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Abstract This paper investigates the analysis for free

transverse vibration of a cracked microbeam based on the

modified couple stress theory within the framework of

Euler–Bernoulli beam theory. The governing equation and

the related boundary conditions are derived by using

Hamilton’s principle. The cracked beam is modeled by

dividing the beam into two segments connected by a

rotational spring located at the cracked section. This model

invokes the consideration of the additional strain energy

caused by the crack and promotes a discontinuity in the

bending slope. In this investigation, the influence of diverse

crack position, crack severity, material length scale

parameter as well as various Poisson’s ratio on natural

frequencies is studied. A comparison with the previously

published studies is made, in which a good agreement is

observed. The results illustrate that the aforementioned

parameters are playing a significant role on the dynamic

behavior of the microbeam.

1 Introduction

With the advent of technology in the micro- and nanosizes,

microbeams and nanobeams are often used in micro- and

nanoelectromechanical systems (MEMS and NEMS) such

as those employed in sensors, chemical sensing, signal

filtering, actuators, fluid and mass transport. Moreover,

beams are the core structures used widely in MEMS and

NEMS and their properties are closely in correlation with

their microstructures. Due to their micro- and nanosizes,

the size effect is in consideration which is shown experi-

mentally [1–4]. As a result, lacking a material length scale

parameter, classical deformation theories cannot calculate

the mechanical behavior of micro- and nanosystems.

Therefore, in order to take into account the scale effects,

size-dependent continuum theories have been developed by

several researchers. For instance, couple stress theory [5–

7], the nonlocal elasticity theory [8] and strain gradient

theory [3] are proposed by diverse researches in the last

several decades. Moreover, due to the severity of deter-

mining the material length scale parameters, Yang et al. [2]

have proposed the modified couple stress theory which

shows that the couple stress tensor is symmetric and the

symmetric curvature tensor is in correlation with the strain

energy of the system.

These features make the nonlocal elasticity theory and

modified couple stress theory easier to use compared to the

classical couple stress theory. Consequently, the research

effort on mechanical behavior such as bending, buckling

and vibration of micro- and nanosizes structures like

microbeams, macroactuators, nanotubes and atomic force

microscope are of great interests and have received a

considerable attention. Asghari et al. [9]. presented a

nonlinear size-dependent Timoshenko beam model based

on the modified couple stress theory. They have investi-

gated free vibration behavior of beam. Pirmohammadi

et al. [10] have investigated active vibration suppression of

a single-walled carbon nanotube under the action of a

moving harmonic load using nonlocal elasticity theory. Bin

et al. [11] have presented an analytical solution for the

bending of a beam based on the couple stress elasto-plastic

theory. Yin et al. [12] have analyzed the dynamic behavior

of microscale plates based on the modified couple stress
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theory in which they have included material length scale

parameter. Ke et al. [13] investigated dynamic stability of

functionally graded microbeams based on the modified

couple stress and Timoshenko beam theory. In this work,

free vibration and buckling were also discussed. Akgöz

et al. [14] employed this model to investigate vibration

response of nonhomogeneous microbeams. Kim et al. [15]

investigated the vibration, bending and buckling of

microplates based on the modified couple stress theory.

Simsek and Reddy [16] have employed this model to

investigate the static bending and free vibration of func-

tionally graded microbeams. Wang et al. [17] have studied

the vibrations of three dimensional cylindrical microbeams

by employing the modified couple stress theory. Ansari

et al. [18] investigated the vibrational behavior of func-

tionally graded microplates based on this theory. Kahro-

baiyan et al. [19] have developed a new comprehensive

Timoshenko beam element on the basis of the modified

couple stress theory. Simsek [20] studied the free vibration

analysis of microbeams based on the nonlinear elastic

foundation using modified couple stress theory. Tang et al.

[21] analyzed flexural vibrations of microbeams based on

modified couple stress theory using a differential quadra-

ture method to formulate the discrete forms of the gov-

erning equations. Al-Basyouni et al. [22] have studied

bending and dynamic behavior of functionally graded

beams. Ansari et al. [23] studied the vibration characteristic

of a postbuckled microbeam based on the modified couple

stress theory. Dai et al. [24] have developed a new non-

linear theoretical model for microbeams to explore the

nonlinear dynamics based on the modified couple stress

theory. Dehrouyeh-Semnani et al. [25] have investigated

the dynamic characteristics of axially moving Timoshenko

microbeams on the basis of this theory. He et al. [26] have

proposed a new size-dependent model for functionally

graded microplates by utilizing the modified couple stress

theory and have analyzed bending, buckling and free

vibration responses for simply supported microplates.

Mohammdabadi et al. [27, 28] analyzed vibration and

thermal effect on size-dependent buckling of composite

laminated beams by using the modified couple stress,

which is capable to capture the size effect by considering

the material length scale parameters. Euler–Bernoulli,

Timoshenko and Reddy beam models were investigated.

Fakhrabadi et al. [29] presented the size-dependent

mechanical behavior of the carbon nanotubes and nano-

electromechanical systems based on couple stress theory.

Thai et al. [30] investigated static bending, buckling and

free vibration behavior of size-dependent functionally

graded sandwich microbeams based on the modified couple

stress theory. Ghadiri et al. [31] have studied the vibration

of rotating functionally graded Timoshenko microbeam

based on this theory. And Kakhki et al. [32] have

considered an analytical solution for thermoelastic damp-

ing in a microbeam based on the modified couple stress

theory.

On the other hand, in various mechanical structures

cracked problems are common. The presence of cracks in

these structures has a significant impact on their health and

safety [33, 34]. Henceforth, the detection of cracks is of

great interests. Due to the fact that the presence of cracks

alter the dynamic response of structures, the dynamical

characteristics like vibration modes are used to detect the

crack locations [35, 36]. So, in order to understand

mechanical behaviors of cracked structures, there have

been several theoretical investigations. Various analyses

have been developed to study the natural frequencies and

corresponding vibration modes. Hasheminejad et al. [37]

have studied the flexural vibrations of cracked micro- and

nanobeams in the presence of surface effects. Hosseini-

Hashemi [38] have considered free transverse vibration of

cracked nanobeams using Euler–Bernoulli and Timosh-

enko beam theories. Hsu et al. [39] have studied the lon-

gitudinal frequency of a cracked nanobeam. It is found that

the frequency decreases with an increase of the crack

parameter. Loya et al. [40] have considered a free trans-

verse vibrations of cracked nanobeams using a nonlocal

elasticity model. Roostai et al. [41] have studied the free

vibration of nanobeams with multiple cracks. Torabi et al.

[42] investigated an analytical method for free vibration

analysis of Timoshenko beam theory, which is applied to

cracked nanobeams on the basis of nonlocal elasticity

model. Wang et al. [43] considered the free vibration and

transverse shear deformation of a cracked nanobeam and

Zhao et al. [44] have presented an explicit expression of the

steady state responses of a cracked Euler–Bernoulli beam

under a harmonic force.

This paper aims to investigate a transverse free vibration

of a cracked microbeam based on the modified couple

stress theory. The cracked beam will be divided into two

segments connected by a rotational spring at the cracked

position. Natural frequencies for a cracked micro- and

nanobeam will be studied by applying boundary condi-

tions, and numerical results are calculated for diverse crack

positions, crack severities, material length scale parameter

and various Poisson’s parameter.

2 The modified couple stress theory

Based on the modified couple stress theory introduced by

[2] the strain energy density is a function of both strain

tensor and curvature tensor. As a consequence, the strain

energy of a deformed isotropic linear elastic body occu-

pying a volume V is given as:

413 Page 2 of 11 R. Sourki, S. A. H. Hoseini

123



U ¼ 1

2

Z

V

rij eij þ mij vij
� �

dV; i; j ¼ 1; 2; 3 ð1Þ

where rij is the stress tensor, eij is the strain tensor, mij are

the components of the deviatoric part of the couple stress

tensor and vij is the symmetric curvature tensor. The strain

and the curvature tensors are expressed as:

eij ¼
1

2
ui;j þ uj;i
� �

ð2Þ

vij ¼
1

2
hi;j þ hj;i
� �

ð3Þ

where ui are the components of the displacement vector

and hi are the components of the rotation vector which is

defined as:

hi;j ¼
1

2
eijkuk;j ð4Þ

in which eijk is the permutation symbol. Also, the consti-

tutive relations can be expressed by:

rij ¼ kekkdij þ 2leij ð5Þ

mij ¼ 2l‘2vij ð6Þ

where dij is the Kronecker delta and 2‘2 is defined as l2, in

which ‘ is the material length scale parameter which

reflects the effect of the couple stress. Besides, k and l are

Lame’s constants which is defined as:

k ¼ Et
ð1þ tÞ ð1� 2tÞ ; l ¼ E

2ð1þ tÞ ð7Þ

In the aforementioned equations, t is the Poisson’s ratio

and l is the shear modulus.

3 Formulation of the problem

A microbeam has the length L, the width b and the height

h which is depicted in Fig. 1. The microbeam has crack

which is modeled with a longitude and a rotational spring

at the crack position. The free transverse of the microbeam

is in consideration. Hence, the governing equation will be

calculated with the help of Hamilton’s principle.

Based on Euler–Bernoulli beam theory, the displace-

ment field at any point in the beam along its axis can be

expressed as:

uxðx; z; tÞ ¼ �z
owðx; tÞ

ox

uyðx; z; tÞ ¼ 0

uzðx; z; tÞ ¼ wðx; tÞ ð8Þ

in which w is the transverse deflection of any point on the

beam on the neutral axis and t expresses time. By the virtue

of Eqs. (2) and (8), the only nonzero strain component can

be obtained as:

exx ¼ �z
o2wðx; tÞ

ox2
ð9Þ

What is more, with substitution of Eq. (8) into Eq. (4) the

only nonzero component is obtained:

hy ¼ � owðx; tÞ
ox

ð10Þ

And substituting the above equation into Eq. (3), the cur-

vature tensor components will be written as:

vxy ¼ � 1

2

o2wðx; tÞ
ox2

vxx ¼ vyy ¼ vzz ¼ vxz ¼ vyz ¼ 0 ð11Þ

Thereby, by utilizing Eqs. (1) to (11), the potential

energy of the microbeam based on the modified couple

stress theory can be expressed as:

USE ¼ 1

2

ZL

0

Eð1� tÞ I
ð1þ tÞ ð1� 2tÞ þ

1

2
lAl2

� �
o2wðx; tÞ

ox2

� �2

dx

ð12Þ

On the other hand, the kinetic energy of the beam can be

obtained as:

V ¼ 1

2

ZL

0

qA
owðx; tÞ

ot

� �2

þqI
o2wðx; tÞ
oxot

� �2
" #

dx ð13Þ

where q is the density of the beam. Consequently,

Lagrangian functional of the problem can be written as:

L ¼ V � USE ð14Þ

So, the governing equation and the boundary conditions

will be derived by Hamilton’s principle as:Fig. 1 Schematic of a cracked beam
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d
Z t

0

L dt ¼ 0 ð15Þ

By calculating the first variation of the functional:

Z t

0

ZL

0

 
qA

ow

ot

odw
ot

þ qI
o2w

oxot

o2dw
oxot

� Eð1� tÞ I
ð1þ tÞ ð1� 2tÞ þ

1

2
lAl2

� �
o2w

ox2
o2dw
ox2

!
dx dt ¼ 0

ð16Þ

Integrating the Eq. (16) by parts and considering the

fundamental lemma of calculus of variations, coefficients

of dw will be set to zero. Therefore,

EIð1� tÞ
ð1þ tÞ ð1� 2tÞ þ

1

2
lA l2

� �
o4wðx; tÞ

ox4

þ qA
o2wðx; tÞ

ot2
� qI

o4wðx; tÞ
ox2ot2

¼ 0

ð17Þ

It is worth mentioning that the classical governing

equations of Euler–Bernoulli beam theory will be obtained

as long as the material scale parameter l and the Poisson’s

ratio are zero.

Also, the following boundary conditions of the beam at

the edges (x = 0 and x = L) can be expressed as:

Either
EIð1� tÞ

ð1þ tÞ ð1� 2tÞ þ
1

2
lA l2

� �
o3wðx; tÞ

ox3

þ qI
o3wðx; tÞ
ox ot2

¼ 0 Or w ¼ 0

Either
EIð1� tÞ

ð1þ tÞ ð1� 2tÞ þ
1

2
lA l2

� �
o2wðx; tÞ

ox2
¼ 0 Or

owðx; tÞ
ox

¼ 0

ð18Þ

where EI and qI are the flexural rigidity and the mass

moment of inertia of the beam, respectively.

The steady state solution to Eq. (17) can be written in

the form of w(x, t) = V(x)eiXt. By inserting the expression

V(x)eiXt into Eq. (17), the time variable will be omitted and

as a result it can be written as:

EIð1� tÞ
ð1þ tÞ ð1� 2tÞ þ

1

2
lA l2

� �
V ð4ÞðxÞ þ qIX2V 00ðxÞ

� qAX2VðxÞ ¼ 0

ð19Þ

where double prime symbol represents second derivative

with respect to x and X represent second derivative with

respect to x and frequency of vibrations, respectively.

Considering the dimensionless variables and constants as:

V ¼ V

L
; n ¼ x

L
; k4 ¼ qAL4X2

E I
ð20Þ

and substituting Eq. (20) into (19) the transverse free

vibration may be expressed as:

�V ð4ÞðnÞ þ m2q4k4V 00ðnÞ � q4k4VðnÞ ¼ 0 ð21Þ

in which:

q4 ¼ E I
EIð1�tÞ

ð1þtÞ ð1�2tÞ þ 1
2
lA l2

; m2 ¼ I

L2A
; ð22Þ

It should be noted that A is the area of the cross section of

the beam.

By solving the differential Eq. (21) and finding the roots

for the related characteristic equation, the general solution

is obtained as:

�VðnÞ ¼ A1 sinhðbrnÞ þ A2 coshðbrnÞ
þ A3 sinðbinÞ þ A4 cosðbinÞ

ð23Þ

where br and bi are:

br ¼ qk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4q4k4 þ 4

p
� m2q2k2

2

 !1=2

bi ¼ qk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4q4k4 þ 4

p
þ m2q2k2

2

 !1=2

ð24Þ

4 Cracked beam model

The beam with an edge crack of length a located at a

distance LC from the left end with the corresponding

dimensionless variable b = LC/L is in consideration. In

order to apply the effect of the crack which is shown in

Fig. 1, the cracked beam has been considered to be divided

into two sections connected by a rotational and a longitu-

dinal elastic spring at the cracked position. The springs are

introduced to consider the additional strain energy caused

by the presence of the crack [40]. Therefore, the strain

energy W of the microbeam can be expressed as:

W ¼ 1

2

ZL

0

dx

Z

A

rxx
ou

ox
� y

o2w

ox2

� �
dAþ DWc ð25Þ

in which DWc is the additional strain energy caused by the

crack. This equation can be stated in terms of the axial

force and the bending moment as:

W ¼ 1

2

ZL

0

N
ou

ox
þM

o2w

ox2

� �
dxþ DWc ð26Þ
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The increment due to the presence of an edge crack can

be expressed as:

DWc ¼
1

2
kMMMðLk; tÞ o

2w

ox2
þ 1

2
kNNNðLk; tÞ

ou

ox

þ 1

2
kMNMðLk; tÞ ou

ox
þ 1

2
kNMNðLk; tÞ

o2w

ox2
ð27Þ

where kMM, kNN, kMN and kNM are the flexibility constants

[40]. The last two terms are considered to take into account

the coupled effects between axial force and bending

moment. The increment of strain energy could be written

as:

DWc ¼
1

2
MDhþ 1

2
NDu ð28Þ

where Dh is the angle rotated by the rotational spring and

Du the relative horizontal displacement at the edge crack

section. Dh and Du may be stated as:

Dh ¼ kMM

o2w

ox2
þ kMN

ou

ox

Du ¼ kNN
ou

ox
þ kNM

o2w

ox2
ð29Þ

In this investigation, the transverse free vibrations are

studied; thereby, no longitudinal displacement is consid-

ered. Besides, the flexibility constants, kNN, kMN and kNM,

are generally assumed to be small so that the only constant

related to the bending moment, kMM, is considered. The

slope increment Dh in the cracked section is then expressed

using dimensionless variables as:

Dh ¼ kMM

L

o2 �W

ox2

����
n¼Lc

¼ K
o2 �W

ox2

����
n¼Lc

ð30Þ

After defining how the crack beam is modeled, the analysis

of free transverse vibration of the beam can be proceeded

by applying the equation of motion in the vertical direction

to each of the two segments:

�V ð4ÞðnÞ þ m2q4k4 �V 00ðnÞ � q4k4 �VðnÞ ¼ 0; 0� n� b

�V ð4ÞðnÞ þ m2q4k4 �V 00ðnÞ � q4k4 �VðnÞ ¼ 0; b� n� 1

ð31Þ

where k4 is the natural frequency parameter. The general

solution for each segment can be stated as:

�VðnÞ ¼ A1 sinhðbrnÞ þ A2 coshðbrnÞ
þ A3 sinðbinÞ þ A4 cosðbinÞ; 0� n� b

�VðnÞ ¼ B1 sinhðbrnÞ þ B2 coshðbrnÞ
þ B3 sinðbinÞ þ B4 cosðbinÞ; b� n� 1

ð32Þ

The above equations containing eight unknown con-

stants that must be solved by applying the boundary

conditions and the following expressed compatibility con-

ditions at the cracked section:continuity of the vertical

displacement,

�V2ðbÞ ¼ V1ðbÞ ð33Þ

jump in bending slope,

�V 0
2 ðbÞ � �V 0

1 ðbÞ ¼ K �V 00
1 ðbÞ ð34Þ

continuity of the bending moment,

�V 00
2 ðbÞ ¼ �V 00

1 ðbÞ ð35Þ

continuity of the shear force,

�V 000
2 ðbÞ ¼ �V 000

1 ðbÞ ð36Þ

By applying the simply support boundary conditions and

the aforementioned conditions into the Eq. (32), a linear

system of equation is obtained. It is worth mentioning that

this is a homogeneous system; thus, to avoid the trivial

solution, it is necessary to impose nullity of the determi-

nant of the coefficients’ matrix whose roots are the natural

frequencies.

5 Results

The results presented in this section correspond to the

natural frequencies of a microbeam based on the Euler–

Bernoulli model and on the basis of the modified couple

stress for different edge crack positions, several crack

severities K, various Poisson’s ration and the material

length scale parameter. Results have been compared with

those of Loya et al. [40] which is presented in Tables 1 and

2. It is worth mentioning that these results are given by

neglecting the rotational inertia, and setting material length

scale parameter and Poisson’s ratio to zero.

In addition, in order to investigate the four natural fre-

quencies, the width of the beam is assumed to be b = 10 h,

and the length of the beam is chosen to be L = 100 h.

Also, the dimensionless parameter g = h/l, the ratio of

beam height to material length scale parameter, is intro-

duced to study the effect of material length scale parame-

ter, l, on the natural frequencies. The first four frequencies

are calculated for various crack severities, Poisson’s ratio,

different parameter g and crack positions which are given

in Tables 3, 4, 5 and 6. It can be seen that the first four

frequencies decrease gradually while crack severity

increases. Furthermore, it is evident that the fourth natural

frequency is constant for the considered microbeam for

diverse Poisson’s ratio and various crack severities while it

is at n = 0.25. In addition, it is found that the overall

amount of frequencies is correlated positively with the

increasing amount of Poisson’s ratio. What is more, the

effect of dimensionless material scale length parameter g
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illustrates that the amount of natural frequencies plummets

approximately 15 % by doubling g. Moreover, it is shown

that the second and fourth frequencies are constants. This

behavior is due to the fact that the second derivative of

displacement is omitted at the crack section. Also, the

overall amount of frequencies is slightly more for a crack

positioned at quarter of the beam than the ones when the

crack is at the middle of the beam.

Besides, the influence of Poisson’s ratio, dimensionless

scale length parameter and crack position on the first

Table 1 Comparison of the first four frequencies with crack positioned at n = 0.25

k K = 0 K = 0.065 K = 0.35 K = 2

Loya et al. [40] Present Loya et al. [40] Present Loya et al. [40] Present Loya et al. [40] Present

1 3.1416 3.14159 3.0921 3.09209 2.9071 2.90712 2.3493 2.34925

2 6.2832 6.28319 6.1028 6.10283 5.6491 5.64909 5.1047 5.10471

3 9.4248 9.42478 9.3021 9.30205 9.0767 9.07672 8.9008 8.90084

4 12.5664 12.5664 12.5664 12.5664 12.5664 12.5664 12.5664 12.5664

Table 2 Comparison of the first four frequencies with crack positioned at n = 0.5

k K = 0 K = 0.065 K = 0.35 K = 2

Loya et al. [40] Present Loya et al. [40] Present Loya et al. [40] Present Loya et al. [40] Present

1 3.1416 3.14159 3.0469 3.04691 2.7496 2.74957 2.0960 2.09598

2 6.2832 6.28319 6.2832 6.28319 6.2832 6.28319 6.2832 6.28319

3 9.4248 9.42478 9.1669 9.16691 8.6129 8.61288 8.0730 8.07304

4 12.5664 12.5664 12.5664 12.5664 12.5664 12.5664 12.5664 12.5664

Table 3 First four natural

frequencies with a crack

positioned at n = 0.25 and

g = 1

K 1st �X 2nd �X 3rd �X 4th �X 1st �X 2nd �X 3rd �X 4th �X

t = 0.28 t = 0.30

0.0 4.33394 8.66734 12.9997 17.3304 4.34339 8.68624 13.028 17.3682

0.065 4.26565 8.41862 12.8305 17.3304 4.27495 8.43697 12.8585 17.3682

0.35 4.0105 7.79285 12.5199 17.3304 4.01925 7.80984 12.5472 17.3682

2.0 3.24092 7.04198 12.2774 17.3304 3.24799 7.05733 12.3041 17.3682

t = 0.33 t = 0.38

0.0 4.36797 8.73541 13.1018 17.4665 4.45548 8.91041 13.3642 17.8164

0.065 4.29915 8.48473 12.9313 17.4665 4.38527 8.65471 13.1903 17.8164

0.35 4.0420 7.85405 12.6182 17.4665 4.12297 8.01139 12.8710 17.8164

2.0 3.26637 7.09728 12.3738 17.4665 3.33181 7.23947 12.6217 17.8164

Table 4 First four natural

frequencies with a crack

positioned at n = 0.25 and

g = 2

K 1st �X 2nd �X 3rd �X 4th �X 1st �X 2nd �X 3rd �X 4th �X

t = 0.28 t = 0.30

0.0 3.6709 7.34135 11.0109 14.6791 3.69948 7.39849 11.0966 14.7933

0.065 3.61306 7.13068 10.8676 14.6791 3.64118 7.18618 10.9522 14.7933

0.35 3.39695 6.60064 10.6045 14.6791 3.42339 6.65202 10.687 14.7933

2.0 2.74510 5.96465 10.3991 14.6791 2.76647 6.01108 10.48 14.7933

t = 0.33 t = 0.38

0.0 3.75702 7.51358 11.2692 15.0235 3.91643 7.83239 11.7474 15.6609

0.065 3.69782 7.29797 11.1226 15.0235 3.85472 7.60762 11.5945 15.6609

0.35 3.47664 6.7555 10.8533 15.0235 3.62416 7.04214 11.3138 15.6609

2.0 2.8095 6.10458 10.6431 15.0235 2.92871 6.3636 11.0947 15.6609
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natural frequency are investigated and shown in corre-

sponding figures. According to the Figs. 2, 3, 4 and 5,

natural frequency goes up steadily while Poisson’s ratio

increases. Also, it is found that the natural frequency

declines dramatically as long as crack severity parameter

increases. Additionally, it can be seen that the natural

frequency is almost twice as many when crack severity

parameter quadruples. What is more, according to the fig-

ures presented, the natural frequency goes down consid-

erably so long as the dimensionless material length scale

parameter rises. Furthermore, Figs. 6, 7, 8 and 9 depict that

crack severity and Poisson’s ratio correlate negatively and

positively with the natural frequency, respectively. It is

also crystal clear that the natural frequency drops

Table 5 First four natural

frequencies with a crack

positioned at n = 0.50 and

g = 1

K 1st �X 2nd �X 3rd �X 4th �X 1st �X 2nd �X 3rd �X 4th �X

t = 0.28 t = 0.30

0.0 4.33394 8.66734 12.9997 17.3304 4.34339 8.68624 13.028 17.3682

0.065 4.20332 8.66734 12.6442 17.3304 4.21249 8.68624 12.6718 17.3682

0.35 3.79317 8.66734 11.8805 17.3304 3.80143 8.68624 11.9064 17.3682

2.0 2.89153 8.66734 11.1361 17.3304 2.89783 8.68624 11.1604 17.3682

t = 0.33 t = 0.38

0.0 4.36797 8.73541 13.1018 17.4665 4.45548 8.91041 13.3642 17.8164

0.065 4.23633 8.73541 12.7435 17.4665 4.3212 8.91041 12.9988 17.8164

0.35 3.82295 8.73541 11.9738 17.4665 3.89954 8.91041 12.2137 17.8164

2.0 2.91424 8.73541 11.2236 17.4665 2.97262 8.91041 11.4484 17.8164

Table 6 First four natural

frequencies with a crack

positioned at n = 0.50 and

g = 2

K 1st �X 2nd �X 3rd �X 4th �X 1st �X 2nd �X 3rd �X 4th �X

t = 0.28 t = 0.30

0.0 3.6709 7.34135 11.0109 14.6791 3.69948 7.39849 11.0966 14.7933

0.065 3.56027 7.34135 10.7098 14.6791 3.58798 7.39849 10.7932 14.7933

0.35 3.21286 7.34135, 10.0629 14.6791 3.23787 7.39849 10.1412 14.7933

2.0 2.44916 7.34135 9.43243 14.6791 2.46823 7.39849 9.50586 14.7933

t = 0.33 t = 0.38

0.0 3.75702 7.51358 11.2692 15.0235 3.91643 7.83239 11.7474 15.6609

0.065 3.64379 7.51358 10.9611 15.0235 3.7984 7.83239 11.4262 15.6609

0.35 3.28823 7.51358 10.299 15.0235 3.42776 7.83239 10.736 15.6609

2.0 2.50662 7.51358 9.65372 15.0235 2.61298 7.83239 10.0633 15.6609

Fig. 2 Effect of Poisson’s ratio for diverse crack severity at f = 0.5

on natural frequency while g = 1
Fig. 3 Effect of Poisson’s ratio for diverse crack severity at f = 0.5

on natural frequency while g = 2
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Fig. 4 Effect of Poisson’s ratio for diverse crack severity at f = 0.5

on natural frequency while g = 3

Fig. 5 Effect of Poisson’s ratio for diverse crack severity at f = 0.5

on natural frequency while g = 3

Fig. 6 Effect of Poisson’s ratio for diverse crack severity at f = 0.25

on natural frequency while g = 1

Fig. 7 Effect of Poisson’s ratio for diverse crack severity at f = 0.25

on natural frequency while g = 2

Fig. 8 Effect of Poisson’s ratio for diverse crack severity at f = 0.25

on natural frequency while g = 3

Fig. 9 Effect of Poisson’s ratio for diverse crack severity at f = 0.25

on natural frequency while g = 4
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approximately in half as crack severity quadruples. In

addition, the overall natural frequency for a cracked posi-

tioned at 0.25 is far more than the ones when it is posi-

tioned at 0.5.

Figure 10 illustrates the effect of crack position on

natural frequency. Obviously, due to the symmetric

boundary conditions applied to the microbeam, it was

widely assumed that the natural frequency would vary

symmetrically by changing the crack position from one

edge of the beam to the opposite side. Besides, the mini-

mum amount of natural frequency is shown to be where

crack is positioned at the middle of the microbeam.

Additionally, dimensionless material length scale parame-

ter has almost no effect on natural frequencies for amounts

more than 4.

Results, illustrated in Fig. 11, depict that the natural

frequency for a microbeam with a crack positioned at

n = 0, i.e., a microbeam with no crack, is the same for all

crack severities. However, there is a striking difference

when crack moves further through the length of the

microbeam. It decreases considerably and hits its minimum

amount at n = 0.5.

According to results shown in Fig. 12, Poisson’s ratio

plays a significant role on the natural frequency as well as

crack position. It is shown that for a microbeam with a

Poisson’s ratio between 0.15 and 0.35, the natural fre-

quencies almost remain the same. It, however, increases

drastically so long as it is more than 0.35.

6 Conclusion

In this investigation, free transverse vibration of a cracked

microbeam within the framework of Euler–Bernoulli beam

theory on the basis of the modified couple stress theory is

analyzed. Analytical solution and numerical results are

presented. In this work, the impact of Poisson’s ratio,

material scale length parameter, crack position and the

crack severity on the natural frequencies were investigated.

It has been found that the crack severity correlates nega-

tively with natural frequencies. However, the fourth fre-

quency for a crack at the quarter of the beam and the

second and fourth frequencies for a crack at the middle of

the crack remain constants, which is due to the symmetry

of the beam and cancelation of the second derivative of the

displacement. Crack severity plays a significant role on

natural frequency. Also, natural frequency increases while

Poisson’s ratio rises. The overall amounts of natural fre-

quency decrease while crack moves toward the middle of

the beam. Besides, the material scale length parameter as a

considerable impact on natural frequency, which reduces

the natural frequency when it rises.

Fig. 10 Effect of crack position for diverse g on natural frequency

with t = 0.3 and K = 1.5

Fig. 11 Effect of crack position for diverse K on natural frequency

with t = 0.3 and g = 1

Fig. 12 Effect of crack position for diverse t on natural frequency

with K = 1.5 and g = 1
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20. M. Şimşek, Nonlinear static and free vibration analysis of

microbeams based on the nonlinear elastic foundation using

modified couple stress theory and He’s variational method.

Compos. Struct. 112, 264–272 (2014)

21. M. Tang et al., Size-dependent vibration analysis of a microbeam

in flow based on modified couple stress theory. Int. J. Eng. Sci.

85, 20–30 (2014)

22. K.S. Al-Basyouni, A. Tounsi, S.R. Mahmoud, Size dependent

bending and vibration analysis of functionally graded micro

beams based on modified couple stress theory and neutral surface

position. Compos. Struct. 125, 621–630 (2015)

23. R. Ansari, M.A. Ashrafi, A. Arjangpay, An exact solution for

vibrations of postbuckled microscale beams based on the modi-

fied couple stress theory. Appl. Math. Model. 39(10–11),
3050–3062 (2015)

24. H.L. Dai, Y.K. Wang, L. Wang, Nonlinear dynamics of can-

tilevered microbeams based on modified couple stress theory. Int.

J. Eng. Sci. 94, 103–112 (2015)

25. A.M. Dehrouyeh-Semnani et al., Size-dependent frequency and

stability characteristics of axially moving microbeams based on

modified couple stress theory. Int. J. Eng. Sci. 97, 98–112 (2015)

26. L. He et al., A size-dependent four variable refined plate model

for functionally graded microplates based on modified couple

stress theory. Compos. Struct. 130, 107–115 (2015)

27. M. Mohammad-Abadi, A.R. Daneshmehr, Modified couple stress

theory applied to dynamic analysis of composite laminated beams

by considering different beam theories. Int. J. Eng. Sci. 87,
83–102 (2015)

28. M. Mohammadabadi, A.R. Daneshmehr, M. Homayounfard,

Size-dependent thermal buckling analysis of micro composite

laminated beams using modified couple stress theory. Int. J. Eng.

Sci. 92, 47–62 (2015)

29. M.M.S. Fakhrabadi, Size effects on nanomechanical behaviors of

nanoelectronics devices based on consistent couple-stress theory.

Int. J. Mech. Sci. 92, 146–153 (2015)

30. H.-T. Thai et al., Size-dependent behavior of functionally graded

sandwich microbeams based on the modified couple stress theory.

Compos. Struct. 123, 337–349 (2015)

31. M. Ghadiri, N. Shafiei, Vibration analysis of rotating functionally

graded Timoshenko microbeam based on modified couple stress

theory under different temperature distributions. Acta Astronaut.

121, 221–240 (2016)

32. E.K. Kakhki, S.M. Hosseini, M. Tahani, An analytical solution

for thermoelastic damping in a micro-beam based on generalized

theory of thermoelasticity and modified couple stress theory.

Appl. Math. Model. 40(4), 3164–3174 (2016)

33. V.R. Hiwarkar, V.I. Babitsky, V.V. Silberschmidt, Crack as

modulator, detector and amplifier in structural health monitoring.

J. Sound Vib. 331(15), 3587–3598 (2012)

34. G. Yan et al., A novel approach to detecting breathing-fatigue

cracks based on dynamic characteristics. J. Sound Vib. 332(2),
407–422 (2013)

35. L. Wang et al., Damage detection of RC beams based on

experiment and analysis of nonlinear dynamic characteristics.

Constr. Build. Mater. 29, 420–427 (2012)
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