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Abstract Kinetic analysis was conducted on principal

component scores calculated from second-derivative near-

infrared (NIR) spectra of thermally treated Sugi (Cryp-

tomeria japonica) wood samples. NIR reflectance spectra

were measured for wood samples thermally treated at 90,

120, 150 and 180 �C in an air-circulating oven for periods

ranging from 5 min to approximately 1.4 years. The

Arrhenius approach, which involves the time–temperature

superposition method, is used to understand the change in

the principal component score. The master curve corre-

sponded well with the change in principal component

scores at each temperature and yielded a determination

coefficient between the measured and estimated data of

0.99 for second principal component score. This report

shows that kinetic analysis is useful to understand changes

in the principal component score calculated from NIR

spectra of wood subjected to thermal treatment.

1 Introduction

The thermal modification of wood has long been carried

out to change its properties. There are some advantages

such as an increasing of dimensional stability, resistance to

fungal decay and coloration. There are many types of

thermal modification (wood species, temperature, atmo-

sphere and duration), and their effects on chemical com-

ponent, strength, moisture content and dimensional

stability are reported as summarized by Esteves et al. [1].

The chemical behavior is an important factor affecting

other wood properties. It is generally known that 1)

hemicellulose and the amorphous region in cellulose are

the first chemical compounds to be thermally affected,

even at low temperature, 2) crystalline cellulose is less

affected, and 3) the lignin content in wood relatively

increases with thermal treatment [1]. However, it is diffi-

cult to make prevailing prediction of the treatment result in

detail due to the various chemical natures of wood species.

For the effective thermal treatment of wood for industrial

purpose, nondestructive method of wood chemical com-

ponent is required.

Near-infrared (NIR) spectroscopy has been reported to

have a high application potential as a nondestructive tool in

the wood products industry for the rapid determination of

chemical, mechanical and physical properties of wood [2,

3]. Evaluation of thermally treated wood has been

attempted using NIR spectroscopy. Bächle et al. [4] fully

investigated the NIR second-derivative change in beech

and spruce with thermal treatment with 180–220 �C. They
reported the good prediction for oven-dry and basic den-

sity, MOE and MOR from NIR spectroscopy with partial

least square (PLS) regression analysis. In another paper, a

good classification of thermally modified wood samples

according to the treatment intensity with soft independent

modeling of class analogies (SIMCA) was constructed by

Bächle et al. [5]. Windensen et al. [6] investigated the

relation between chemical change determined by mean of

several methods including NIR spectroscopy and

mechanical properties of thermally treated wood. Esteves

et al. [2] reported that many wood properties in thermally

treated wood can be predicted by NIR spectroscopy with

PLS regression analysis.

The critical problem for the application of NIR spec-

troscopy for wood science is the complexity of NIR spectra
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of wood as a complex polymer. Absorption in the NIR

region results from harmonics or overtones of the funda-

mental absorption of molecular vibration. Broad absorption

and the influence of the physical condition of a sample can

make spectra difficult to analyze. Multivariate statistical

methods based on the projection of spectral information to

latent structures, such as principal component analysis

(PCA) and PLS regression, are promising for the quanti-

tative and qualitative analysis of such complex data. To

prepare a robust calibration curve, training samples set

should have a sufficient range of the properties under

evaluation and represent all the important sources of vari-

ability that would be included in the samples to be pre-

dicted. When wood is measured in the reflectance mode,

important factors include the wood species, moisture con-

tent, density, and surface roughness. A large number of

samples are necessary to cover the variability of such

properties. Therefore, we propose a new method that

combines the unsupervised analysis of spectral and kinetic

analysis. The NIR spectral change with thermal treatment

of wood can be predicted by using the method.

Kinetic analysis is a method used to explain the temper-

ature dependence of the reaction rate in chemical reactions.

In wood science, the application of kinetic analysis has been

demonstrated to enable the prediction of pyrolysis or dete-

rioration of lignocellulose materials [7–11]. An Arrhenius

approach has been used for polymers that involve the time–

temperature superposition (TTSP) method to derive the shift

factors and understand the Arrhenius behavior [12].

In this study, PCA was employed with the aid of kinetic

analysis to understand the change inNIR spectra forwood that

was heat treated under dry conditions. The loading vectors

were calculated, which indicate the direction of NIR spectral

change due to the thermal oxidation of wood. Arrhenius plots

were employed to calculate the activation energy.

2 Materials and methods

2.1 Samples

Thermally treated wood samples, as reported by Matuso

et al. [13], were adopted. Samples were cut from a 180-year-

old Sugi (Cryptomeria japonica D. Don) tree into small

pieces [60 mm (longitudinal direction) 9 10 mm (radial

direction) 9 2 mm (tangential direction)]. The wood spec-

imens were dried in an air-circulating oven and a vacuum

oven at 60 �C for 24 h. Then, the specimens were thermally

treated at 90, 120, 150 and 180 �C in an air-circulating oven

for periods ranging from 10 min to approximately 1.4 years,

as summarized in Table 1. A sample block of homogenous

grain for each species was carefully selected from the area

near the outermost part of the heartwood. Each species

covers 5–10 annual growth rings. Four samples were

obtained for each thermal treatment condition.

2.2 NIR measurement

NIR reflectance spectra were measured from the radial face

of the air-dried wood samples using a Fourier transform

(FT)-NIR spectrophotometer (Bruker MATRIX-F; TE-

InGaAs detector with a fiber optic probe with a measure-

ment area of 7 mm2) under laboratory conditions. This

measurement area contains 1 or 2 years of tree rings, where

averaged spectral information of earlywood and latewood

was acquired. A white plate (barium sulfate) served as the

background. To improve the signal-to-noise ratio, 64 scans

were co-added at a spectral resolution of 8 cm-1 over the

wavenumber range 7500–4000 cm-1. A zero-filling of two

(corresponding to a spectral interval of 4 cm-1) was

applied. Absorbance for the analysis was calculated using

the following equation:

A ¼ � log
I

I0

� �
; ð1Þ

where A is the absorbance, I is the reflected light intensity

from the sample and I0 is the reflected light intensity from

the white plate background (reference). Three NIR spectral

measurements were made and averaged for each sample.

2.3 Data processing: multivariate data analysis

and kinetic analysis

MATLAB (MathWorks, Inc., MA, USA) was used for

spectral data preprocessing, calculation of the PCA score

and kinetic analysis. NIR spectra were processed

Table 1 Treatment temperatures and time

90 �C (h) 120 �C (h) 150 �C 180 �C

85.3 10.7 40 min 5 min

171 21.3 1.33 h 10 min

256 32 2.67 h 20 min

384 48 4 h 30 min

524 64 6 h 1 h

1024 124 8 h 1.5 h

3072 384 16 h 2 h

6144 768 48 h 6 h

9266 1536 96 h 7 h

12,288 5440 192 h 12 h

7680 384 h 24 h

960 h 48 h

84 h

120 h
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(smoothed and derived) using a 21-point smoothing filter

and a second-order polynomial to obtain second derivatives

(Savitzky-Golay, second derivative). PCA of second-

derivative NIR spectra of wood was conducted without

mean-centering of the data.

3 Results and discussion

3.1 NIR second-derivative spectra

Figure 1a, b shows the second-derivative NIR spectra for

the control wood (black solid line), wood treated at 150 �C
for 48 h (blue solid line) and wood treated at 180 �C for

120 h (red solid line). The absorption bands in the NIR

region are conclusively associated with three polymers in

wood: cellulose, hemicellulose and lignin, and water and

extractives. The absorption band characteristics of the

wood samples are labeled, and their assignments are

summarized in Table 2. The assignments in Table 2 refer

to Schwanninger et al. [14]. They summarized the knowl-

edge about the assignment of NIR absorption peaks for

wood by reviewing the 70 years of NIR band assignment

literature for wood and wood components.

For second-derivative spectra, lower absolute ampli-

tudes of second-derivative values correspond to lower

chemical concentrations. A clear decrease and peak shift

toward higher wavelength are evident for the absorption

band at 7006 cm-1 (peak 1). The difference of second-

derivative value around 7000 cm-1 with thermal treat-

ment was also reported by Todorović et al. [15] (beech

treated at 170, 190 and 210 �C for 4 h under water vapor

atmosphere), Windeisen et al. [6] (beech treated at 180,

200 and 220 �C for 4–6 h under oxygen exclusion) and

Bächle et al. [4] (beech and spruce treated at 180, 200

and 220 �C for 4 h under oxygen exclusion). Inagaki

et al. [16] reported the decrease in second-derivative

value at 7000 cm-1 also for oven-dried hinoki wood with

hydrothermal treatment under water vapor atmosphere.

On the other hand, decrease in equilibrium moisture

content with thermal treatment is well known as reviewed

by Esteves et al. [1]. These knowledge imply that the

decrease in second-derivative value at 7000 cm-1 might

be attributed to both the cleavage of OH groups as Mitsui

et al. reported [17] and the decrease in equilibrium

moisture content of wood.

It is reported that the second-derivative values within

the wavenumber region 6020–5770 cm-1 correlate well

with the lignin contents of milled spruce wood by Sch-

wanninger et al. [14]. The absorption bands at

5987 cm-1 (peak 4) and 5886 cm-1 (peak 5), which are

attributable to C–H vibrations for aromatic rings/O–H

groups in hemicellulose and methyl/methylene groups in

lignin, hemicellulose and cellulose, decreased and the

peaks shifted to higher wavenumber with thermal treat-

ment. No drastic change at 5880 cm-1, assigned to first

overtone of O–H vibration in lignin, hemicellulose and

cellulose with thermal treatment, was observed. How-

ever, Windeisen et al. [6] reported the increase in band

around 5950 cm-1 and decrease in band around

5800 cm-1 for thermally treated beech wood. They

attribute the increase in band around 5950 cm-1 to the

relative increase and structural variation of lignin and

decrease in band around 5800 cm-1 to degradation of

polyoses and/or deacetylation of xylan. Furthermore,

Bächle et al. [4] also reported feature differences at

5981 cm-1 which indicate the modifications in lignin

with thermal treatment for spruce. They reported that the

NIR spectra of beech wood showed similar features to

the spectra of spruce although the difference between

before and after thermal treatment is more obvious for

beech compared to spruce. The difference for the spec-

tral behavior at the range of 6020–5700 cm-1 with

thermal treatment observed in this study might be

because of lower thermal treatment temperature. The

study by the Windeisen et al. and Bächle et al. implies

the lignin modifications at 180–220 �C although lignin

has been supposed to be comparatively stable at higher

temperature. However, lignin might not be modified at

the lower temperature (90–180 �C) used in this study as

confirmed by thermogravimetric data [9], although the

hemicellulose was thought to be affected even at low

temperature that leads to the decrease in band at 5950

and 5880 cm-1. New extractives resulting from the

degradation of hemicellulose and amorphous cellulose

[1] also might affect to the absorption band in this range.

The absorption bands at 5226 cm-1 (peak 8) assigned to

OH vibration in water shifted toward higher wavelength.

The peak position of water reflects the state of water

contained in the wood sample, where a higher wavenumber

peak position corresponds to weaker hydrogen bonding

between water molecules or the OH groups in wood. The

equilibrium moisture content of aged or thermally treated

wood is known to be lower than that of modern or non-

heated wood when exposed to the same climate. The water

adsorption/desorption mechanism in modern and archaeo-

logical wood was investigated according to the decompo-

sition of the OH absorption band at 5226 cm-1 into three

components (free water molecules, those with one OH

group engaged in hydrogen bonding and those with two

OH groups engaged in hydrogen bonding) [18]. The peak

shift to higher wavenumber observed in this study corre-

sponds well with this conclusion, where adsorbed water

molecules in a modern wood sample are more strongly

hydrogen bonded than those in archaeological wood

samples.
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3.2 Kinetic analysis for PCA score

PCA is a linear method that allows the projection of multi-

dimensional data onto a few orthogonal features, i.e.,

principal components (PCs). The second-derivative spectra

of a wood sample within 7500–4000 cm-1 were subjected

to PCA. Calculated loading of PC1, PC2, PC3 and PC4,

which represents 98.9, 0.9, 0.059 and 0.038 %, respec-

tively, of the spectral data variance, is shown in Fig. 1c–j.

PC2, PC3 and PC4 represent only a small percent of the

spectral data variance because PCA was conducted without

mean-centering of the data. We tried the calculation of

PCA score also with mean-centering of spectral data;

however, the variation of PCA scores within same thermal

treatment condition (i.e., variance within four samples) was

much bigger compared with PCA scores conducted without

mean-centering.

Leverage correction validation was applied to determine

the optimum number of PCs. The determined optimum

number was 1. However, the score change with thermal

1
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a b
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Fig. 1 a, b NIR second-

derivative spectra for control

wood (black solid line), wood

treated at 150 �C for 48 h (blue

solid line) and wood treated at

180 �C for 120 h (red solid

line). The numbers correspond

to the assignments given in

Table 2. We used different

scales in a 7200–5500 cm-1

and b 5500–4000 cm-1 in order

to clearly show the change in

second-derivative spectra with

thermal treatment. Loading

coefficients of c, d PC1, e,
f PC2, g, h PC3 and i, j PC4
calculated from the PCA
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treatment was explained by kinetic analysis for PC1, PC2,

PC3 and PC4 as shown in Figs. 2, 3, 4 and 5. Changes in

the (a) score and (b) superimposed score calculated from

NIR second-derivative spectra (7500–4000 cm-1) as a

function of treatment time and (c) Arrhenius plot of shift

factors from empirical superposition of the change in

Ln(aT) are shown in these figures.

Figure 3a shows the change in the PC2 score as a

function of the logarithmic thermal treatment time (four

samples from each thermal treatment condition, 188

samples in total). The higher temperature accelerates the

change in the PC2 scores. When the relation between the

thermal treatment time and spectral response is nonlinear

as in this case, the PLS regression method, which is the

most widely used for spectroscopic analysis, is not suit-

able for the prediction of NIR spectral change with

thermal treatment time. Although many effective nonlin-

ear methods are available, we suggest the use of an

Arrhenius approach that involves the TTSP method to

interpret the change in the PCA score. The Arrhenius

equation has commonly been used to treat a single

chemical reaction. However, the degradation process of

wood involves multiple reactions; therefore, the calcu-

lated activation energy can be regarded as an averaged

weight by the rate of each reaction, as reported by Zou

et al. [19]. The PCs calculated from NIR spectra represent

such multiple reactions; therefore, it was assumed that the

behavior of the PC score by thermal treatment can be

analyzed using an Arrhenius approach. The temperature

dependence of the degradation rate constant is described

by the Arrhenius equation:

k ¼ A exp � Ea

RT

� �
; ð2Þ

where A is a frequency factor, Ea is the activation energy

(kJ mol-1), R is the gas constant (kJ mol-1 K-1) and T is

the absolute temperature (K). Thus, the activation energy

can be calculated by determination of the degradation rate.

TTSP is the most reliable method to successfully probe

for Arrhenius behavior. The time and temperature are

equivalent according to the principles of the TTSP method.

The parameters measured as a function of thermal treat-

ment time at different temperatures can be superimposed

by an appropriate change in scale (referred to as the time–

temperature shift factor, aT) on the time axis. The shift

factor aT is defined as

aT ¼ tref

tT
; ð3Þ

where tref is the thermal treatment time at a reference

temperature Tref, and tT is the time that gives the same

response at temperature T. Combining Eqs. (2) and (3)

gives
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aT ¼ exp
Ea

R

1

Tref
� 1

T

� �� �
: ð4Þ

Equation (4) shows that the logarithm of the empirically

determined shift factor aT has a linear relation with the

reciprocal absolute temperature (T), which enables Ea to be

calculated and the shift factor to be predicted for a desired

temperature. The data obtained for 180 �C were first

selected as the reference data to determine the master curve

over the temperature range. The PCA score for wood

treated at 180 �C is selected as the master curve due to the

large change with treatment time. The PCA score was

estimated using Eq. (5) with a nonlinear curve-fitting

method, i.e., the Nelder–Mead method. A logistic function

that adds the one constant (d) was used as an evaluation

function as follows:

f xð Þ ¼ dþ a
1þ b exp �cxð Þ ; ð5Þ

where f(x) is the PCA score, x is log(tT/aT), and a, b, c and
d are constants. After the master equation (a, b, c and d)
was determined at the experimental temperature of 180 �C
(a180 �C = 1), the shift factor was determined, which is

a

b

c

Fig. 2 Changes in the a PC1 score and b superimposed PC1 score

calculated from NIR second-derivative spectra (7500–4000 cm-1) as

a function of treatment time. Purple square, green circle, blue square

and red circle show the score of wood samples treated at 90, 120, 150

and 180 �C, respectively. R2, RMSE and RPD show the determination

coefficient between the measured and simulated values, root-mean-

square error and ratios of performance to deviation. c Arrhenius plot

of shift factors from empirical superposition of the change in Ln(aT)

a

b

c

Fig. 3 Changes in the a PC2 score and b superimposed PC2 score

calculated from NIR second-derivative spectra (7500–4000 cm-1) as

a function of treatment time. Purple square, green circle, blue square

and red circle show the score of wood samples treated at 90, 120, 150

and 180 �C, respectively. R2, RMSE and RPD show the determination

coefficient between the measured and simulated values, root-mean-

square error and ratios of performance to deviation. c Arrhenius plot

of shift factors from empirical superposition of the change in Ln(aT)
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chosen empirically to produce the best overall superposi-

tion with the 180 �C data for each temperature (90, 120 and

150 �C).
Figure 3b shows the superimposed PC2 score data with

the regression curve. The master curve can be applied to

data of each temperature by application of the shift pro-

cedure. The determination coefficient (R2) between the

measured and simulated value by the superimposed curve

was 0.99. The root-mean-square error (RMSE) from the

superimposed curve was 6.09 9 10-5. R2 and RMSE are

defined as

R2 ¼ 1�
P

y� ypred
� �2
P

y� �yð Þ2
; ð6Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
y� ypred
� �2
n� 1

s
; ð7Þ

where y is PCA score value, �y is average of y, ypred is the

y value predicted using the TTSP method and n is the

number of y. The high value of the determination coeffi-

cient implies the change in PC2 is caused by the same

process independent of the thermal treatment temperature.

a

b

c

Fig. 4 Changes in the a PC3 score and b superimposed PC3 score

calculated from NIR second-derivative spectra (7500–4000 cm-1) as

a function of treatment time. Purple square, green circle, blue square

and red circle show the score of wood samples treated at 90, 120, 150

and 180 �C, respectively. R2, RMSE and RPD show the determination

coefficient between the measured and simulated values, root-mean-

square error and ratios of performance to deviation. c Arrhenius plot

of shift factors from empirical superposition of the change in Ln(aT)

a

b

c

Fig. 5 Changes in the a PC4 score and b superimposed PC4 score

calculated from NIR second-derivative spectra (7500–4000 cm-1) as

a function of treatment time. Purple square, green circle, blue square

and red circle show the score of wood samples treated at 90, 120, 150

and 180 �C, respectively. R2, RMSE and RPD show the determination

coefficient between the measured and simulated values, root-mean-

square error and ratios of performance to deviation. c Arrhenius plot

of shift factors from empirical superposition of the change in Ln(aT)
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The loading spectra, which may be regarded as the vector

of wood degradation by thermal treatment, for PC2 (see

Fig. 1e–f) reveals that the highest loading is in the water

absorption (peak 8) and combination band (peak 11). The

loading coefficient values at the wavelength of peak 1, 4, 5,

12 and 14, which showed the peak shift with thermal

treatment, are close to zero. Figure 3c shows the relation

between ln(aT) and 1/T. The apparent activation energy

derived from the slope of regression line was

116 kJ mol-1, which is similar to those obtained for some

wood properties such as weight reduction, modulus of

elasticity and modulus of rupture (110–130 kJ mol-1).

Arrhenius approach was also adopted for PC1, PC3 and

PC4 using the TTSP method as shown in Figs. 2, 4 and 5.

Results are summarized in Table 3. R2 was the highest

when PC2 was used. For PC3 and PC4, a third-order

polynomial expression was selected after Eq. (5) failed to

provide a good fit. PC1 score and PC3 score were

explained by superimposed curves indicating that the

degradation process was independent to thermal treatment

temperature, although the R2 is not high because of the

variance of score within same thermal treatment condition

(i.e., variance within four samples). PC4 score was not

successfully explained by superimposed curve, where the

scores of samples treated at 180 �C are underestimated and

scores of samples treated at 90 and 120 �C are overesti-

mated. This result implies the different chemical processes

depend on the temperature. The loading spectra for PC3

and PC4 showed complex feature, while that of PC1 was

almost the same shape as second-derivative spectra of

wood.

As we explained, training samples set should have a

sufficient range of the properties under evaluation and

represent all the important sources of variability that would

be included in the samples to be predicted to prepare a

robust calibration curve by PLS or PCA regression analy-

sis. For example, we should not use the PLS or PCA cal-

ibration curve constructed using the samples treated at

120 �C for the prediction of property in wood samples

treated at 150 �C. In this study, however, we showed that

PC2 is caused by the same process independent of the

thermal treatment temperature, implying that we can esti-

mate the ‘thermal treatment degree’ of wood samples

treated at any temperature between 90 and 180 �C (i.e.,

135 �C) using constant a, b, c, d and shift factor aT in

Eq. (5) determined in this study. Of course, we need further

research using more sample treated at various kinds of

temperatures to confirm that.

3.3 Kinetic analysis for second-derivative spectra

evaluation of spectral noise

The peak positions (cm-1) and their second-derivative

values were used for the kinetic analysis fitted by Eq. (5).

For the second-derivative spectra, higher wavenumber

peak positions correspond to higher band energies, while

lower amplitudes of the second-derivative value corre-

spond to lower chemical concentrations in wood. The

results are shown in Table 2, where only the results that

produced a determination coefficient higher than 0.8 are

presented. All of the determination coefficient values were

smaller than the result of the PC2 score. However, the

activation energy calculated for second-derivative bands

gave beneficial information. As the activation energy is

defined as the energy required to start the chemical reac-

tion, kinetic analysis for second-derivative spectra allows

the simultaneous evaluation of resistance of each func-

tional group to thermal treatment. For example, it was

reasonable that the activation energy for second-derivative

value at the bands of peak 1 (amorphous region in cellulose

or water: 110.73 kJ mol-1) are smaller compared with

peak 2 (crystalline region in cellulose: 125.30 kJ mol-1).

The application of Arrhenius approach for the second-

derivative spectra of wood allows the simultaneous pre-

diction of activation energy of many functional groups in

wood.

The determination of the noise source in terms of

deviation of PC2 score from superimposed curve leads to

the understanding of the prediction error. Therefore, the

spectrophotometer noise was measured; NIR reflection

light intensity from the white plate was measured 11 times.

We calculated absorbance regarding the light intensity

recorded at first as the reference, and others as light

intensity of sample as equation:

Ai ¼ � log
Ii

I1

� �
ð8Þ

where, the Ai is absorbance at ith measurement (i = 2–11),

I1 is reflection light intensity of white plate measured at

first and Ii is reflection light intensity of white plate at i th

Table 3 Determination

coefficients for PCs determined

by kinetic analysis

PC Approximate function Variance of second spectral variance (%) R2

PC1 f xð Þ ¼ dþ a
1þbexp �cxð Þ 98.9 0.79

PC2 f xð Þ ¼ dþ a
1þbexp �cxð Þ 0.90 0.99

PC3 f xð Þ ¼ ax3 þ bx2 þ cxþ d 0.059 0.65

PC4 f xð Þ ¼ ax3 þ bx2 þ cxþ d 0.038 0.52
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measurement (i = 2–11). The calculated absorbance (de-

fined as noise spectra) was almost zero, but included a

slight deviation from zero due to detector noise, photon

noise and modulation noise. The second-derivative was

applied to the noise spectra, and the score was calculated

using PC2 loading. The maximum score value of ten noise

spectra was 5.80 9 10-7, and the standard deviation was

2.73 9 10-7, which is relatively small compared to the

calculated RMSE (6.09 9 10-5). This result indicates that

the deviation from the superimposed curve shown in Fig. 3

is mainly attributable to the spatial distribution of chemical

components in the wood samples, i.e., earlywood and

latewood, or the variability between specimens. The pre-

diction accuracy might be improved if the samples used

were homogenized (physical structure).

The use of thermally treated wood or paper to simulate

the natural aging process has been reported by some

researchers [1, 2, 19, 20]. Matsuo et al. [13, 21–23] used

wood that was heat treated at 90–180 �C under dry con-

ditions accompanied by thermal oxidation to simulate

archaeological wood. They suggested that wood aging is a

mild thermal oxidation and concluded that kinetic analysis

using the TTSP method can be applied to wood color

characteristics that result from heat treatment. Thus, we

expect that kinetic analysis with PCA analysis for NIR

spectra can be also used for the simulation of wood aging.

To this end, further inspection is required that considers the

change in the NIR spectra of wood subjected to thermal

treatment under wet conditions, UV irradiation (light

degradation) and fungus treatment.

This study showed that kinetic analysis can be applied to

NIR second-derivative bands or PCA score calculated from

spectra and prediction of these changes with thermal

treatment time at least up to 180 �C. As degradation pro-

cess of wood involves multiple reactions, PCA score which

reflects such a complex reaction was a good indicator for

the prediction of thermal treatment by TTSP method.

4 Conclusion

Kinetic analysis successfully explains the change in the

second-derivative spectral bands and PCA score calculated

from the second-derivative NIR spectra of thermally trea-

ted Sugi at temperatures of 90, 120, 150 and 180 �C. The
PC1 and PC2 scores were well fitted by logistic function,

although the PC3 and PC4 scores were fitted by cubic

function. The determination coefficient between the

measured PC2 score and that estimated from the master

curve and a shift factor was 0.99. The apparent activation

energy calculated from the PC2 score was 116 kJ mol-1.

The apparent activation energy for second-derivative bands

was between 99 and 140 kJ mol-1. This study showed that

kinetic analysis can be applied to NIR second-derivative

band or PCA score calculated from spectra and prediction

of these changes with thermal treatment time at least up to

180 �C.
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