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Abstract The free vibration analysis of rotating axially

functionally graded nanobeams under an in-plane nonlinear

thermal loading is provided for the first time in this paper.

The formulations are based on Timoshenko beam theory

through Hamilton’s principle. The small-scale effect has

been considered using the nonlocal Eringen’s elasticity

theory. Then, the governing equations are solved by gen-

eralized differential quadrature method. It is supposed that

the thermal distribution is considered as nonlinear, material

properties are temperature dependent, and the power-law

form is the basis of the variation of the material properties

through the axial of beam. Free vibration frequencies

obtained are cantilever type of boundary conditions. Pre-

sented numerical results are validated by comparing the

obtained results with the published results in the literature.

The influences of the nonlocal small-scale parameter,

angular velocity, hub radius, FG index and also thermal

effects on the frequencies of the FG nanobeams are

investigated in detail.

Keywords Thermal vibration � Timoshenko model � AFG �
Eringen nonlocal theory � Nanobeam

1 Introduction

The applications and advantages of nanoscience and

nanosystems are rapidly increasing in wide range from

medical diagnosis to energy harvesting. Some of the new

researches on micro- and nanostructures which consist

nano-/microbeams as important element are done Guo

et al. [1], Kim et al. [2], Kima and Fana [3] and Xu et al.

[4]. Since every technological growth needs a firm theo-

retical background, a considerable part of researches is

allocated to nanosystems in the recent decade. Bounouara

et al. [5] developed a zeroth-order shear deformation theory

to study the vibration behavior of functionally graded

nanoplates resting on elastic foundation. Belkorissat et al.

[6] studied a new nonlocal hyperbolic plate model to per-

form analysis on the vibration characteristics of function-

ally graded plate nanotubes. Tounsi et al. [7] studied the

thermal buckling of double-walled carbon nanotubes based

on nonlocal Timoshenko beam model. They also consid-

ered the effects of transverse shear deformation and rotary

inertia. Besseghier et al. [8] studied the nonlinear vibration

of an embedded zigzag single-walled carbon nanotube.

Benguediab et al. [9] analyzed the buckling of a zigzag

double-walled carbon nanotube with both chirality and

small-scale effects. In addition, vibrational properties of

nanobeams are also put into attention by many authors. Ke

et al. [10] studied the nonlinear vibration behavior of the

piezoelectric nanobeams based on the nonlocal theory and

Timoshenko beam model. Murmu and Adhikari [11]

studied the vibration of double-nanobeam systems. Berra-

bah et al. [12] presented a unified nonlocal shear defor-

mation theory to study bending, buckling and free vibration

of nanobeams. Gheshlaghi and Hasheminejad [13] studied

the nonlinear flexural vibrations of micro- and nanobeams

considering the surface effects. Malekzadeh and Shojaee
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[14] studied the surface and nonlocal effects on the non-

linear flexural vibrations behavior of nonuniform nano-

beams. In addition, vibration behavior of nanobeams was

also considered by [15–17], etc.

Functionally graded materials which were introduced in

1980s are rapidly becoming well known and widely used in

different micro- and nanostructures such as beams, plates,

shells, and a lot of researches have been conducted on the

mechanical behavior of micro- and nanosystems made of

FGMs. Using Eringen’s relations, Zemri et al. [18] pro-

posed a nonlocal shear deformation beam theory to study

the bending, buckling and vibration of FG nanobeams.

Chaht et al. [19] studied the bending and buckling behav-

iors of size-dependent nanobeams made of functionally

graded materials (FGMs) including the thickness stretching

effect. Ahouel et al. [20] studied the nonlocal trigonometric

shear deformation beam theory on the basis of neutral

surface position for bending, buckling and vibration of FG

nanobeams. Al-Basyouni et al. [21] studied a unified beam

formulation that considers a variable length scale param-

eter in conjunction with the neutral axis concept to study

bending and dynamic behaviors of FG microbeam. In

addition, FGMs using higher-order theories are also used in

studies specifically in macro-scales. Bourada et al. [22]

studied a simple and refined trigonometric higher-order

beam theory for bending and vibration of functionally

graded beams. Hebali et al. [23] presented a new quasi-

three-dimensional hyperbolic shear deformation theory for

the bending and vibration of functionally graded plates.

Bennoun et al. [24] proposed a five-variable refined plate

theory for the free vibration behavior of functionally gra-

ded sandwich plates. Yahia et al. [25] studied various

higher-order shear deformation plate theories for wave

propagation in functionally graded plates. Belabed et al.

[26] studied a simple higher-order shear and normal

deformation theory for functionally graded plates. Mahi

and Tounsi [27] developed a hyperbolic shear deformation

theory for bending and free vibration of isotropic, func-

tionally graded, sandwich and laminated composite plates.

Meziane et al. [28] presented a simple refined shear

deformation theory for the vibration and buckling of

exponentially graded sandwich plate resting on elastic

foundations. Bousahla et al. [29] investigated a trigono-

metric higher-order theory including the stretching effect

for the static analysis of advanced composite plates such as

FG plates. Bellifa et al. [30] presented a first-order shear

deformation theory for bending and dynamic behaviors of

functionally graded plates.

Thermal analysis on structures made of FGMs is of great

interest among researchers. Hamidi et al. [31] studied a

sinusoidal plate theory for the thermo-mechanical bending

behavior of functionally graded sandwich plates. Tounsi

et al. [32] studied a refined trigonometric shear deformation

theory for the thermo-elastic bending of FG sandwich

plates. Zidi et al. [33] studied the bending response of FG

plate resting on elastic foundation and subjected to hygro-

thermo-mechanical loading. Bouderba et al. [34] presented

the thermo-mechanical bending response of FG plates

resting on Winkler–Pasternak elastic foundations.

As a different kind of new material, porous materials

are also taken into consideration in many studies on

mechanical behavior of micro- or nanostructures. Mag-

nucki and Stasiewicz [35] studied the buckling of a

straight porous beam pivoted at both ends and loaded

with a lengthwise compressive force. Leclaire et al. [36]

studied the vibrational behavior of a rectangular porous

plate. Leclaire et al. [37] presented a simple model of the

transverse vibrations of a thin rectangular porous plate

saturated by a fluid.

Rotating mechanical systems find its vast usage in

micro- and nanoscales such as micro- and nanomotors. For

example, Zhang et al. [38] presented an electromagnetic

micromotor which is controlled by independent coils and

capacitance structure. Ayers et al. [39] designed a micro-

actuator system for precise transmission and reception of

bio-optical signals. These applications have made

researchers to study the rotary micro- and nanobeams as a

main element of rotating micro- and nanosystems. Ghadiri

and Shafiei [40] and Ghadiri et al. [41] studied the vibra-

tion of simple and FG nanobeams. Ramezani and Alasty

[42] studied the large amplitude vibration of a doubly

clamped microbeam. Shafiei et al. [43] studied the small-

scale effect on the nonlinear flapwise bending vibration of

rotating cantilever and propped cantilever nanobeams.

Shafiei et al. [44] studied the flapwise bending vibrations of

a rotating nanoplate which is the model of the blades of

nanoturbines. Ghadiri et al. [45] studied the thermal

vibration of rotary nanobeams. It is seen that the thermal

vibration of the AFG nanobeams with cantilever boundary

condition has not been studied. Thus, it motivated us to

consider this problem in this paper. The nanobeam is

modeled as Timoshenko nanobeam, and the governing

equations are derived using the nonlocal Eringen’s theory.

The material composition and mechanical properties of the

temperature-dependent nanobeam are considered to vary

through thickness and axis of the nanobeam separately

based on the power-law function. The boundary conditions

are supposed to be cantilever. The numerical results present

analysis on the effects of the nonlocal small-scale param-

eter, angular velocity, hub radius, FG and AFG indexes and

also thermal effects on the first two frequencies of the

porous nanobeams.
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2 Formulation

2.1 Functionally graded materials

Consider an FG nanobeam which is composed of metal and

ceramic with varying material composition along x and z

directions (Fig. 1). The material composition can be varied

along length (Fig. 1a) and along thickness (Fig. 1b). It is

clear that the mechanical properties of the nanobeam, i.e.,

Young’s modulus ‘E’, Poisson’s ratio ‘m’, shear modulus

‘G’ and mass density ‘q’, vary with the material compo-

sition. The modified rule of mixture for the FG (z) or AFG

(x) nanobeam becomes:

P z or xð Þ ¼ PmVm þ PcVc ð1Þ

where the subscripts of ()c and ()m are used to define the

ceramic and metal, respectively. The power-law of the

volume fraction of ceramic is [46, 47]:

Vc z or xð Þ ¼ 1

2
þ z

h

� �nz

or
x

L

� �nx
ð2Þ

Here, ‘nx’ and ‘nz’ are the AFG (axially functionally gra-

ded) and FG (functionally graded) power indexes, respec-

tively, which are related to the volume fraction change in

the material composition.

Hence, the material properties of the nanobeam are

obtained as [46–48]:

P z or xð Þ ¼ Pm þ Pc � Pmð Þ 1

2
þ z

h

� �nz

or
x

L

� �nx
ð3Þ

where nz and nx are FG and AFG power indexes and z and

x are the distance from the mid-plane and left end of the FG

beam, respectively. The material of the beam is pure

ceramic when nx and nz are set to be zero, and increment of

nx and nz increases the metal volume fraction. Thus,

Young’s modulus ‘E’, Poisson’s ratio ‘m’, the thermal

distribution ‘a’, mass density ‘q’ and shear modulus ‘G’

equations of the FGM nanobeam are defined as:

E z or xð Þ ¼ Em þ Ec � Emð Þ 1

2
þ z

h

� �nz

or
x

L

� �nx
ð4aÞ

m z or xð Þ ¼ mm þ mc � mmð Þ 1

2
þ z

h

� �nz

or
x

L

� �nx
ð4bÞ

a z or xð Þ ¼ am þ ac � amð Þ 1

2
þ z

h

� �nz

or
x

L

� �nx
ð4cÞ

q z or xð Þ ¼ qm þ qc � qmð Þ 1

2
þ z

h

� �nz

or
x

L

� �nx
ð4dÞ

G z or xð Þ ¼ E z or xð Þ
2þ 2m z or xð Þ ð4eÞ

For the nonlinear thermo-elasticity equation, the tem-

perature-dependent material properties can be obtained at

temperature T as [49]:

P ¼ P0 P�1T
�1 þ P1T þ P2T

2 þ P3T
3 þ 1

� �
ð5Þ

here P0, P-1, P1, P2 and P3 are the temperature-dependent

coefficients of material properties which are given in

Table 1.

2.2 The governing equation and boundary

conditions

As there is no slipping between upper and down layers and

the underlying material, the displacement is unified in the

beam. The displacements of an arbitrary point along the x-

and z-axes based on the Timoshenko beam theory are

defined as:

ux x; z; tð Þ ¼ u x; tð Þ þ zu x; tð Þ ð6aÞ
uz x; z; tð Þ ¼ w x; tð Þ ð6bÞ

where t is time, u is the total bending rotation of the cross

section, and u and w are the displacement components of

the mid-plane along x and z directions, respectively.

Therefore, according to the Timoshenko beam theory

(TBT), the strain–displacement relations are obtained as:

(a)

(b)

Pure Ceramic Pure MetalThickness, (h)
Hub radius

Pure Metal

Pure Ceramic

Length, (L)

x-axis

Fig. 1 Schematic of the rotating beam with different material distributions, a AFG, b FG
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exx ¼
ou

ox
þ z

ou
ox

ð7Þ

cxz ¼
ow

ox
þ u ð8Þ

Hamilton’s principle is employed to derive the govern-

ing equation of motion and the associated boundary con-

ditions as:

Z1

0

d U � T þ Vð Þdt ¼ 0 ð9Þ

where T, U and V denote the virtual kinetic energy, virtual

strain energy and potential energy due to applied loads,

respectively. The virtual kinetic energy of the nanobeam

can be expressed as

dU ¼
Z
V

rijdeijdV ¼
Z
V

rxxdexx þ rxzdcxz
� �

dV ð10Þ

Substituting Eqs. (8) and (9) into Eq. (10) yields:

dU ¼
ZL

0

N d
ou

ox

� �
þM d

ou
ox

� �
þ Q d

ow

ox
þ du

� �� �
dx

ð11Þ

in which N is the axial force, M is the bending moment,

and Q is the shear force. These stress resultants are

defined as:

N ¼
Z
A

rxxdA; M ¼
Z
A

rxxzdA; Q ¼
Z
A

KSrxzdA

ð12Þ

where KS = 5/6 is the shear correction factor. The kinetic

energy of Timoshenko beam can be written as:

T ¼ 1

2

ZL

0

Z
A

q x or z; Tð Þ oux

ot

� �2

þ ouz

ot

� �2
 !

dAdx ð13Þ

Also the virtual kinetic energy can be expressed as:

dT ¼
ZL

0

I0
ou

ot

odu
ot

þ ow

ot

odw
ot

� �
þ I1

ou
ot

odu
ot

þ ou

ot

odu
ot

� �

þ I2 X2uduþ ou
ot

odu
ot

� �
2
6664

3
7775dx

ð14Þ

where (I0, I1, I2) are the mass moments of inertia defined as

follows:

I0; I1; I2ð Þ ¼
Z
A

q x or z; Tð Þ 1; z; z2
� �

dA ð15Þ

Now, rotation effect on the governing equation is eval-

uated. The variation of the work done corresponding to

angular velocity change can be obtained by:

dV ¼
ZL

0

�N
ow

ox

odw
ox

dx ð16Þ

and

�N ¼ NRotation þ NThermal

¼
Z
A

ZL

x

q x or z; Tð ÞX2 nþ rð Þdnþ E x or z; Tð Þ½

a x or z; Tð Þ T � T0ð Þ�dA ð17Þ

where q, X, r, x and T0 are beam density at certain point z,

angular velocity, hub radius (Fig. 1), beam length variation

along x direction and reference temperature, respectively.

Substituting Eqs. (11), (15) and (17) into Eq. (9) and set-

ting the coefficients of du, dw and du to zero, the following

Euler–Lagrange equation can be obtained:

oN

ox
¼ I0

o2u

ot2
þ I1

o2u
ot2

ð18aÞ

oQ

ox
� �N

o2w

ox2
¼ I0

o2w

ot2
ð18bÞ

oM

ox
� Q ¼ I1

o2u

ot2
þ I2

o2u
ot2

ð18cÞ

Table 1 Temperature-

dependent coefficients of

Young’s modulus, thermal

expansion coefficient and mass

density [50]

Material Properties P0 P-1 P1 P2 P3

SUS304 E (Pa) 2.0104e?11 0 0.000308 -6.53e-07 0

a (K-1) 1.23e-05 0 0.000809 0 0

q (Kg/m3) 8166 0 0 0 0

m 0.3262 0 -0.0002 3.80e-07 0

Al2O3 E (Pa) 3.4955e?11 0 -0.0003853 4.027e-07 -1.673e-11

a (K-1) 6.8269e-06 0 0.0001838 0 0

q (Kg/m3) 3750 0 0 0 0

m 0.26 0 0 0 0

104 Page 4 of 15 M. Azimi et al.

123



Under the following boundary conditions:

N ¼ 0 or u ¼ 0 at x ¼ 0 and x ¼ L ð19aÞ
Q ¼ 0 or w ¼ 0 at x ¼ 0 and x ¼ L ð19bÞ
M ¼ 0 or u ¼ 0 at x ¼ 0 and x ¼ L ð19cÞ

2.3 The nonlocal elasticity model for FG nanobeam

The classic continuum theories do not consider the spaces

between the atoms and also define the state of each point as

a function of strain at that very point. These assumptions

lead to erroneous results in studies of nanosystems which

lack strong scientific assumptions in nanoscales. Eringen’s

nonlocal elasticity theory [51] is a strong and accurate

theory for studying nanobeams, and the reason is that this

theory considers a point dependent to the state of the whole

body. In addition, Eringen’s theory considers the small

scale parameter which is not negligible comparing to the

size of the nanostructures.

Unlike the classic elasticity theory, the nonlocal Erin-

gen’s elasticity theory expresses the stress tensor at point x

of mass environment (X) to the tensor of the strain (e) of
the whole body by a differential equation. Thus, the non-

local stress tensor at point x can be expressed as:

rij xð Þ ¼
Z
C

a x0 � xj j; sð Þtij x0ð ÞdC x0ð Þ ð20Þ

where rij, sij are local and nonlocal stress tensor, respec-

tively, and a x0 � xj jð Þ is nonlocal kernel. The macroscopic

stress r at point x in a Hookean solid is related to the strain

e at the point by generalized Hooke’s law.

tij ¼ Cijklekl ð21Þ

s ¼ e0a

l
ð22Þ

where s ¼ e0a
l
is a material constant that puts the effect of

the small-scale parameter, e0 is material constant which

can be obtained by experiments, and a and l are also the

internal (e.g., lattice parameter) and external characteristic

lengths (e.g., crack length, wave length) of the nanobeam,

respectively. As a result of the difficulty in using the

integral constitutive relation, Eringen [52] introduced:

1� e0að Þ2r2
� �

rkl ¼ tkl ð23Þ

When the local stress tensor is defined according to the

displacement gradients by using the generalized Hooke’s

law, the nonlocal displacements are obtained using the

strain and temperature–strain as below:

rxx � e0að Þ2o
2rxx
ox2

¼ Eexx ð24Þ

rxz � e0að Þ2o
2rxz
ox2

¼ Gcxz ð25Þ

Equations (24) and (25) are in fact the displacement on

the right-hand side of Eq. (23), and r and e are the nonlocal
stress and strain, respectively. E is the Young’s modulus,

and G = E/2(1 - t) is the shear modulus (t denotes the

Poisson’s ratio). For Timoshenko nonlocal 2D-FG beam,

Eqs. (24) and (25) can be rewritten as:

rxx � e0að Þ2o
2rxx
ox2

¼ E x or z; Tð Þexx ð26Þ

rxz � e0að Þ2o
2rxz
ox2

¼ G x or z; Tð Þcxz ð27Þ

The force–strain and the moment–strain of the nonlocal

Timoshenko 2D-FG beam can be obtained as follows:

N � e0að Þ2o
2N

ox2
¼ Axx

ou

ox
þ Bxx

ou
ox

ð28aÞ

M � e0að Þ2o
2M

ox2
¼ Bxx

ou

ox
þ Dxx

ou
ox

ð28bÞ

Q� e0að Þ2o
2Q

ox2
¼ Cxz

ow

ox
þ u

� �
ð28cÞ

and the cross-sectional rigidities are:

Axx;Bxx;Dxxð Þ ¼
Z
A

E x or z; Tð Þ 1; z; z2
� �

dA ð29aÞ

Cxz ¼ KS

Z
A

G x or z; Tð ÞdA ð29bÞ

The explicit equation of the nonlocal normal force is

obtained by the substitution of the second derivative of N

from Eq. (19a) into Eq. (28a) as:

N ¼ Axx

ou

ox
þ Bxx

ou
ox

þ e0að Þ2 o
ox

I0
o2u

ot2
þ I1

o2u
ot2

� �
ð30aÞ

Similarly, the nonlocal bending moment can be calcu-

lated by substituting the second derivative of M from

Eq. (19b) into Eq. (28b) as:

M ¼ Bxx

ou

ox
þ Dxx

ou
ox

þ e0að Þ2 I0
o2w

ot2
þ I1

o3u

oxot2
þ I2

o3u
oxot2

þ o

ox
�N
ow

ox

� �� �

ð30bÞ

Bysubstituting for the secondderivativeofQ fromEq. (19c)

into Eq. (28c), the nonlocal shear force is obtained as:

Q ¼ Cxz

ow

ox
þ u

� �
þ e0að Þ2 o

ox
I0

o3w

oxot2
þ o

ox
�N
ow

ox

� �� �

ð30cÞ
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The motion equation is obtained based on nonlocal

displacements ‘u’, ‘u’ and ‘w’ by substituting N, Q and M

into Eqs. (18); similarly, the boundary conditions are

expressed in terms of displacement.

du :
o

ox
Axx

ou

ox

� �
þ o

ox
Bxx

ou
ox

� �

¼ I0
o2u

ot2
þ I1

o2u
ot2

� e0að Þ2 o
2

ox2
I0
o2u

ot2
þ I1

o2u
ot2

� �

ð31aÞ

du :
o

ox
Bxx

ou

ox

� �
þ o

ox
Dxx

ou
ox

� �
� Cxz uþ ow

ox

� �

¼ I1
o2u

ot2
þ I2

o2u
ot2

� e0að Þ2 o
2

ox2
I1
o2u

ot2
þ I2

o2u
ot2

� �

ð31bÞ

dw :
o

ox
Cxz uþ ow

ox

� �� 	
� o

ox
�N
ow

ox

� �

þ e0að Þ2 o
2

ox2
o

ox
�N
ow

ox

� �� 	

¼ I0
o2w

ot2
� e0að Þ2 o

2

ox2
I0
o2w

ot2

� �
ð31cÞ

2.4 Type of temperature rise

Consider an FG nanobeam with top surface of temperature

Tc and with nonlinear temperature gradient along thickness

from Tc to Tm (bottom temperature). Therefore, in this case,

the temperature distribution through the thickness is given

according to the following approach [53]:

T ¼ T0 þ DT
1

2
þ z

h

� �aT

ð32Þ
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(d) δ = 2

Pure ceramic

FGM, nz = 0.2

AFGM, nx = 0.2

FGM, nz = 1

AFGM, nx = 1

FGM, nz = 11

AFGM, nx = 11

Fig. 2 Nondimensional fundamental frequency of FG and AFG nanobeams versus nondimensional annular velocity
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where T0 = Tm = 300 k and DS = Tc - Tm and aT is the

nonnegative power index of temperature variation function.

When aT = 1, the temperature variation is linear.

3 Solution procedure

Differential quadrature method (DQM) which is proved to

obtain accurate results is used for solving the governing

equations. Simple formulation and low computational cost

are the advantages of DQM which was introduced by

Bellman and Casti [54], Bellman et al. [55]. The weighting

coefficients of DQM depend on the grid spacing. There-

fore, using these coefficients, every partial differential

equation can be simplified to a set of algebraic equations

[56]. Thus, the rth-order derivative of function f(x) can be

written as linear sum of the function values

orf xð Þ
oxr

x¼xp



 ¼
Xn
j¼1

C
rð Þ
ij f xið Þ ð33Þ

It is clear that the weighting coefficients are of great

importance in this method. Here C
1ð Þ
ij , M(x) and C(r) are

defined as:

C
1ð Þ
ij ¼ M xið Þ

xi � xj
� �

M xj
� � i; j ¼ 1; 2; . . .; n and i 6¼ j

ð34aÞ

C
1ð Þ
ii ¼ �

Xn
j¼1;i 6¼j

C
1ð Þ
ij i ¼ j ð34bÞ

M xið Þ ¼
Yn

j¼1;i6¼j

xi � xj
� �

ð34cÞ

C
rð Þ
ij ¼ r C

r�1ð Þ
ij C

1ð Þ
ij �

C
r�1ð Þ
ij

xi � xj
� �

" #
i; j ¼ 1; 2; . . .; n; i 6¼ j

and 2� r� n� 1

ð34dÞ

0 1 2 3 4 5
10

15

20

25

30

35

Φ

N
on

-d
im

en
si

on
al

 fr
eq

ue
nc

y

(a) δ = 0

0 1 2 3 4 5
10

15

20

25

30

35

Φ

N
on

-d
im

en
si

on
al

 fr
eq

ue
nc

y

(b) δ = 0.5

0 1 2 3 4 5
10

15

20

25

30

35

Φ

N
on

-d
im

en
si

on
al

 fr
eq

ue
nc

y

(c) δ = 1

0 1 2 3 4 5
10

15

20

25

30

35

Φ

N
on

-d
im

en
si

on
al

 fr
eq

ue
nc

y

(d) δ = 2
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Fig. 3 Nondimensional second frequency of FG and AFG nanobeams versus nondimensional annular velocity
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C
rð Þ
ii ¼ �

Xn
j¼1;i 6¼j

C
rð Þ
ij i; j ¼ 1; 2; . . .; n and

1� r� n� 1

ð34eÞ

where n and r, respectively, are the number of grid points

along axis and the order of the derivative. Also, C
rð Þ
ij is the

weighing coefficient along axis. Using the Chebyshev–

Gauss–Lobatto approach, the speed of the convergence

increases:

fi ¼
1

2
1� cos

i� 1ð Þ
N � 1ð Þ p

� �� �
i ¼ 1; 2; 3; . . .; n ð35Þ

Applying the GDQM in Eqs. (31) yields the following

equations:

Xn
s¼1

C 1ð Þ
rs Axx

Xn
s¼1

C 1ð Þ
rs us

 !
þ
Xn
s¼1

C 1ð Þ
rs Bxx

Xn
s¼1

C 1ð Þ
rs us

 !

¼ x2 m0us þ m1us � e0að Þ2
Xn
s¼1

C 2ð Þ
rs m0us þ m1usð Þ

" #

ð36aÞ

Xn
s¼1

C 1ð Þ
rs Bxx

Xn
s¼1

C 1ð Þ
rs us

 !
þ
Xn
s¼1

C 1ð Þ
rs Dxx

Xn
s¼1

C 1ð Þ
rs us

 !

� Cxz us þ
Xn
s¼1

C 1ð Þ
rs ws

 !

¼ x2 m1us þ m2us � e0að Þ2
Xn
s¼1

C 2ð Þ
rs m1us þ m2usð Þ

" #

ð36bÞ

Xn
s¼1

C 1ð Þ
rs Cxz us þ

Xn
s¼1

C 1ð Þ
rs ws

 !" #

�
Xn
s¼1

C 1ð Þ
rs

�N
Xn
s¼1

C 1ð Þ
rs ws

 !

þ e0að Þ2
Xn
s¼1

C 2ð Þ
rs

Xn
s¼1

C 1ð Þ
rs

�N
Xn
s¼1

C 1ð Þ
rs ws

 !" #

¼ x2 m0ws � e0að Þ2
Xn
s¼1

C 2ð Þ
rs m0wsð Þ

" #
ð36cÞ

Using the boundary conditions of nanobeam (Eq. 19)

and by assembling the related matrixes to the boundary
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(a) Pure Ceramic (b)  AFG, nx = 0.5

(c) AFG, nx = 1 (d)  Pure Metal
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Transition temperature change

Fig. 4 Nondimensional fundamental frequency of pure ceramic, metal and AFG nanobeams versus temperature change
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conditions and governing equations, the linear fundamental

vibration of nanobeam can be calculated as below [57]:

Kdd½ � Kdb½ �
Kbd½ � Kbb½ �

� 	
kdf g
kbf g

� �
¼ x2 Mdd½ � Mdb½ �

Mbd½ � Mbb½ �

� 	
kdf g
kbf g

� �

ð37Þ

where b and d indexes indicate the boundary and domain,

respectively, and k is the mode shape.

4 Results

The obtained results using the GDQM are presented for the

parametric study considering different effects such as

small-scale effects, power-law index of functionally graded

nanobeam, nondimensional angular velocity, hub radius,

nanobeam’s thickness and temperature changes. The aim is

to determine best properties of nanobeams for different

temperature change (DT) ranges and determine critical

temperature change (DTcritical) for different beam properties

which is applicable to design rotating nanostructures. L/h is

set to be 100 in Figs. 2, 3, 4, 5, 6 and 7, and the boundary

condition is considered as cantilever.

In order to have better judgment on results, nondimen-

sional parameters are defined as following:

x ¼ nL; r ¼ dL

U2 ¼ m0

EI

� �
ceramic

L4X2; W2 ¼ m0

EI

� �
ceramic

L4x2

m0

EI

� �
ceramic

¼ 12qceramic

Eceramich
2
1

; l ¼ e0a

L

ð38Þ

in which W, U, l and d indicate nondimensional frequency,

nondimensional angular velocity, nondimensional nonlocal

parameter and nondimensional hub radius, respectively.

In special case (i.e., U = 0), comparison of results for

first two nondimensional frequencies of cantilever nano-

beam (Table 2) presents good agreement with results of

Wang et al. [58]. In addition, Table 3 depicts the com-

parison of the natural frequency of nanobeams made of

pure metal, pure ceramic FGM in different values of L/h.

Figures 2 and 3, respectively, show the fundamental and

second frequencies of FG and AFG nanobeams versus

nondimensional angular velocity and for different values of

hub radius. Figure 2 shows that the increment of angular

velocity decreases the dependency of nondimensional

fundamental frequency of nanobeams on FG and AFG

power indexes. Figures 2 and 3 also show that the
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(a) Pure Ceramic (b) AFG, nx = 0.5

(c) AFG, nx = 1 (d) Pure Metal
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Fig. 5 Nondimensional second frequency of pure ceramic, metal and AFG nanobeams versus temperature change
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nondimensional fundamental and second frequencies of

nanobeams increase with the angular velocity and decrease

with the increment of FG or AFG power indexes. In

addition, it is seen that the increment of hub radius

increases the first and second frequencies.

Figures 4 and 5 represent the effects of temperature

change, nondimensional angular velocity and AFG power

index on fundamental and second nondimensional fre-

quencies, respectively. Figure 4 shows that by increasing

temperature changes, fundamental frequency increases

continuously. A transition temperature change DTtransition
can be defined to explain the fundamental frequency of

cantilever nanobeam’s thermal behavior. For example, this

transition region can be defined in Fig. 4c (nx = 0.5) in the

range of 85\DTtransition\ 150, where nanobeam response

to different parameters varies. For temperature changes

below DTtransition, by increasing nondimensional angular

velocity, nondimensional frequency increases for other

certain parameters, while for temperature changes over

DTtransition, by increasing nondimensional angular velocity,

nondimensional frequency decreases. Moreover, it is

comprehended from Fig. 4a–d that increasing AFG index

causes DTtransition to occur earlier. Also, it is seen that by

increasing AFG index, nondimensional fundamental fre-

quency increases more intensively after DTtransition.
Figure 5 shows that increasing temperature change in

AFG nanobeam decreases the nondimensional frequency

up to a relative zero point which is called critical point

DTcritical, where increasing temperature changes over crit-

ical point increases second nondimensional frequency. This

relative zero point is close to real zero for boundary con-

ditions containing simply supported condition [59], while

for other boundary conditions, this relative zero value

increases. Moreover, Fig. 5 shows that increasing AFG

index decreases the nondimensional frequency and critical

temperature changes DTcritical. On the other hand, increas-

ing nondimensional angular velocity would increase the

DTcritical.
Figures 6 and 7 represent temperature change, nondi-

mensional nonlocal parameter (l) and gradient temperature

rise (aT) of nanobeam effects on fundamental and second

nondimensional frequencies.

Figure 6 shows that by increasing temperature changes,

fundamental frequency increases continuously. Similar to

Fig. 4, transition zones of temperature can be observed in

Fig. 6 too. For temperature changes below DTtransition, by
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(a)  Uniform temperature distribution = (b)  Nonlinear temperature distribution = 

(c) Linear temperature distribution = (d)  Nonlinear temperature distribution = αT = 2

μ = 0
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μ = 0.3
μ = 0.4

Fig. 6 Nondimensional fundamental frequency of AFG nanobeam versus temperature change when U = 1, d = 0.4, nx = 1 and L/h = 50
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increasing nondimensional small-scale parameter, nondi-

mensional frequency increases, while for temperature

changes over DTtransition, by increasing small-scale param-

eter, nondimensional frequency decreases. Moreover,

Fig. 6a–d shows that decreasing thickness of nanobeam

causes DTtransition to occur earlier. Also, it is seen that by

decreasing aT, the dependency of nondimensional funda-

mental frequency on temperature change after DTtransition
increases.

Figure 7 represents temperature changes, small-scale

parameter and gradient temperature rise (aT) of nanobeam
effects on nondimensional second frequency. Figure 7

shows that increasing temperature changes for a AFG

nanobeam decreases the nondimensional frequency up to a

relative zero point which is called critical point DTcritical,
where increasing temperature changes over critical point

increases second nondimensional frequency. Moreover,
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(a)  Uniform temperature distribution = (b)  Nonlinear temperature distribution = 

(c)  Linear temperature distribution = (d)  Nonlinear temperature distribution = αT = 2
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Fig. 7 Nondimensional second frequency of AFG nanobeam versus temperature change when U = 1, d = 0.4, nx = 1 and L/h = 50

Table 2 Comparison of results for nondimensional frequency, W of

cantilever nanobeam (nonFG)

Nonlocal parameter (l) U = 0, W1 U = 0, W2

Present [58] Present [58]

0 1.86102 1.8610 4.47341 4.4733

0.1 1.86509 1.8650 4.35059 4.3506

0.3 1.89999 1.8999 3.65938 3.6594

0.5 2.00239 2.0024 2.89025 2.8903

Table 3 Comparison of the natural frequency of pure ceramic, metal

and FG nanobeams with the results of local beam, U = 2, d = 0

Pure ceramic FGM, nz = 1 Pure metal

L/h = 5

Shafiei et al. [57] 3.990634 3.245914 2.829659

Present 4.028137 3.245914 2.831039

L/h = 10

Shafiei et al. [57] 4.098294 3.307432 2.881649

Present 4.108692 3.307432 2.882043

L/h = 20

Shafiei et al. [57] 4.127379 3.323862 2.895727

Present 4.130049 3.323862 2.895829

L/h = 100

Shafiei et al. [57] 4.136887 3.329215 2.900332

Present 4.136994 3.329215 2.900336
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Fig. 7 shows that increasing thickness increases the

nondimensional frequency and critical temperature chan-

ges DTcritical. On the other hand, increasing small-scale

parameter would decrease the DTcritical.
Tables 4 and 5 show the nondimensional fundamental

frequency of local and nonlocal nanobeams, respectively,

when nx has very high value to set the material of the

nanobeam as metal. The nondimensional frequency is

derived for various values of power index of temperature

variation function, temperature change and L/h. Comparing

Tables 4 and 5 shows that increment of nonlocal value

increases the fundamental frequency of nanobeams.

Tables 4 and 5 also show that the increment of aT decreases

the nondimensional frequency. Also, the frequency

increases with the temperature change and L/h. It should

also be noted that the effect of DS and aT is more signifi-

cant in higher values of L/h.

5 Conclusions

Studied herein is the thermal vibrational behavior of FG

and AFG rotating nanobeams. The material volume frac-

tion of the nanobeam is variable along thickness or axis

based on the power-law function. The equations are

developed according to the Eringen’s nonlocal theory and

Table 4 Nondimensional fundamental frequency of nanobeam when U = 3, l = 0 and nx = ?

DS = 10 DS = 20 DS = 30 DS = 40 DS = 50 DS = 60 DS = 70 DS = 80 DS = 90 DS = 100

L/h = 5

aT = 0.0 3.677395 3.678429 3.679353 3.680164 3.680861 3.681441 3.681905 3.682249 3.682474 3.682577

aT = 0.5 3.677034 3.677701 3.678251 3.678683 3.678995 3.679185 3.679253 3.679198 3.679018 3.678712

aT = 1.0 3.676853 3.677338 3.677702 3.677945 3.678065 3.678062 3.677935 3.677681 3.677301 3.676794

aT = 2.0 3.676673 3.676974 3.677153 3.677208 3.677138 3.676943 3.67662 3.67617 3.675592 3.674885

L/h = 10

aT = 0.0 3.74645 3.751184 3.755898 3.76059 3.765258 3.769899 3.77451 3.77909 3.783636 3.788144

aT = 0.5 3.744882 3.748 3.75105 3.754029 3.756935 3.759765 3.762517 3.765188 3.767775 3.770277

aT = 1.0 3.744101 3.746417 3.748646 3.750784 3.752831 3.754782 3.756637 3.758392 3.760045 3.761595

aT = 2.0 3.74332 3.74484 3.746254 3.747563 3.748763 3.749853 3.750831 3.751696 3.752444 3.753076

L/h = 20

aT = 0.0 3.77952 3.799926 3.821358 3.843887 3.867589 3.892545 3.918847 3.946594 3.975896 4.006874

aT = 0.5 3.772972 3.786269 3.799985 3.814139 3.828748 3.843831 3.859408 3.8755 3.892129 3.90932

aT = 1.0 3.769731 3.779584 3.78964 3.799904 3.810383 3.821079 3.831999 3.843147 3.854529 3.86615

aT = 2.0 3.766513 3.772992 3.779513 3.786074 3.792676 3.799316 3.805992 3.812704 3.819449 3.826225

L/h = 30

aT = 0.0 3.808552 3.85855 3.91435 3.976883 4.047289 4.126977 4.217725 4.321818 4.442271 4.583203

aT = 0.5 3.793111 3.82484 3.858992 3.895816 3.935599 3.978669 4.025403 4.076238 4.131686 4.192351

aT = 1.0 3.785572 3.808788 3.833323 3.859276 3.886759 3.915894 3.946815 3.979674 4.014637 4.051893

aT = 2.0 3.77815 3.793242 3.808883 3.8251 3.84192 3.859371 3.877487 3.896299 3.915844 3.936159

L/h = 40

aT = 0.0 3.847874 3.947897 4.069808 4.220612 4.410778 4.657156 4.990276 5.47906 6.405936 7.432211

aT = 0.5 3.818634 3.879601 3.949028 4.028555 4.12027 4.226887 4.352028 4.500713 4.680232 4.901943

aT = 1.0 3.804626 3.848385 3.896625 3.949978 4.009194 4.075177 4.149028 4.232109 4.326132 4.433301

aT = 2.0 3.791008 3.818932 3.848744 3.880615 3.914737 3.951328 3.990634 4.032933 4.078544 4.127836

L/h = 60

aT = 0.0 3.975179 4.299375 4.849424 6.085881 7.555236 7.867686 8.342287 9.016847 9.930924 11.11784

aT = 0.5 3.896006 4.068602 4.304152 4.64032 5.161264 6.197237 7.486781 7.657119 7.893503 8.208131

aT = 1.0 3.86023 3.976733 4.122545 4.308664 4.552792 4.886867 5.382125 6.318443 7.454343 7.569205

aT = 2.0 3.826716 3.896883 3.978103 4.072827 4.184285 4.316862 4.476743 4.673146 4.920951 5.24746

L/h = 100

aT = 0.0 4.677763 7.686717 9.10456 12.11996 13.91995 13.64934 17.73725 20.66224 21.05597 22.52245

aT = 0.5 4.237806 5.505703 7.695947 8.515498 9.995284 12.29907 14.49555 13.43324 13.7658 15.99315

aT = 1.0 4.083174 4.688538 6.464896 7.704507 8.280586 9.213592 10.59583 12.47274 14.70887 13.64594

aT = 2.0 3.957148 4.242133 4.699004 5.5659 7.480024 7.719547 8.085272 8.606687 9.314945 10.24168
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solved using the generalized differential quadrature method

(GDQM). The vibration characteristics of the FG and AFG

nanobeams are explored by studying effects of nonlocal

value, temperature gradient, FG and AFG power indexes,

temperature change, nonlocal value and angular velocity.

These results yielded the important conclusions mentioned

below:

• The nondimensional fundamental frequencies increase

with the temperature change.

• Before DTtransition, the fundamental frequency of AFG

nanobeam increases with nonlocal value. But after

DTtransition, increment of nonlocal value decreases the

frequency.

• Before DTtransition, the fundamental and second fre-

quencies of AFG nanobeam increase with the angular

velocity. But after DTtransition, increasing the angular

velocity decreases the frequencies.

• Decrement of thickness makes DTtransition to occur in

lower temperatures.

• Increment of hub radius increases the first and second

frequencies.

• Increasing L/h, angular velocity and also temperature

change increases the first and second frequencies.

• Increment of angular velocity decreases the effect of

FG and AFG power indexes.
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