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Abstract Rolling mill vibration is a technical problem in

the iron and steel industry for many years and has serious

impact and harm on production. There were serious

vibrations in the middle mills when rolling thin container

strip for the compact strip production (CSP) strip hot

rolling process. This paper studied the hysteretic charac-

teristic of rolled strip and established the vertical vibration

system single-degree-of-freedom dynamics model of the

F3 mill rollers. The influence of parameters on the system

characteristics was studied, such as the linear damping

coefficient, linear stiffness coefficient, nonlinear displace-

ment coefficient, nonlinear velocity coefficient and excit-

ing force, and then, the vibration source and vibration-

restraining measure were studied from the roll gap. The

results show that with increasing linear stiffness, damping

and hysteresis coefficient, it can reduce the possibility of

chaotic system; the linear stiffness coefficient had the

greatest influence, and hysteresis damping coefficient had

minimal influence on chaotic threshold. In order to reduce

rolling mill vibration amplitude, we should reduce the

external excitation force firstly, and in order to improve the

dynamic performance of the system, we should control the

speed of nonlinear coefficient values. The contrast exper-

iments were carried out at the production scene finally.

1 Introduction

Rolling mill vibration is a technical problem in iron and

steel industry for many years and has serious impact and

harm on production. Furumoto [1] designed a chamber in

mill stabilizing device and optimized its size. Kim [2]

modeled a rolling mill that includes the driving system by

multibody dynamics to investigate the cause and charac-

teristics of the chatter vibration. The chatter frequency was

1190 Hz and was caused by the rolling force. The ampli-

tude of chatter vibration could be reduced by controlling

the speed of the roll, and the static and dynamic compo-

nents of the rolling force [2]. Swiatoniowski [3] presented a

probabilistic model of the friction phenomena on the work/

backup rolls contact surface and found that such character

of the disturbance in distribution of zones with static and

kinetic friction can be regarded as one of the sources of

self-excited vibrations appearing in the system consisting

of a rolling mill and a strip. Amer [4] studied the torsional

vibration reduction for rolling mill’s main drive system via

negative velocity feedback under parametric excitation and

found the resonance condition is the first natural frequency

vibration, which is one of the worst resonance cases. Fujita

proposed a new actuator for controlling the friction coef-

ficient balance between the final stand and preceding stand

as an intelligent hybrid lubrication control system for

preventing chatter. The results show that the hybrid lubri-

cation system can prevent chatter efficiently in high-speed

cold-rolling region [5]. Kijima investigated the influence of

lubrication on elongation and roughness transfer in skin-

pass rolling by experimental rolling tests in which the

relationship between lubrication behavior and the roll

radius is clarified. It was found that operational size rolls

can be explained convincingly by height characterization

parameters and are considered to be reasonable, and some
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characteristics of skin-pass rolling related to lubrication are

not properly simulated using small radius, laboratory size

rolls due to the insufficient contact length between the rolls

and the workpiece [6]. Yildiz [7] developed a one-dimen-

sional model and validated it against real plant data.

The CSP middle mills had severe vibration during

rolling the thin container strip. So this paper studied the

hysteretic characteristic of rolled strip and established the

vertical vibration system single-degree-of-freedom

dynamics model of the F3 mill rollers. The influence of

parameters on the system characteristics was studied, such

as the linear damping coefficient, linear stiffness coeffi-

cient, nonlinear displacement coefficient, nonlinear veloc-

ity coefficient and exciting force, and then, the vibration

source and vibration-restraining measure were studied from

the roll gap.

2 Rolled strip hysteresis model

CSP hot rolling is a large elastic–plastic deformation

process, and under the dynamic load action, the strip

will produce obvious hysteresis phenomenon, for

example, loading and unloading path is different to

form a hysteresis loop, as shown in Fig. 1. Hysteresis

effect of rolled piece has great influence on rolling mill

vibration system dynamics, and the rolling process

shows that the influence of rolled piece type on rolling

mill vibration is very obvious. So, it is necessary to

further study the hysteretic characteristics of rolled

piece under dynamic load and its crucial impact on

rolling mill system dynamics. In order to establish the

mathematical model reflecting hysteretic characteristic,

we often consider that hysteresis loop is made as ‘‘base

lines’’ of the elastic force and ‘‘pure hysteresis loop’’ of

damping force; the area of hysteresis loop is equal to

the energy work of one cycle [8]. There are some

commonly used hysteretic models such as bilinear

model, polynomial model and the differential equation

control model.

2.1 Bilinear model

Bilinear model is presented based on the ideal dry friction

model and is shown in Fig. 2; the relationship between

restoring lag force F(y) and displacement is indicated as

double broken line, and its expression is as follows:

FðyÞ ¼

b1 þ k1y y\0 _y[ 0

b2 þ k2y y[ 0 _y[ 0

b3 þ k3y y[ 0 _y\0

b4 þ k4y y\0 _y\0

8
>><

>>:

ð1Þ

To simplify the calculation, the model can be approxi-

mately linearized and acquired equivalent stiffness ke and

equivalent damping ce, namely

ke ¼
1

pA

Z/D

0

ðb3 þ k1A cosuÞ cosu du

2

4

þ
Zp

/D

ðb4 þ k2A cosuÞ cosu du

þ
Z/B

p

ðb1 þ k1A cosuÞ cosu du

þ
Z2p

/B

ðb2 þ k2A cosuÞ cosu du

3

7
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1
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Fig. 1 Ideal hysteresis loop under dynamic load
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Fig. 2 Bilinear model
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where A is the amplitude, xB and xD are vibration dis-

placement corresponding to point B and point B, respec-

tively. There are uB ¼ arccos xB
A

and uD ¼ arccos xD
A

. The

hysteresis model is substituted into the vibration differen-

tial equation, and the approximate solution of system can

be obtained by incremental method as follows:

x ¼ a cos/þ b

6p
sin 3/þ � � � þ 4

b

nðn2 � 1Þp sin n/;

n ¼ 3; 5; 7. . .
ð2Þ

where b is the constant. From the equation, we found there

are not even-order harmonics in the higher harmonic in its

solution, which is not consistent with the rolling mill

vibration field test results [9]. So, it is not suitable for

double linear model to describe the hysteretic characteristic

of rolled piece.

2.2 Polynomial model

Due to point mutations in bilinear model and making the

hysteresis loop more smoother, we can adopt hyperbolic

functions and exponential functions such as polynomial

hysteresis model. Among them, the load curve q1 and

discharge curve q2 of hyperbolic function are shown in

Fig. 3.

q1 ¼ q1 þ
x

b1 þ b2x
; _x[ 0 and

q2 ¼ �q2 þ
x

b1 � b3x
; _x� 0

ð3Þ

In order to solve differential equation expediently, the

load curve q1 and discharge curve q2 are expressed as nth

derivative, namely

q
ðnÞ
1 ¼ ð�1Þn�1

n!b1b
n�1
2

ðb1 � b2xÞnþ1
; _x[ 0 and

q
ðnÞ
2 ¼ n!b1b

n�1
3

ðb1 � b3xÞ
nþ1

; _x� 0

ð4Þ

Taking 2th power series, there are q1 ¼ q1 þ x
b1
�

2b2

b2
1

x2; _x[ 0 and q2 ¼ �q2 þ x
b1

þ 2b3

b2
1

x2; _x� 0.

According to Fig. 3, loading and unloading curves are

equivalent at a location, that is q1(a) = q2(a). And there

was the following equation:

q1 þ
a

b1

� 2b2

b2
1

a2 ¼ �q2 þ
a

b1

þ 2b3

b2
1

a2 ð5Þ

Setting k ¼ 1
b1
; d ¼ 2b2

b2
1

; kd ¼ 2b3

b2
; q1 ¼ � 2b2

b2
1

a2;

�q2 ¼ � 2b3

b1
a2 and substituting it into Eq. (5), we get the

loading and unloading curves of hyperbolic function as

follows:

q1ðxÞ ¼ kxþ dða2 � x2Þ; _x[ 0 and

q2ðxÞ ¼ kx� kdða2 � x2Þ; _x� 0
ð6Þ

where d is the nonlinear coefficient, k is the asymmetric

coefficient (when k = 1, loading and unloading curves are

symmetrical about the origin). If the hysteresis curve is

expressed as a exponential equation and obtained the var-

ious derivatives, there are following equations:

q1 ¼ berx þ q1; _x[ 0; q
ðnÞ
1 ¼ brnerx; _x[ 0

q2 ¼ cesx � q2; _x� 0; q
ðnÞ
2 ¼ csnesx; _x� 0

ð7Þ

where q1, q2, b, c, r and s are test constants. The above

equations are expressed as power series form and take

n = 2; there are following equations:

q1 ¼ bþ q1 þ brxþ 1

2
br2x2; _x[ 0 and

q2 ¼ c� q2 þ csxþ 1

2
cs2x2; _x� 0

ð8Þ

Setting k = br, k2 ¼ 1
2
br2, c1 = b ? q1, k ¼ cs2

br2,

c2 = -c ? q2 and substituting it into above equations,

there are following equations:

q1 ¼ c1 þ kxþ k2x
2 and q2 ¼ �c2 þ kxþ kk2x

2 ð9Þ

By q1(a) = q2(a) and setting c1 = c2, then Eq. (9) can

be expressed as follows:

q1 ¼ 1

2
ðk� 1Þk2a

2 þ kxþ k2x
2 and

q2 ¼ � 1

2
ðk� 1Þk2a

2 þ kxþ kk2x
2

ð10Þ

In engineering calculation, we can use Davidenkov model

to describe the sluggish by the constitutive equation, which is

shown in Fig. 4, and the equation is expressed as follows:

r� ¼ E u� g
n

ðu0 � uÞn � 2n�1un0
� �n o

ð11Þ

where r is the normal stress, u is the strain, g is the hys-

teresis loop coefficient, n is the hysteresis loop index, ‘‘; ’’

signifies the first half and second half curve, respectively.

The greater g, the distance between the loading and

unloading curve is greater, and the greater n, the hysteresis

loop curve is closer to the elastic–plastic hysteresis loop.

In order to solve the equation easily, the lag nonlinear

force is also expressed as cubic function of displacement

q

x
-a

a

Fig. 3 Hyperbolic function

model

Research on strip hysteretic behavior and mill vertical vibration system nonlinear dynamics Page 3 of 12 877

123



and velocity, namely Fðx; _xÞ ¼ ax3 þ b _x3, which is shown

in Fig. 5. And by adjusting the values of a and b, we can

obtain good fitting effect.

2.3 Differential equation control model

Bouc and Wen put forward the Bouc–Wen model con-

trolled by differential equation [10], and the model has

good versatility and parameter identification performance

relative to bilinear model and curve model, in which the

nonlinear restoring force Gðx; _xÞ is consisted of two parts,

namely Gðx; _xÞ ¼ hðx; _xÞ þ vzðx; _xÞ, where hðx; _xÞ is the

non-hysteretic constraining force; it is a function of the

transient displacement and velocity, its expression is

c0 _xþ k0x; zðx; _xÞ is hysteretic constraining force and was

determined by the following equation:

_z ¼ Ax� a _xj j zj jn�1
z� b _x zj jn ð12Þ

where A, n, a and b are the parameters determining the shape

and smooth degree of hysteresis loop.If the lag force Fp is

determined by Bouc–Wen the model, there are only odd

times frequency such as three times and five times, which do

not agree with the test results, so it is not suitable for the

control differential equation model. In addition, the com-

monly used hysteresis models are Ramberg–Osgood and

Menegotto–Pinto model suitable for different situations [11].

3 Hysteresis nonlinear vertical vibration dynamics

3.1 Single-degree-of-freedom vertical vibration

model and the parameters influence

According to the rolling mill structure feature and the

measured results, the single-degree-of-freedom delayed

parametrically excited vibration model was set up as shown

in Fig. 6 (ignoring friction Ff between the bearing seat and

the mill house), and the motion differential equation is

expressed as follows:

m€xþ c _yþ kð1 þ c cos 2XsÞyþ Ay3 þ B _y3 ¼ F cosXs

ð13Þ

where m is the roll system weight, c is the linear damping,

k is the linear stiffness, A is the displacement nonlinear

constant, B is the speed nonlinear constant, X/51 is the roll

rotation frequency, and F is the excitation force.

The system can be considered as a weak nonlinear

system with small damping, and we introduce small

parameter e and tuning parameter r. For the main reso-

nance, setting X ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
, d = 1 ? 2er, t ¼ s �

ffiffiffiffiffiffiffiffiffi
k=m

p
,

x ¼ y �
ffiffiffiffiffiffiffiffi
A=k

p
, the dimensionless equation is as follows:

€xþ x ¼ e � 8

3
ax3 � 8

3
b _x3 � l _x� 2rx� 4x cos 2t

� �

þ e2f cos t ð14Þ

If the first-order approximation solving the equation is

x = a cos u, where u = pt ? h, after the equation K-B

transformation, there is

da

dt
¼ �ba3 � laþ a sin 2h

dh
dt

¼ �aa2 þ rþ cos 2h

8
><

>:
ð15Þ

For the steady motion, there are da

dt
¼ 0 and dh

dt
¼ 0, and

according to the Eq. (15), after h elimination, there are

a ¼ 0

c4a
4 þ c2a

2 þ c0 ¼ 0

�

ð16Þ

where c4 = a2 ? b2, c2 = 2(ra ? lb), c0 = r2 ? l2 - 1.

The influence of linear damping coefficient l, the dis-

placement nonlinear coefficient a and velocity nonlinear

coefficient b on the amplitude frequency characteristics

curve of main resonance are shown in Fig. 7. And we can

see the linear damping coefficient l not only affects the

main resonance curve shape, but also the size, and the

smaller damping coefficient the worse system stability. The

displacement nonlinear coefficient a only affects primary

resonance curve shape. The smaller the velocity nonlinear

coefficient b, the greater the main resonance amplitude, and

the influence relation is clear.

The parameters influence on the system dynamic time

domain response was also studied. The system response

σ

u

n=3
n=2

Fig. 4 Davidenkov model

q

x

Fig. 5 Cubic function model

Fp

F
m

c k

Ffx

Fig. 6 Single-DOF nonlinear

model

877 Page 4 of 12 X. Fan et al.

123



curves are shown in Fig. 8 with linear stiffness coefficient

4 9 109 N m-1 (Fig. 8a) and 4 9 1011 N m-1 (Fig. 8b).

There are displacement response graph, phase diagram,

power spectra, Poincaré section and hysteresis force dia-

gram in Fig. 8. And we can see the system vibration

amplitude decreases obviously after linear stiffness coef-

ficient increase, but energy is more concentrated. From the

phase diagram, power spectra and Poincaré section, the

system has quasi-periodic motion.

The system Lyapunov exponent curve corresponding to

Fig. 8a is shown in Fig. 9, and we can see the index is

negative, namely the system is in non-chaotic state. The

system amplitude bifurcation curves based on linear stiff-

ness coefficient are shown in Fig. 10, and we can see with

the increase in linear stiffness coefficient, the vibration

amplitude has volatility, but did not produce bifurcation.

The system response curves with linear damping coef-

ficient 3 9 106 N s m-1 (Fig. 11a) and 3 9 107 N s m-1

(Fig. 11b) are shown in Fig. 11, and the subgraphs are

displacement response, phase diagram, power spectra,

Poincare section and hysteresis force diagram, respec-

tively. And we can see with the increase in linear damping

coefficient, system lag force is increased and the hysteresis

loop shape was almost unchanged; the vibration amplitude

significantly declined, but oscillation state unchanged, for

example, the linear damping coefficient can help to reduce

the vibration intensity increase. The Lyapunov exponent

curve is shown in Fig. 12 with the linear damping coeffi-

cient c taking 8.8 9 106 N s m-1; we can see Lyapunov

exponent is negative, for example, the system is not in

chaotic state. The system amplitude bifurcation curve by

linear damping coefficient is shown in Fig. 13; we can see

with the rise of the linear damping coefficient, the vibration

amplitude has declined, but did not produce bifurcation

phenomenon.

The system response curve is shown in Fig. 14 with the

displacement nonlinear coefficient A 2 9 1017 N m-3

(Fig. 14a) and 2 9 1019 N m-3 (Fig. 14b), and the
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subgraphs are displacement response, phase diagram,

power spectra, Poincare section and hysteresis force dia-

gram, respectively. We can see that after the displacement

nonlinear coefficient increases, vibration amplitude

decreases, hysteresis loop becomes narrow, and the hys-

teresis effect decreases; Lyapunov exponent is shown in

Fig. 15, and we can see Lyapunov exponent is negative, so

the system is not chaotic. The amplitude bifurcation curve

based on the displacement nonlinear coefficient is shown in

Fig. 16; we can see the amplitude does not produce

bifurcation phenomenon and amplitude increases as the

displacement nonlinear coefficient decreases.

The system response curve is shown in Fig. 17 with

velocity nonlinear coefficient B 6 9 109 N s-3 m-1

(Fig. 17a) and 6 9 1011 N s-3 m-1 (Fig. 17b), and we can

see with the velocity nonlinear coefficient increase, the

vibration amplitude decreases obviously, the hysteresis

loop becomes fat, and the hysteresis effect enhances;

Lyapunov exponents curve is shown in Fig. 18, and Lya-

punov exponent is negative and is not chaotic. The

amplitude bifurcation curve by nonlinear coefficient is

shown in Fig. 19; as the velocity nonlinear coefficient

increases, the amplitude produces bifurcation phenomenon,

for example, velocity nonlinear coefficient has a great

influence on the system dynamics.

The system response curve with the roller rotation fre-

quency (X/51) 0.5 Hz (Fig. 20a) and 1.5 Hz (Fig. 20b) is

shown in Fig. 20. We can see with the excitation frequency

increase, vibration amplitude has significant increase and

hysteresis loop becomes fat. The system Lyapunov expo-

nents curve is shown in Fig. 21, Lyapunov exponents value

is negative, and the system is not chaotic. The vibration

amplitude bifurcation curve by excitation frequency is

shown in Fig. 22, and it can be seen there are some

bifurcation phenomena.

The system response curve is shown in Fig. 23 with

excitation force F 5 9 105 N (Fig. 23a) and 5 9 106 N
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(Fig. 23b); we can see with the excitation force increase,

vibration amplitude increases obviously and hysteresis loop

becomes narrow. Lyapunov exponents curve is shown in

Fig. 24, the Lyapunov exponents is negative, and the

system is not chaotic; vibration amplitude bifurcation curve

by excitation force is shown in Fig. 25, and we can see

vibration amplitude produces some bifurcation phe-

nomenon with the excitation amplitude increase.
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3.2 The vertical vibration system stability analysis

and chaos threshold calculation

Stability research methods on the linear time-invariant

control systems are Routh–Hurwitz criterion, Nyquist cri-

terion and Evans root locus method, etc. And the research on

the stability of the nonlinear system is more complicated; the

commonly used methods are graphical method, algebraic

criterion method and Lyapunov direct method, etc.

When there is slight perturbation of the initial state on the

power system, the disturbance with time will be increased or

reduced at a rate index, the index rate is known as the char-

acteristic index or Lyapunov exponents, and it is the best way

to describe the high sensitivity to initial value. Lyapunov

stability theory is determined based on energy concept, and it

needs to find or construct a Lyapunov function V(x,t) and

study the time differential along the state trajectory. For n-

dimensional discrete dynamical system, Xk?1 = F(Xk), set

{Xk} is a track of the system, and DXk is a small amount

deviate from the track. If the evolution of DXk satisfies

DXkþ1 ¼ oF
oX

�
�
X¼Xk

	 

DXk ¼ JkDXk, where Jk is the Jacobian

matrix of F at Xk, and there are DXk?1 = JkDXk = JkJk-1���
J1DX1. Set J(k) = JkJk-1���J1, then DXk?1 = J(k)DX1, posi-

tive definite matrix T Xð Þ ¼ lim
k!1

JðkÞ
� �T

JðkÞ
	 
 1

2k

;, where

k1 C k2 C ��� C kn[ 0 is n eigenvalue of T(x), and Lya-

punov exponents k of the system is as follows:

k ¼ lim
n!1

1

n

Xn

i¼1

ln ki i ¼ 1; 2; . . .; nð Þ ð17Þ

When k\ 0, adjacent points become close and merge

into one point, which is corresponding to the stable fixed

point and periodic motion. When k[ 0, adjacent points

will separate, which is corresponding to the local instability

of orbit and can be used as the chaos criterion.

For n-dimensional continuous dynamic system, the

system forms a track x(t, x0) at the initial conditions x0. If

the initial conditions have small changes dx(x0, 0), the

track deviation is dx(x0, t) = x(t, x0 ? dx(x0, 0)) - x(t, x0)

at t moment. At t = 0, setting x0 as the center, make n-

dimensional spherical surface by radius kdx(x0, 0)k.

Because the shrinkage or expansion degree of each direc-

tion is different, with the time evolution, the sphere will

evolve into n-dimensional ellipsoid at t moment. Setting

the half-axis length of the ellipsoid along the ith coordinate

axis direction as kdxi(x0, t)k, the ith Lyapunov exponents ri
of the system is as follows:

ri ¼ lim
t!1

1

t
ln

dxi x0; tð Þk k
dxi x0; 0ð Þk k i ¼ 1; 2; . . .; nð Þ ð18Þ

If the system Lyapunov Exponents Li\0, the system has

constant movement; if L1 = 0 and Li \ 0, the system has

periodic motion; if L1 = L2 = 0 and Li\0, the system has

prevail periodic motion; if Li [ 0, the system has chaotic

motion; if Li is endless, the system has random movement.

The system of maximum Lyapunov exponents greater than

zero usually is a chaotic system, and these systems have high

sensitive dependencies to initial conditions of tiny change, for

example Lorenz equation, Logistic mapping and the Hénon

mapping are chaotic systems. These chaotic systems have the

following characteristics, the chaotic attractor in phase space

has boundary on the whole, the phase trajectory has high

instability in the attractor, and the dimensions of the strange

attractor are fractional. The chaos research methods have

phase track diagram direct observation, Poincare section,

Lyapunov exponents analysis and fractal dimension analysis

method, etc.

According to the analysis of Sect. 3.1, we study the mill

vertical vibration system chaos movement with exciting

force as bifurcation parameter. Considering the friction

between the bearing seat and the memorial arch, rolling

mill vibration system dynamic equation can be expressed

as follows:

m€xþ kxþ c _xþ Ax3 þ B _x3 þ lFN � signð _xÞ ¼ PA cosXt

ð19Þ

where A and B are the hysteresis loop coefficients, l is the

friction coefficient between the bearing and memorial arch,

and FN is the normal pressure. Introducing the variables:

x2 ¼ k
m

, H1 ¼ A
m

, H2 ¼ c
m

, H3 ¼ B
m

, H4 ¼ lFN

m
, F0 ¼ PA

m
, and
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substituting them into Eq. (19), there is the following

equation:

€xþ x2xþ H1x
3 þ H2 _xþ H3 _x

3 þ H4 � signð _xÞ ¼ F0 cosXt

ð20Þ

Setting a ¼ F0

X2, y ¼ x
a
, T1 ¼ 1

x, T2 ¼ 1
H2

, s ¼ t
T1

, e ¼ T1

T2

and substituting them into Eq. (20), then after dimen-

sionless processing, then there is the following

equation:

d2y

ds2
þ yþ d1y

3

þ e
dy

ds
þ d2

dy

ds

� �3

þ d3sign
dy

ds

� �

� d4 cos
X
x
s

� �" #

¼ 0

ð21Þ

where d1 ¼ H1a
2

x2 , d2 ¼ H3a
2x2

H2
, d3 ¼ H4

axH2
, d4 ¼ X2

xH2
. Con-

verting Eq. (21) to state equation and expressed into matrix

form (s is expressed as t): _Y ¼ f ðYÞ þ egðY ; tÞ, there are

the following equation:

f ðYÞ ¼
y2

�y1 � d1y
3
1

� �

;

gðY ; tÞ ¼
0

�y2 � d2y
3
2 � d3signðy2Þ þ d4 cos

X
x
t

� �

0

@

1

A

When e = 0, it is a conservative system. For d1[ 0, the

undisturbed movement is a stable periodic motion, and

there is no chaos under Smale meaning; For d1\ 0, the

system has three fixed points: O1(0, 0), O2

ffiffiffiffiffiffiffiffi
� 1

d1

q
; 0

	 

,

O3 �
ffiffiffiffiffiffiffiffi
� 1

d1

q
; 0

	 

, O2 and O3 are saddle point.

The Hamilton function is established as H:

H ¼ y2
2

2
þ y2

1

2
þ d1y

2
1

4
. The lodge track meets H ¼ y2

2

2
þ y2

1

2
þ

d1y
2
1

4
¼ � 1

4d1
through the saddle points O2 and O3, and we

can get y1 after substituting y2 ¼ dy1

dt
into the formula and

separating the variables and integration. Then substituting

y1 into y2 ¼ dy1

dt
, we can work out y2, and the two final

different lodge orbit expressions are as follows:

y1ðtÞ ¼ �
ffiffiffiffiffiffiffiffiffi

� 1

d1

r

tan h

ffiffiffi
1

2

r

t

 !

y2ðtÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi

� 1

2d1

r

sec h2

ffiffiffi
1

2

r

t

 !

8
>>>><

>>>>:

ð22Þ

Substituting Eq. (22) into the system Melnikov function

and after integration, there is following equation:

Mðt0Þ ¼
Z 1

�1
f ðq0ðtÞÞ ^ gðq0ðtÞ; t þ t0Þdt

¼
Z 1

�1
y2ðtÞ �y2ðtÞ � d2y

3
2ðtÞ � d3signðy2ðtÞÞ

�

þd4 cos
X
x
ðt þ t0Þ



dt

¼ 2
ffiffiffi
2

p

3d1

� 8
ffiffiffi
2

p
d2

35d2
1

� 2d3

ffiffiffiffiffiffiffiffiffi
1

�d1

r

signð _yÞ

�
d4

ffiffiffiffiffiffi
1

�d1

q
pX csc h pX

2
ffiffi
2

p
x

	 

sec h pX

2
ffiffi
2

p
x

	 

sin Xt0

x

� �

ffiffiffi
2

p
x

If making M(t0) = 0 and considering sin Xt0
x

� ��
�

�
�� 1 and

dMðt0Þ
dt0

6¼ 0, it will be expected to have the following

equation.

2d3

ffiffiffiffiffiffiffiffiffi
1

�d1

r

� 2
ffiffiffi
2

p

3d1

þ 8
ffiffiffi
2

p
d2

35d2
1

\
d4

ffiffiffiffiffiffi
1

�d1

q
pX csc h pX

2
ffiffi
2

p
x

	 

sec h pX

2
ffiffi
2

p
x

	 


ffiffiffi
2

p
x

ð23Þ

According to Melnikov function theorem, when Eq. (23)

is satisfied, there has t0 nothing to do with e, which makes

the system have cross-sectional homoclinic points, that is,

there may be chaotic solution. So when the system pro-

duces chaos, we can get extraneous force amplitude

(equivalent to eccentricity a) threshold as follows:

a[
2x3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� 1225H2
1
H2

2
�840H1H2H3x4þ144H2

3
x8

H2
1

r

sin h pXffiffi
2

p
x

	 


105
ffiffiffiffiffiffi
H1

p
pX3

)
def

FðXÞ

ð24Þ

Setting parameters: m = 1.1 9 105 kg, k = 2.5 9

1010N/m, c = 4 9 106 N s/m, A = -5 9 1016 N/m3, B =

-5 9 105 N s3/m3, X = 51 9 2p(rad/s), a = PA/(mX2),

lFN = 0.1 9 5 9 105 N, PA = 0.5 9 106 N.

Through changing the values of k, c, A and B, we can see

the system chaos threshold change condition shown in

Fig. 26. When a is under the curve, the system does not

produce chaos. With the increase in k, c, A and B, it can

reduce the possibility of chaos system. Among them, the

parameter of the smallest influence on the chaos threshold

is B and the largest is k.

4 Rolling mill vibration field test

From on-site inspection, we found the F3 mill reducer

active gear produced crack; obviously, it has a certain

relationship with rolling mill vibration, so the F3
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reducer and the work roller vertical vibration were

tested synchronously. The vibration curves of time

domain and frequency domain are shown in Fig. 27 for

4.5-mm-thick plate (no vibration sense of rolling work

rolls) on the F3 (figure a) and reducer (figure b). The

vibration curves of time domain and frequency domain

are shown in Fig. 28 for 1.6-mm-thin plate (vibration

sense strong of rolling work rolls) on the F3 (Fig. 28a)

and reducer (Fig. 28b).

From Fig. 27, the vertical vibration energy of the work

roll and speed reducer is relatively dispersive with no

vibration sense, both have peak in 41 Hz and double fre-

quency, the vibration forms are basically same, and only

vibration amplitude is different (work roll vibration energy

is much larger than reducer), for example, the vibration

relationship between them is obvious. From Fig. 28,

vibration energy is relatively concentrated with strong

vibration sense and mainly distributed in 55 Hz and its

double frequency, the roll vibration amplitude is more than

twice than rolling thick plate, and vibration amplitude of

reducer is more than 10 times than thick plate, that is, the

vibration intensity increase of the reducer is more intense,

the vibration damage to the gear reducer is more serious, so

suppressing vibration is the important way to increase the

service life of gear reducer. We can see with the finishing

thickness thinning, the roll speed increases from 39 to 64 r/

min, and the vibration frequency has increased from 41 to

55 Hz. Obviously, vibration main frequency and rolling

speed have linear relationship approximately.
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5 Conclusions

In order to study the effect of each parameter on the system

dynamics and reduce calculation cost, the system is sim-

plified into single-degree-of-freedom nonlinear model and

was simulated. The results show that with increasing linear

stiffness, damping and hysteresis coefficient, it can reduce

the system chaotic possibility. The linear stiffness coeffi-

cient had the greatest influence, and hysteresis damping

coefficient had minimal influence on chaotic threshold. In

order to reduce rolling mill vibration amplitude, we should

reduce the external excitation force firstly, and in order to

improve the dynamic performance of the system, we

should control the speed of nonlinear coefficient values.

Field experiments show that the rolling mill vibration and

the gear meshing impact excitation have a very significant

influential relationship.
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