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Abstract This work describes the gravitational effects of

an ordered array of Planck masses, arrayed in a cubic lat-

tice with a lattice constant equal to the Planck length. This

work adds the property of spatial order to the concept of

quantum foam that was introduced by John Wheeler over

50 years ago. It is shown that this ordering results in new

gravitational phenomena that affect elementary particles

with masses close to the Planck mass. The only known

elementary particles with a mass comparable to or greater

than the Planck mass are black holes. Calculated in this

work are the energies of particles within the crystal, their

dispersion curves, group velocities and effective inertial

masses. It is shown that, for particles having particular

energies and momenta, the crystal can modify the inertial

mass such that it is no longer equal to the gravitational

mass—a violation of Einstein’s equivalence principle in

appearance only. Under certain conditions, particular par-

ticles can have a negative effective inertial mass such that

it is pushed by the pull of an external gravitational force

produced by sources other than the crystal. The connec-

tions between the effects of the gravity crystal and dark

energy and dark matter are discussed. Also discussed is

how to determine the properties of the universe-wide

gravity crystal by studying the motion of black holes and

galaxies—in effect using black holes as hyper-resolving

microscopes to study the fine structure of the universe.

1 Introduction

In this paper, the concepts of the fundamental length of space

(i.e., the Planck length lp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

�hG=c3
p

¼ 1:62 � 10�35 m),

Werner Heisenberg’s ‘‘Lattice World’’ and John Wheeler’s

quantum foam theory will be combined, resulting in a uni-

verse-wide gravity crystal (GC) that permeates all space

(Fig. 1). The GC will manifest itself in the gravitational and

inertial properties of point-like particles that have masses on

the order of the Planck mass mp ¼
ffiffiffiffiffiffiffiffiffiffiffi

�hc=G
p

¼ 2:18 � 10�8

kg. By using well-developed concepts and techniques from

the fields of quantum electrodynamics and solid-state phy-

sics, it will be shown that the inertial masses (mi) of black

holes become different than their gravitational masses (mg)

when they have particular momenta. For particular ranges of

momenta, mi can have values either much larger or smaller

than mg, be near zero, or even be negative. The possibility of

non-equality of inertial and gravitational masses of parti-

cles—a violation of Einstein’s equivalence principle in

appearance only—is not a surprising result given the fact that

the particles are traveling through a material, namely the GC.

Such a phenomenon occurs for electrons in regular crystals

(e.g., silicon, germanium) and is a well understood and

experimentally verified phenomenon. As will be discussed in

this paper, the momentum-dependent inertial masses of black

holes may have a connection to dark matter, dark energy and

other anomalies observed in the motion of black holes and

galaxies. Also discussed in this paper is how one can use

black holes as hyper-resolving microscopes to study the

properties of space at length scales comparable to lp.

This paper is organized as follows. In Sect. 2, a short

summary is given of relevant episodes of the 2500-year-

long history of the study of the fine structure of space. In

Sect. 3, an introduction is given for the concept of
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gravitational flux, gravitational permeability and the rela-

tion between gravitational flux and field (namely the con-

stitutive equation). Also, the effective mass theory

commonly used to describe electron motion in regular

crystals will be adopted to describe the motion of point

masses in the GC. In Sect. 4, standard methods to calculate

energy band diagrams in crystals will be used, including

the non-relativistic empirical pseudopotential method

(EPM) and a relativistic Kronig–Penney model. Dispersion

curves of a particle within the GC are calculated, as well as

the particle’s group velocity and inertial mass as a function

of momentum and gravitational mass. In Sect. 5, the results

of the calculations will be discussed along with the gravi-

tational and inertial properties of black holes.

2 History of the inquiries on the fine structure
of space

The discussion of whether space itself is discrete (i.e., ato-

mized) or continuous (i.e., infinitely divisible) is as old as

Democritus’s atomic hypothesis of materials [1–3]. Starting

in the fifth century BC, Parmenides and his student Zeno of

Elea inquired about the nature of space, change, motion and

plurality [4]. Their inquiries resulted in the famous Zeno’s

paradoxes that address motion, time and change. Many later

philosophers and physicists have tried to resolve these and

other paradoxes concerning time and space; these philoso-

phers include Rene Descartes, Leonhard Euler, Gottfreid

Leibniz, George Berkeley, David Hume, David Hilbert, and

many others have contributed to this discussion, as described

by Amit Hagar in [1]. However, despite over twenty-five

centuries of philosophical musings on the matter by these

and other philosophers, Hagar concludes that logic alone

cannot disqualify either the discrete picture or the continu-

ous picture of space [5].

If space–time is discretized, it is generally believed

that the most probable atom of space (i.e., the smallest

allowable length of space) is lp, and the atom of time is

tp ¼ lp=c ¼ 5:39 � 10�44 s [1]. Other Planck values

include: the Planck mass mp being the most mass a point

particle can have, Planck charge qp ¼
ffiffiffiffiffi

�hc
p

(in Gaussian

units), Planck temperature Tp ¼ mpc
2=kB (where kB is

Boltzmann’s constant) and others. It is often believed that

the question of the discretization of space is not testable,

either now or in the future, because of the extraordinarily

small size of lp. However, as will be shown in this work,

the effects of the discreteness of space will manifest itself

in measurable phenomena, namely the motion of black

holes.

In this work, the role played by Heisenberg’s lattice

world is relatively minor but nonetheless important. In

1930, Heisenberg introduced the concept of space being

discretized in unit cells of size of r3
o with ro ¼ 10�15 m

[6]. Along with this discretization, he proposed to

replace the differential equations used in physics with

difference equations. Niels Bohr and Wolfgang Pauli

pointed out obvious problems with the concept,

including the breaking of isotropy of space, and non-

conservation of energy and momentum [7, 8]. Addi-

tionally, it appeared that the concept of a fundamental

or smallest length breaks Lorentz invariance—this

ostensibly smallest length would be Lorentz-contracted

to a yet smaller value in a moving reference frame. In

spite of these problems, the lattice world concept was

further studied by Heisenberg and others, including

Matvei Bronstein [9]. In this work, the concepts of a

fundamental length and crystalline order will be used,

but at a length scale twenty orders of magnitude smaller

than what Heisenberg proposed.

The final and most important historical concept exploi-

ted in this work is John A. Wheeler’s concept of quantum

foam that he introduced in 1957 in an attempt to show that

all of classical physics, particle physics included, is

‘‘purely geometrical and based throughout on the most

firmly established principles of electromagnetism and

general relativity’’ [10]. Wheeler made use of well-devel-

oped concepts in quantum electrodynamics, in which the

probability amplitude of a transition of a system from an

initial configuration to a final configuration is obtained by

summing the Feynman–Huygens exponent over all possi-

ble histories:

hC2r2jC1r1i ¼
X

H

eiIH=�h ð1Þ

In order for a particular history to contribute to the

transition probability, the phase of the exponent in Eq. (1),

which is dependent on the metric g and the electric vector

Fig. 1 Left A schematic of the Leopold crystal—the universe-wide

GC. The basis (the blue spheres) is assumed to be particle of mass mp

that produces a spherically symmetric 1=r potential energy profile.

The crystal is cubic in structure with a lattice constant of lp. Right The

dual or reciprocal lattice, which is also cubic with a lattice constant of

2p=lp
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potential A, should be small (� 1 radian or less) to avoid

destructive interference. This limits fluctuations in g (i.e.,

Dg) that can occur over a volume of space–time L4 to be on

the order of Dg� lp=L, where lp is the Planck length, and

fluctuations in A to be on the order of
ffiffiffiffiffi

�hc
p

=L. The fluc-

tuations in the metric Dg remains small relative to g until L

approaches lp, at which point, Dg� g and ‘‘the character of

the space undergoes an essential change... and multiple

connectedness develops’’ [10] that results in a disordered

collection of ‘‘wormholes’’ in the topology of space with a

spacing of approximately lp; he calls this wormhole col-

lection ‘‘quantum foam’’.

Each wormhole has an associated pair of positive and

negative electrical charges of charge �qPlanck ¼ �
ffiffiffiffiffi

�hc
p

that

produces an intense electromagnetic field energy E that has

associated with it a mass of m ¼ c�2E ¼ mp. After further

discussion, he summarizes his findings as follows [10]:

1. Quantization of the physics of Maxwell and Einstein

forces upon space a foam-like structure... on the scale

of lp.

2. In the vacuum, virtual pairs of charges are being

continually created and annihilated.

3. With these pairs are associated charges and especially

masses ‘‘far larger than anything familiar from the

elementary particle problem’’ [10].

4. The gravitational energy density is negative and

approximately equal in magnitude to the positive

electromagnetic energy density, and ‘‘circumstances

are favorable for the local compensation of electro-

magnetic energy by gravitational energy,’’ such that

‘‘to the extent this compensation holds locally, nearby

wormholes exert no gravitational attraction on remote

concentrations of mass-energy.’’

Item 4 states that the formation of the foam is an

energy conserving process. This property makes these

fluctuations highly probable to occur and contribute to the

transition probability. However, in this work, it will not

be assumed that ‘‘nearby wormholes exert no gravitational

attraction on remote concentrations of mass-energy.’’

Also, in this work it will be assumed, contrary to Item 2,

that these wormholes (i.e., Planck masses) are stable in

time. And most importantly in this work, rather than a

random distribution of these wormholes with an average

spacing of lp as Wheeler assumed, a regular cubic lattice

of lattice constant lp will be assumed (Fig. 1). Note that

the GC does not need to have a cubic structure to produce

the gravitational anomalies described later in this work—

the same anomalies will occur for other lattice structures,

such as dodecahedron [11].

Thus, we arrive at the GC described in this work—a

lattice with a spatial period (i.e., lattice constant) that is the

smallest that nature allows, namely the Planck length lp,

and a basis composed of an elementary point particle with a

mass that is the most that nature allows, namely the Planck

mass mp. This crystal, which I call the Leopold crystal, is

assumed to fill up all space with no defects of any kind,

including edges. Any dislocations or interstitial sites would

necessarily involve distances less than lp—something

thought not to be possible. It is well known that an ele-

mentary particle with mass mp has a reduced Compton

wavelength kc ¼ �h=mpc that is equal to lp. With the kc
being the fundamental limit on measurements of the posi-

tion of a particle, the question as to where the Planck

particle is within unit cell of volume l3p is unanswerable.

Also, because the lattice constant lp is one-half of Sch-

warzschild radius (Rc ¼ 2Gmp=c
2), the unit cells (com-

posed of a Planck particle) form an array of quantum black

holes, each with the smallest allowable mass for a black

hole.

To get a sense of what particles would experience the

GC to any significant degree, one can compare the relative

magnitudes of a particle’s kinetic energy KE ¼ �h2jkj2=2m

and gravitational potential energy jV j ¼ Gmmp=lp, with m

being the gravitational and inertial mass of the particle. In

the physics of crystals, jkj can be assumed to be within the

first Brillouin zone (BZ), i.e., �p=lp\ ¼ jkj\ ¼ p=lp, and

that the effects of the crystal most often manifest them-

selves at the BZ boundary of jkj ¼ p=lp. Thus, when an

elementary particle’s mass is large enough, namely when

m ¼ ðp=
ffiffiffi

2
p

Þmp ¼ 2:22mp;KE will equal |V|. Particles with

less (more) mass experience the effects of the crystal to a

lesser (greater) degree. Since we have already stated that

masses greater than mp within a volume l3p are not possible,

let us consider particles within this crystal having a mass

mp. Such a mass, namely mp, is very large—almost no

elementary particle has a mass close to this value. The

exceptions to this are black holes, and to a much lesser

extent the Higgs Boson ðm ¼ 2:25 � 10�25 kgÞ, top-quark

ðm ¼ 3:09 � 10�25 kgÞ, and exceptionally high-energy

cosmic rays. All heavier entities (e.g., atoms, molecules,

neutron stars) have their mass distributed over a volume

such that the mass density is much less than mp=l
3
p. Black

holes are predicted to compress the mass of many stars to a

single, infinitesimally small point. Even if this mass is not

compressed to a singularity but instead limited to a density

of qmax ¼ mp=l
3
p (as assumed later in this work), the inertial

properties of the black hole will be significantly influenced

by the GC.
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3 Gravitational flux and effective mass model
of gravity

Non-relativistic gravitational fields produced by point

masses have a spatial dependence the same as electric

fields produced by point charges, and thus, the tools used in

effective mass theory of crystals can be used for gravity.

One can start with the equation:

r � D ¼ 4pGqfree ð2Þ

Because the right side of Eq. (2) only contains the free

mass density qfree produced by non-lattice entities (e.g.,

stars, planets, electrons) and not the masses comprising the

crystal, D is not the gravitational field but is instead the

gravitational displacement (or flux density). The total

gravitational field Gtotal is given by sum of the gravitational

field Gfree produced by non-lattice entities (again stars,

planets, electrons) and the gravitation field Glattice produced

by the GC.

Similar to electromagnetics, we can relate the D and

Gtotal via a constitutive equation with a constant of pro-

portionality we can call the gravitational permeability lg.
Also, if all the gravitational forces on a particle (that is

traveling within the crystal) are taken into account and

summed, then this sum (under non-relativistic conditions)

is equal to the product of its gravitational mass mg and

acceleration (mga ¼ mgGtotal) and is in agreement with

Einstein’s equivalence principle. These two relations lead

to:

D ¼ lgGtotal a ¼ Gtotal ð3Þ

In effective mass theory, the forces due to external (non-

lattice) sources, such as an electric field produced by an

applied voltage, are equal to the product of the effective

mass and acceleration. Similarly to gravitational forces, we

can write:

F ¼ mia ¼ Fexternal ¼ mgD ð4Þ

Substituting Eq. (3) in Eq. (4) leads to the following

relation:

lg ¼ mi=mg ð5Þ

The value of mg is a constant, but the next section will

describe methods to calculate mi, and it will be shown

that mi is dependent on the momentum of the particle and

can take on values much different than unity (what lg
would be absent the lattice), including positive values

much greater than mg, values near zero, and can also be

negative.

4 The band diagram of the universal gravity
crystal

One can draw upon the tools (long developed and experi-

mentally verified) from the fields of solid-state physics and

crystallography. For particles with m\mp, the particle only

weakly experiences the effects of the crystal and one can

use the nearly free particle model or empirical pseudopo-

tential method (EPM) to calculate the energy band diagram

[12, 13]. For particles with m[ 2:22mp one has to use the

tight-binding (TB) model or another model that assumes

that the particles are predominately localized around one

lattice site and only weakly experiences the Planck parti-

cles at neighboring lattice sites. The TB model has been

used to model particles with m[ 2:22mp, but due to space

constraints, this work cannot be included in this paper but

will be made public elsewhere. The same qualitative

behavior of mi is seen using the TB model as compared to

the EPM model. Namely, the TB model predicts non-

equality of mi and mg, and a momentum dependence for mi

such that it can be much larger than mg, be negative or near

zero. With either the EPM or TB models, one starts with

the time independent form of Schrodinger’s equation

where VðrÞ includes the gravitational potential energy

profile produced by all the particles comprising the crystal:

�h2

2mg

r2wþ VðrÞw ¼ Ew ð6Þ

Identical to what is done with the periodic Coulombic

potential energy profile created by the positively charged

nuclei in crystal, VðrÞ in Eq. (6) for an electrically neutral

particle of mass mg is:

VðrÞ ¼ �Gmgmp

X

R

1

r� Rj j ð7Þ

where mg is both the inertial mass and gravitational mass of

the particle in all the terms in Eqs. (6) and (7), mp is the

mass of each particle comprising the crystal, and R are the

spatial translation vectors R ¼ n1ax þ n2ay þ n3az with

n1; n2 and n3 being integers, and ax ¼ lpx̂; ay ¼ lpŷ; az ¼ lpẑ

are the primitive spatial translation vectors for the cubic

lattice.

The Fourier transform of VðrÞ is:

VðjKjÞ ¼ 1

l3p

Z

unitcell

e�iK�rVoðrÞ dr ¼ � 2pmmpG

lp
sinc2ðjKjÞ

ð8Þ

with K being the reciprocal lattice vectors. Because the

periodicity of the structure, the wave functions of the

particles are Bloch functions:
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wkðrÞ ¼ eik�r
X

K0
UðK0ÞeiK0 �r

ð9Þ

Inserting Eqs. (8)–(9) into Eq. (6) yields the matrix

equation:

�h2ðkþKÞ2

2m
dK;K0 þ

X

K0
VðjK�K0jÞ

" #

UðK0Þ ¼ EUðKÞ

ð10Þ

One then simply solves Eq. (10) for the eigenvectors

UðKÞ and eigenvalues E along particular directions in k-

space (see Fig. 2) and plots the energy of the modes as a

function of jkj. Once the dispersion curves (x� k curves)

are calculated, the effective inertial mass can be calculated

by the well-known formula [12, 13] given below, and

plotted in Fig. 3 as a function of jkj.
1

mi

¼ 1

�h2

o2EnðkÞ
okiokj

ð11Þ

It is seen from Fig. 2 that the bands are parabolic near

k ¼ 0 (i.e., the C point in momentum space), but near the

BZ boundaries at X, M and R; o2E=ok2 changes sign,

leading to sharp changes and negative values for mi. The

salient point is that the mass given by Eq. (11) is the in-

ertial mass mi affecting properties such as acceleration,

momentum and kinetic energy and not the gravitational

mass mg in Eqs. (7) and (8) involving the gravitational

interaction between particles. Thus, for particles that

experience the effects of the crystal, there will seemingly

be a violation of Einstein’s equivalence principle, in that mi

can be different than mg. However, this violation is in

appearance only and results from the fact that one typically

calculates a particle’s acceleration in space using only non-

lattice contributions to the gravitation field. Also, with the

system being comprised of the particle and the crystal,

overall conservation of energy and momentum is main-

tained; any energy or momentum given up by the particle is

taken up by the crystal. Thus, the motion of a particle with

negative effective inertial mass will be accompanied by

gravity waves within the crystal that propagate at some

speed away from the particle, presumably c.

Once mi has been calculated, all the effects of the crystal

are contained within it—the potential energy profile cre-

ated by the array of Planck masses can be ignored and only

non-crystal sources of gravitational potential energy will

contribute to VexternalðrÞ in Schrodinger’s equation, and mi

is used in the denominator of the kinetic energy term in

Schrodinger’s equation:

� �h2

2mi

r2wþ VexternalðrÞw ¼ Ew ð12Þ

Both the EPM model and the TB model presented

above are non-relativistic models. Even though the goal

of this work is not to provide precise values for mi for

particular particles but only to introduce the gravitational

and inertial anomalies that the GC produces, doubt can be

cast on validity of these non-relativistic models. This is

because, for particles with momenta close to the BZ

boundary of k ¼ p=lp and with a mass mp, their velocities

approach c. To demonstrate that the same phenomena are

predicted using a relativistic method, a relativistic Kro-

nig–Penney (KP) model described by Strange [14] will be

used. The starting point is the one-dimensional Dirac

equation:

c�h

i
~ax

o

ox
þ ~bmc2 þ VðxÞ

� �

wðxÞ ¼ WwðxÞ ð13Þ

where a and b are given below,

Fig. 2 Energy–momentum band diagram calculated using the EPM

model. The structure of the GC is given in Fig. 1, and the particle is

electrically neutral and has a gravitational mass of mp. Inset One unit

cell of reciprocal space showing the crystal directions

Fig. 3 Inertial mass mi (solid black line) as a function of momentum

for an electrically neutral particle with gravitational mass mg ¼ mp

(horizontal dashed blue line). It is seen that near the BZ boundaries,

mi goes from being nearly equal to mg (which is a constant mp ¼
2:18 � 10�8 kg) to much greater than mg and then changing sign to

become negative
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~ax ¼

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0

B

B

B

@

1

C

C

C

A

~bx ¼

1 0 0 0

0 1 0 0

0 1 �1 0

0 0 0 �1

0

B

B

B

@

1

C

C

C

A

ð14Þ

w is a Bloch wave similar in form to Eq. (9) with the

additional complexity of being a 4-vector. w also has to

obey the Bloch boundary conditions:

eikawðxÞ ¼ wðxþ aÞ ð15Þ

Defining a value E as E ¼ W � mc2 to eliminate the rest

energy, and applying the all necessary boundary conditions

throughout one period of the structure, leads to the fol-

lowing equation:

cosðkaÞ ¼ cosðk1bÞcosðk2ða� bÞÞ

� C�1 þ C
2

sinðk1bÞsinðk2ða� bÞÞ
ð16Þ

where k1; k2 and C are given by:

k2
1 ¼ E þ Vo þ 2mc2ð Þ E þ Voð Þ

c2�h2
k2

2 ¼ E E þ 2mc2ð Þ
c2�h2

ð17Þ

C ¼E þ Vo

E

k2

k1

ð18Þ

Shown in Fig. 4 is the energy–momentum band diagram

for a one-dimensional period potential well structure with a

period a equal to lp, a well width b of 0:952lp and the well

depth of Vo ¼ Gm2
p=lp. The same qualitative behavior

observed with the non-relativistic EPM model is observed

with the relativistic KP model, namely the occurrence of

large positive, near zero and negative inertial mass as the

momentum of the particle approaches the BZ boundary at

k ¼ p=lp, as shown in Fig. 5.

5 Discussion

For the purposes of presenting this work at the Meta’15

conference, similarities were described between the prop-

erties of GC and electromagnetic metamaterials. The

accepted definition of metamaterials given by Rodger

Walser is that they are ‘‘...macroscopic composites having

a manmade, three-dimensional, periodic cellular architec-

ture designed to produce an optimized combination, not

available in nature, of two or more responses to specific

excitation.’’ Additionally, the materials should: be periodic

composite materials, have constituent elements that are

substantially smaller than the wavelength and have prop-

erties that can be described by materials parameters (e.g.,

�; l). The GC is periodic and is a composite of Planck

particles and the void, its constituent elements are smaller

than the wavelengths of any excitation, and its properties

can be described by the parameter lg, and lg can take on

values not commonly thought to occur in nature (i.e.,

negative and near zero values). Of course, the GC is not

optimized by humankind for any application and not even

‘‘manmade.’’ In fact, this metamaterial is not ‘‘meta’’ at

all—it is not beyond what nature provides but is the very

fabric of nature, the very fabric of space–time. Neverthe-

less, the GC is an extraordinary material that is omnipre-

sent. If it can be harnessed or exploited in some way by

future technologies, it would allow extraordinary

advancements in many scientific and technological fields,

including propulsion systems.

At present, the GC may be affecting the motion of black

holes and the evolution of the universe. It may be that

regular black holes (i.e., not quantum black holes of

m�mp) do not concentrate their mass to an infinitely small

singularity but instead to a mass density of mp=l
3
p, such a

thing would be consistent with the view that the maximum

mass an elementary particle can have is mp and any particle

contained within a volume of l3p is necessarily elementary.

Fig. 4 Energy–momentum band diagram calculated using the one-

dimensional relativistic KP model. The energies of the states are

relative to the bottom of the potential wells. The structure is described

in the text and a few unit cells are shown in the inset

Fig. 5 Effective inertial mass mi for a particle with gravitational mass

mg ¼ mp width varying momentum. Similar to what is predicted by

the non-relativistic EPM model, the relativistic KP model predicts

large positive, near zero and negative inertial mass as the momentum

of the particle approaches the BZ boundary at k ¼ pi=lp
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In this case, the models described in this work for particles

with mg ¼ mp traveling within the GC are applicable and

black holes’ inertial properties will be significantly affected

only when they have a very large velocity relative to the

GC. Fast moving black holes may then have very large

positive inertial masses and would therefore be relatively

unresponsive to the gravitational field produce by all the

stars and planets of the universe. At other momenta, a black

hole’s mi may be negative. If, for example, a supermassive

black hole at the center of a galaxy is moving fast away

from the center of the observable universe, it may have a

negative value for mi that is approximately equal in mag-

nitude to its gravitational mass mg. If this is the case, then

the only observable effect may be that fast moving galaxies

(perhaps at the edges of the observable universe) may be

increasing their acceleration away from the center of the

universe. Another example is for a supermassive black hole

has a momentum such that its inertial mass is near zero; in

this case the black hole may be ejected from the parent

galaxy.

If black holes can compress significantly more mass

than mp into a volume of l3p, then the models described in

this work, and the accompanying work using the TB

model, predict that the black hole will become trapped

around one or several lattice points of the GC. If too

massive, the black holes may generate defects in the GC or

locally obliterate the GC. Either way, by observing the

motion of fast moving black holes, one should be able to

assess the structure and properties of any universe-wide

GC, in effect using black holes as a probe to study the fine

structure of space.

Additionally, one can look at large-scale structural fea-

tures of the universe for experimental evidence of the

discretization of space. Similar to regular crystals, the GC

may possess crystal ‘‘facets’’ at its surface. The existence

of facets of the universe will leave tell-tale patterns on the

cosmic microwave background (CMB) as recently recor-

ded by the Wilkinson Microwave Anisotropy Probe

(WMAP) [11]. The orientations of these enormous facets

can provide information about the minuscule lattice and

unit cell as to whether the lattice type is cubic, dodecahe-

dron or something else.
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Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.
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