relevant parameters h1, d1 and d2 on the

value of xn1, xn2 are plotted in Fig. 5. xn1 is relatively

smooth under the change of h1, d1 and d2, while xn2

become extremely high when the value of d1 � 1 (Fig. 5a)

or d2 � 1 (Fig. 5b). When both d1 and d2 tend to 0, the

corresponding center frequencies of two bandgaps are

increased simultaneously (Fig. 5c). As achieving low-fre-

quency bandgaps is a meaningful topic of AMs, a lower

value of h1, d1[ 1 and d2[ 1 is proposed. But it is unable

to achieve multi-bandgaps fully below the bandgap of the

single-resonator AMs due to the value of xn2 is always

greater than x0. Another interesting result is the case of

xn1 = x0 (e.g., h1 = 1, d1 = 5 and d2 = 1), where the

multi-resonators AMs gain an extra stop band on the basis

of the single-resonator AMs approximately.

3.2 Relevant parameters on the boundary

frequencies of bandgaps

As shown in Fig. 4b, c, the points L1–L3, Z1, Z2 can agree

well with the boundary frequencies of the three bandgaps

in the dual-resonator model, where L1–L3 are the locations

of the asymptotes as the effective mass Meff tends to

infinity and Z1, Z2 are the zero points of the effective mass

Meff. The first bandgap locates between L1 and Z1, the

second bandgap lies within the L2 and Z2; meanwhile, the

third bandgap is the region exceeding L3. When the central

frequencies of bandgaps have been determined by the

certain values of h1, d1 and d2, the values of five points are
still affected by the mass ratio h and stiffness ratio d. For
the first bandgap, the increasing h will result in a slightly

wider bandwidth as illustrated in Fig. 6a. The bandwidth of

the second pass band reaches a maximum value around

h = 1, and the second stop band reaches the minimum

value oppositely. Meanwhile, the third pass band is

enlarged with the increase of h monotonically. It is note-

worthy that the widths of both the second and third pass

band are almost decreased to zero if the value of h is near

zero, which is similar to the monatomic chains.

Figure 6b shows that the two zero points Z1 and Z2 are

invariable with the value of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhþ 3Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � 3hþ 3

pq
,

and both the first and second bandgap are broadened rel-

atively with a higher value of d. If d is approach to zero just
like the metamaterial beam [22], the third bandgap will

begin at an extremely high frequency.

4 Continuum model and applications

4.1 Continuum model of multi-resonators acoustic

metamaterials

Various continuum models have been put forward with the

single negative mass density in last decade [4, 6, 7]; one of

these models was presented by Sun et al. [10] based on the

mimicking lattice systems, which can agree well with the

theoretical result in lattice model. The similar continuum

model with dual resonators is illustrated in Fig. 7.

Fig. 5 Values of xn1, xn2,

namely the center frequencies of

the former two bandgaps,

a versus h1 and d1 with d2 = 1,

b versus h1 and d2 with d1 = 1,

c versus d1 and d2 with h1 = 1

Fig. 6 Values of the points L1–

L3, Z1 and Z2, namely the edges

of bandgaps a versus h = m2/

m1, with d = k2/k1 = 1,

b versus d, with h = 1
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In this paper, the steel (density q = 7850 kg/m3,

Young’s modulus E = 210 GPa and Poisson’s ratio

l = 0.29) and the foam (density q = 115 kg/m3, Young’s

modulus E = 8 MPa and Poisson’s ratio l = 0.33) [24]

are selected to be the ‘mass’ and ‘spring’ materials,

respectively. The purposed relevant parameters of the

continuum models and the corresponding structure

dimensions are listed in Table 1. The same referred fre-

quency x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
k2=m2

p
¼ 3336:6 rad/s is adopted here,

which means the dimensions l1 and l2 are stable. The

parameters of S1 are the same as the lattice model above,

while the rest examples have only one relevant parameter

different from the S1.

The wave propagation in these continuum models is

investigated by FEM. The dispersion properties of the unit

cell in S1 are analyzed by means of the Bloch–Floquet

periodic boundary conditions. The first three dispersion

curves of the unit cell are shown in Fig. 4c as the wave

vector varies along the contour of the first Brillouin zone,

which has well agreement with dispersion equation

Eq. (10). For the steady-state response, a one-dimensional

30 unit cell chain is employed, and a time harmonic dis-

placement is then set as import boundary condition at the

left end; meanwhile, the right end is set free. The trans-

mission coefficient is defined as the ratio of the output

displacements at the chosen locations to the import dis-

placement. The transmission coefficients of the 15th unit of

all the samples are shown in Fig. 8, respectively.

According to the two-step HM, three forbidden bands of

the lattice model are calculated to be (398, 910 Hz), (1068,

1185 Hz) and (1240 Hz, ??), as shown in Fig. 4, and the

center frequencies of the first two bandgaps are 597 and

1155 Hz. From the transmission coefficients of S1 in

Fig. 8, the edges of bandgaps are around 360, 920, 1050,

1190, 1220 Hz, and the center frequencies of the first two

bandgaps are about 600 and 1150 Hz, which can well

Fig. 7 Continuum model of

multi-resonant AM by

mimicking lattice systems

Table 1 Dimensions of the

continuum samples for

proposed relevant parameters

Sample Relevant parameters Corresponding dimensions (mm)

h d h1 d1 d2 l l1 l2 l3 l4 l5 l6 h

S1 1 2 2 1 1 55.36 10 13.5 10 6.750 10 20 40

S2 1 2 4 1 1 55.36 10 13.5 10 3.375 10 20 40

S3 1 2 2 0.25 1 55.36 10 13.5 2.5 6.750 10 20 40

S4 1 2 2 1 0.25 55.36 10 13.5 10 6.750 2.5 20 40

S5 0.25 2 2 1 1 68.45 10 13.5 10 6.750 10 20 40

S6 4 2 2 1 1 51.58 10 13.5 10 6.750 10 20 40

S7 1 0.25 2 1 1 55.36 10 13.5 10 6.750 10 2.5 40

The differences between S1 and the rest samples appear in bold

Fig. 8 Transmission

coefficients of the samples in

Table 1. a S1, S2, S3, S4 with

varying h1, d1, d2; b S1, S5, S6,

S7 with varying h, d
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coincide with the above predictions. The variable d1, d2 or
h1 significantly affects the central frequencies of the first

and second bandgaps, as shown in Fig. 8a, and the separate

of the two central frequencies can broaden the second

bandgap, but these variations have slight influence on the

start frequency of the first bandgap. We can observe that

two center frequencies of the first two bandgaps are inde-

pendent of the variable h and d in Fig. 8b. A narrower

bandwidth of the second pass band can be generated when

h\ 1 or h[ 1, but third pass band is broadened concur-

rently when h[ 1. If the value of d is increased or h is

approaching to zero, the start frequency of the first bandgap

will be reduced.

4.2 An application example

A natural practical application of these AMs is typical

vibration control for the existence of bandgaps. Achieving

suitable bandgaps which contain the frequency range of

pernicious vibration or noise by adopting appropriate

parameters is a basic demand. Obviously, the value of

x0 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ek=qml1l2

p
mainly depends on the density qm of

‘mass’ material and Young’s modulus Ek of ‘spring’

material under confined space, the center frequencies of

bandgaps would be firstly adjusted by h1, d1 and d2; then,

the bandwidth would be determined by h and d. For the

moment, achieving low frequency or broad bandgaps for

vibration control is a meaningful topic. A lower start fre-

quency of the first bandgap can be obtained by a value of h
near zero or a larger d, while the separate of xn1, xn2 or

suitable values of h or d have significant influence on the

bandwidth of both pass bands and forbidden bands.

The performances of the AM in vibration control are

further studied here. An AM chain consisting of 5 unit cells

of S1 is simulated by FEM. An input vibration displace-

ment of U(0, t) = 0.1 (sin 2pft) is generated at one end of

the model (1st unit cell) along the chain. At the opposite

end (5th unit cell), the vibration output responses at dif-

ferent frequencies are achieved, as shown in Fig. 9. The

metamaterial has tiny influence on the vibration transmis-

sion in the pass bands at f = 360 Hz (Fig. 9a),

f = 1000 Hz (Fig. 9c), f = 1200 Hz (Fig. 9e), and the

output displacement become erratically due to the reflec-

tion of the vibration waves. While for the frequencies in the

forbidden bands at f = 600 Hz (Fig. 9b) and f = 1150 Hz

(Fig. 9d), the vibration waves will greatly decay as

expected. Moreover, the vibration control with the multi-

frequency excitation U(0, t) = 0.1(sin 2pf1t ? sin 2pf2t) is
also studied here, where f1 = 600 Hz, f2 = 1150 Hz. As

shown in Fig. 9f, the structure is able to effectively

Fig. 9 Displacement response

with vibration input excitation

at difference frequencies.

a 360 Hz, b 600 Hz, c 1000 Hz,

d 1150 Hz, e 1200 Hz,

f 600 ? 1150 Hz

Effects of relevant parameters on the bandgaps of acoustic metamaterials with multi-resonators Page 7 of 8 427

123



attenuate the multi-frequency vibration wave. Further

development of this model will have wider applications

when these AMs are employed in the creation of vibration-

less machining environment, as well as in the seismology:

protecting buildings against earthquakes.

5 Conclusions

This paper reveals the effects of relevant parameters on the

center frequencies and edges of bandgaps in multi-res-

onators AMs, and the results indicate the purposed meta-

material can provide a possibility for managing the

bandgaps instead of traditionally searching new complex

structures or extreme component materials by tweaking the

relevant parameters in the model. The two-step HM has

been extended to obtain the effective mass of multi-res-

onators AM in lattice, which is confirmed available for

multi-resonators AMs. Then, the dual-resonator continuum

models based on the mimicking lattice systems with sev-

eral special dimensions have been analyzed by the FEM,

and the obtained results are in well agreement with the

theoretical predictions, which can also demonstrate the

validity of conclusions about the effects of the relevant

parameters on bandgaps. Finally, the purposed multi-res-

onator AM has been verified to be feasible in vibration

control under both the single-frequency and multi-fre-

quency excitation with only five units. The present studies

have further benefit for the design and applications of AMs.
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