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Abstract This article examines the application of nonlocal

strain gradient elasticity theory to wave dispersion behav-

ior of a size-dependent functionally graded (FG) nanobeam

in thermal environment. The theory contains two scale

parameters corresponding to both nonlocal and strain gra-

dient effects. A quasi-3D sinusoidal beam theory consid-

ering shear and normal deformations is employed to

present the formulation. Mori–Tanaka micromechanical

model is used to describe functionally graded material

properties. Hamilton’s principle is employed to obtain the

governing equations of nanobeam accounting for thickness

stretching effect. These equations are solved analytically to

find the wave frequencies and phase velocities of the FG

nanobeam. It is indicated that wave dispersion behavior of

FG nanobeams is significantly affected by temperature rise,

nonlocality, length scale parameter and material

composition.

1 Introduction

Functionally graded materials (FGMs) have a continuous

material variation in one or more dimensions, from one

surface to another. Hence, these materials have the poten-

tial to remove the stress concentration observable in lam-

inated composites. FGMs are generally isotropic and

nonhomogeneous and are composed from a mixture of

ceramics and metals to obtain a composition that possesses

a favorable application, especially in thermal environments

[1–4]. Therefore, it is important to discover mechanical

specifications of these material structures. Hence, FGMs

have received a wide attention from engineers and

researchers because of notable applications in several fields

including mechanical, civil and aerospace engineering.

Therefore, it is important to study the wave propagation in

structures made of FG materials. Chakraborty and

Gopalakrishnan [5] researched axial–flexural–shear cou-

pled wave propagation of lengthwise graded beams. Also,

Chakraborty and Gopalakrishnan [6] studied wave propa-

gation of FG beams by using spectrally formulated finite

element. Wave dispersion and transient response of higher-

order shear deformable FG plates investigated by Sun and

Luo [7, 8]. Chen et al. [9] researched dispersion curves of

waves in FG plates. Thermoelastic wave propagation of

temperature-dependent FG plates investigated by Sun and

Luo [7]. They assumed that the temperature field varies in

the thickness direction only and has a uniform distribution

over the plate surface. Finally, they explored that the fre-

quency and phase velocity of the wave propagation

decrease by increasing in the temperature. Wave propa-

gation of porous FG plates employing various higher-order

shear deformation theories is investigated by Yahia et al.

[10]. They concluded that higher-order theories can accu-

rately predict the wave characteristics of FG structures, and

only a little difference exists between their results. Also,

many paper are published concerning with analysis of

FGM structures based on higher-order shear deformation

theories [11–13].

Nanoscale structures are of significance in the field of

nano-mechanics, so it is crucial to account for small size

influences in their mechanical analysis. The lack of a scale

parameter in the classical continuum theory makes it

impossible to describe the size effects [1, 14]. Hence, size-

& Farzad Ebrahimi

febrahimy@eng.ikiu.ac.ir

1 Department of Mechanical Engineering, Faculty of

Engineering, Imam Khomeini International University,

Qazvin, Iran

123

Appl. Phys. A (2016) 122:843

DOI 10.1007/s00339-016-0368-1

http://orcid.org/0000-0001-9091-4647
http://crossmark.crossref.org/dialog/?doi=10.1007/s00339-016-0368-1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00339-016-0368-1&amp;domain=pdf


dependent continuum theories such as nonlocal elasticity

theory [15, 16] are developed to consider the small-scale

effects. Application of nonlocal elasticity theory to wave

propagation of nanoscale structures is examined by several

researchers. Investigation of wave dispersion behavior of

double-walled carbon nanotubes using nonlocal Timosh-

enko beam model is carried out by Yang et al. [17]. Assadi

and Farshi [18] conducted nonlocal axial and transverse

wave propagation of nanotubes resting on elastic founda-

tion considering surface effects. Wave propagation analysis

of single-walled carbon nanotubes exposed to an axial

magnetic field based on nonlocal Euler–Bernoulli beam

model researched by Narendar et al. [19]. Arani et al. [20]

performed wave propagation of bonded double-piezoelec-

tric nanoscale beams. Recently, Eltaher et al. [21] pre-

sented a review on nonlocal elastic models for bending,

buckling, vibrations and wave propagation of nanoscale

beams.

Recently, with the development in nanotechnology,

FGMs have also been employed in MEMS/NEMS. Actu-

ally, FGMs find increasing applications in micro- and

nanoscale structures such as thin films in the form of shape

memory alloys [22], atomic force microscopes (AFMs)

[23], nano-sensors and nano-actuator. In all of these

applications, the size effect plays major role which should

be considered to study the mechanical behaviors of such

small-scale structures. Hence, analysis of FG nanostruc-

tures have also been of interest of many investigators.

Analysis of vibration behavior of FG nanobeams using

finite element method is carried out by Eltaher et al. [24].

Vibrational behavior of nanoscale FGM beams under

thermal loadings is studied by Ebrahimi and Salari [25].

Ebrahimi and Barati [26] presented Dynamic modeling of a

thermo–piezo-electrically actuated nanosize FG beam

subjected to a magnetic field. Also, Ebrahimi and Barati

[27–30] presented vibration and buckling analysis of smart

piezoelectrically actuated FG nanobeams subjected to

various physical fields. In another paper, Ebrahimi and

Barati [31] examined small-scale effects on hygro-thermo-

mechanical vibration of temperature-dependent FG

nanoscale beams. Recently, analysis of FG nanostructures

using shear deformation theories has gained great attention

by several researchers. Tounsi et al. [32] proposed a non-

local refined beam theory for deflection, buckling and

vibration of FGM beams. Bounouara et al. [33] presented a

nonlocal zeroth-order shear deformation theory for free

vibration of functionally graded nanoscale plates resting on

elastic foundation. Belkorissat et al. [34] investigated

vibration properties of functionally graded nanoplates

using a new nonlocal refined four variable model. Most

recently, Barati and Shahverdi [35] presented an analytical

solution for thermal vibration of compositionally graded

nanoplates with arbitrary boundary conditions based on

physical neutral surface position. In these papers on shear

deformation theories, thickness stretching effect is

neglected. So, it is also possible to extend these theories

accounting for thickness stretching effect [36–38].

Strain gradient elasticity theory reports a stiffness-

hardening impact on the nanobeam structure which is

neglected in nonlocal elasticity theory of Eringen [39].

Recently, Lim et al. [40] introduced the nonlocal strain

gradient theory which contains two scale parameters into a

single theory. The nonlocal strain gradient theory captures

the true influence of the two length scale parameters on the

physical and mechanical behavior of small size structures.

Also, Li et al. [41] performed vibration analysis of nonlocal

strain gradient FG nanobeams. They mentioned that the

vibration frequencies can generally increase with the

increasing in length scale parameter or the decreasing

nonlocal parameter. Also, Li et al. [42] performed flexural

wave propagation analysis of size-dependent FG beams

based on nonlocal strain gradient theory. Ebrahimi and

Barati [43] performed flexural wave propagation analysis

of S-FGM Nanobeams under longitudinal magnetic field

based on nonlocal strain gradient theory. Most recently,

Ebrahimi et al. [44] presented a nonlocal strain gradient

theory for wave propagation analysis in temperature-de-

pendent inhomogeneous nanoplates. The literature survey

reveals that wave dispersion analysis of quasi-3D FG

nanobeams in thermal environment based on nonlocal

strain gradient theory is an interesting topic which is not

carried out till to now.

In this paper, a quasi-3D beam model is developed for

wave propagation analysis of FG nanobeams in thermal

environments based on nonlocal strain gradient theory in

which the stress accounts not only for nonlocal elastic

stress field but also for the strain gradients stress field.

Material properties of the nanobeam change gradually

based on Mori–Tanaka model. Applying an analytical

solution, the dispersion, phase velocity and group velocity

curves of the wave propagation of FG nanobeam under

thermal loading are plotted and the characteristics of wave

propagation of the FG nanobeam are explained in detail.

Several examples are provided to show the importance of

nonlocal parameter, length scale parameter, temperature

rise and gradient index on wave propagation characteristics

of FG nanobeams.

2 Theory and formulation

2.1 Mori–Tanaka FGM nanobeam model

Mori–Tanaka homogenization model represents the effec-

tive material properties including effective local bulk

modulus Ke and shear modulus le in the form [35]:
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Ke � Km

Kc � Km

¼ Vc

1 þ VmðKc � KmÞ=ðKm þ 4lm=3Þ ð1Þ

le � lm

lc � lm

¼

Vc

1 þ Vmðlc � lmÞ=½ðlm þ lmð9Km þ 8lmÞ=ð6ðKm þ 2lmÞÞ�
ð2Þ

where subscripts m and c denote metal and ceramic,

respectively, and their volume fractions are related by:

Vc þ Vm ¼ 1 ð3Þ

The volume fraction of the ceramic phase is given by:

Vc ¼
z

h
þ 1

2

� �p

ð4Þ

Here, p represents the gradient index which determines

gradual variation of material properties through the thick-

ness of the nanobeam. Finally, the effective Young’s

modulus (E), poison ratio (v) and mass density (q) can be

expressed by:

EðzÞ ¼ 9Kele

3Ke þ le

ð5Þ

vðzÞ ¼ 3Ke � 2le

6Ke þ 2le

ð6Þ

q zð Þ ¼ qcVc þ qmVm ð7Þ

The thermal expansion coefficient (a) and thermal con-

ductivity (j) may be expressed by

ae � am

ac � am

¼
1
Ke
� 1

Km

1
Kc
� 1

Km

ð8Þ

je � jm

jc � jm

¼ Vc

1 þ Vm
ðjc�jmÞ

3jm

ð9Þ

Also, temperature-dependent coefficients of material pha-

ses can be expressed according to the following relation:

P ¼ P0 P�1 T�1 þ 1 þ P1 T þ P2 T2 þ P3 T3
� �

ð10Þ

where P0, P-1, P1, P2 and P3 are the temperature-depen-

dent constants which are tabulated in Table 1 for Si3N4 and

SUS 304. The bottom and top surfaces of FG nanobeam are

fully metal (SUS 304) and fully ceramic (Si3N4),

respectively.

In this study, the temperature varies nonlinearly through

the thickness. Temperature distribution can be obtained by

solving the steady-state heat conduction equation with the

boundary conditions on bottom- and top surfaces of the

nanobeam across the thickness:

� d

dz
jðz; TÞ d T

dz

� �
¼ 0 ð11Þ

Considering the boundary conditions

T
h

2

� �
¼ Tc; T � h

2

� �
¼ Tm ð12Þ

The solution of above equation is:

T ¼ Tm þ ðTc � TmÞ
R z

�h
2

1
jðz;TÞ dz

R h
2

�h
2

1
jðz;TÞ dz

ð13Þ

where DT = Tc - Tm is the temperature change.

2.2 Kinematic relations

The displacement field of FG nanobeam based on quasi-3D

beam theory can be expressed by:

ux x; zð Þ ¼ u xð Þ � z
owb

ox
� f ðzÞ ows

ox
ð14Þ

uz x; zð Þ ¼ wb xð Þ þ ws xð Þ þ g zð Þwz xð Þ ð15Þ

where u is longitudinal displacement and wb, ws denote the

components correspond to the bending and shear transverse

displacements of a point on the beam mid-surface,

respectively. Also, f(z) is the shape function representing

the shear stress/strain distribution through the beam

thickness. The present theory has a trigonometric function

in the form:

f ðzÞ ¼ z� sinðnzÞ=n ð16Þ

where n = p/h. Nonzero strains of the present beam model

can be expressed as follows:

exx ¼
ou

ox
� z

o2wb

ox2
� f ðzÞ o

2ws

ox2
; ezz ¼

ogðzÞ
oz

owz

ox
ð17Þ

cxz ¼ g
ows

ox
þ owz

ox

� �
ð18Þ

where g(z) = 1 - df/dz. Also, the Hamilton’s principle

states that:Z t

0

dðU þ V � KÞ dt ¼ 0 ð19Þ

Here, U is strain energy, V is work done by external forces,

and K is kinetic energy. The virtual strain energy can be

written as:

dU ¼
Z
v

rijd eij dV ¼
Z
v

ðrxxd exx þ rxzd cxzÞ dV ð20Þ

Substituting Eqs. (17) and (18) into Eq. (20) yields:

dU ¼
Z L

0

N
ddu
dx

�Mb

d2dwb

dx2
�Ms

d2dws

dx2

�

þQ
ddws

dx
þ ddwz

dx

� �
þ Rzdwz

�
dx ð21Þ
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in which the variables expressed in the above equation are

defined as follows:

N ¼
Z
A

rxx dA; Mb ¼
Z
A

zrxxdA; Ms ¼
Z
A

frxxdA;

Q ¼
Z
A

grxz dA; Rz ¼
Z
A

g0rzz dA ð22Þ

The first variation of the work done by applied forces can

be written in the form:

dV ¼
Z L

0

NT
1

dðwb þ wsÞ
dx

ddðwb þ wsÞ
dx

� �
þ NT

2

dwz

dx

ddwz

dx

� �� �
dx

ð23Þ

where N1
T and N2

T are applied force due to temperature

change as:

NT
1 ¼

Z h=2

�h=2

Eðz; TÞ aðz; TÞ ðT � T0Þ dz;

NT
2 ¼

Z h=2

�h=2

gðzÞEðz; TÞ aðz; TÞ ðT � T0Þ dz

ð24Þ

where T0 is the reference temperature. The variation of

kinetic energy is presented by:

dK ¼
Z L

0

I0
du

dt

dd u
dt

þ dwb

dt
þ dws

dt

� �
ddwb

dt
þ ddws

dt

� �� ��

� I1
du

dt

d2dwb

dxdt
þ d2wb

dxdt

ddu
dt

� �
þ I2

d2wb

dxdt

d2dwb

dxdt

� �

� J1

du

dt

d2dws

dxdt
þ d2ws

dxdt

ddu
dt

� �
þ K2

d2ws

dxdt

d2dws

dxdt

� �

þ J2

d2wb

dxdt

d2dws

dxdt
þ d2ws

dxdt

d2dwb

dxdt

� �

þ Ig
d2ðwb þ wsÞ

dxdt

d2dwz

dxdt
þ d2wz

dxdt

d2dðwb þ wsÞ
dxdt

� �

þKg

d2wz

dxdt

d2dwz

dxdt

� ��
dx ð25Þ

where

ðI0; I1; J1; I2; J2;K2Þ ¼
Z h=2

�h=2

qðzÞð1; z; f ; z2; zf ; f 2Þdz

ðIg;KgÞ ¼
Z h=2

�h=2

qðzÞðg; g2Þdz ð26Þ

The following equations are obtained by inserting

Eqs. (21)–(25) in Eq. (19) when the coefficients of du, dwb,

dws and dwz are equal to zero:

oN

ox
¼ I0

d2u

dt2
� I1

d3wb

dxdt2
� J1

d3ws

dxdt2
ð27Þ

d2Mb

dx2
� NT

1

d2ðwb þ wsÞ
dx2

� NT
2

d2wz

dx2
¼ þI0

d2wb

dt2
þ d2ws

dt2

� �

þ I1
d3u

dxdt2
� I2

d4wb

dx2dt2
� J2

d4ws

dx2dt2
þ Ig

d2wz

dt2
ð28Þ

d2Ms

dx2
þ dQ

dx
� NT

1

d2ðwb þ wsÞ
dx2

� NT
2

d2wz

dx2

¼ þI0
d2wb

dt2
þ d2ws

dt2

� �
þ J1

d3u

dxdt2
� J2

d4wb

dx2dt2

� K2

d4ws

dx2dt2
þ Ig

d2wz

dt2
ð29Þ

dQ

dx
� Rz � NT

1

d2ðwb þ wsÞ
dx2

� NT
2

d2wz

dx2

¼ þIg
d2wb

dt2
þ d2ws

dt2

� �
þ Kg

d2wz

dt2
: ð30Þ

2.3 The nonlocal FG nanobeam strain gradient

model

Nonlocal strain gradient elasticity [44] enumerates the

stress for both nonlocal stress and strain fields. Therefore,

the stress can be expressed by:

Table 1 Temperature-

dependent coefficients for Si3N4

and SUS 304

Material Properties P0 P-1 P1 P2 P3

Si3N4 E ðPaÞ 348.43e?9 0 -3.070e-4 2.160e-7 -8.946e-11

a ðK�1Þ 5.8723e-6 0 9.095e-4 0 0

q ðKg/m3Þ 2370 0 0 0 0

j ðW/mKÞ 13.723 0 -1.032e-3 5.466e-7 -7.876e-11

m 0.24 0 0 0 0

SUS 304 E ðPaÞ 201.04e?9 0 3.079e-4 -6.534e-7 0

a ðK�1Þ 12.330e-6 0 8.086e-4 0 0

q ðKg/m3Þ 8166 0 0 0 0

j ðW/mKÞ 15.379 0 -1.264e-3 2.092e-6 -7.223e-10

m 0.3262 0 -2.002e-4 3.797e-7 0
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rij ¼ rð0Þij �
drð1Þij

dx
ð31Þ

where the stresses rxx
(0) and rxx

(1) are related to strain exx and

strain gradient exx,x, respectively, and are defined as:

r 0ð Þ
ij ¼

Z L

0

Cijkla0 x; x0; e0að Þe0kl x0ð Þdx0 ð32aÞ

r 1ð Þ
ij ¼ l2

Z L

0

Cijkla1 x; x0; e1að Þe0kl;x x0ð Þdx0 ð32bÞ

in which Cijkl are the elastic constants and e0a and e1a

take into account the effect of nonlocal stress field, and

l is the length scale parameter and introduces the

influence of higher-order strain gradient stress field.

When the nonlocal functions a0(x, x0, e0a) and a1(x, x0,
e1a) satisfy the developed conditions by Eringen [16],

the constitutive relation for a FGM nanobeam can be

stated as:

1 � ðe1aÞ2r2
h i

1 � ðe0aÞ2r2
h i

rij ¼ Cijkl 1 � ðe1aÞ2r2
h i

ekl

� Cijkl l
2 1 � ðe0aÞ2r2
h i

r2ekl ð33Þ

in which r2 denotes the Laplacian operator. Supposing

e1 = e0 = e and discarding terms of order O(r2), the

general constitutive relation in Eq. (33) can be rewritten as

[42]:

½1 � ðeaÞ2r2� rij ¼ Cijkl ½1 � l2r2�ekl ð34Þ

Thus, the constitutive relations for a nonlocal refined shear

deformable FG nanobeam can be stated as:

rxx � l2 o
2rxx
ox2

¼ EðzÞ exx � k2 o
2exx
ox2

� �
ð35Þ

rxz � l2 o
2rxz
ox2

¼ GðzÞ cxz � k2 o
2cxz
ox2

� �
ð36Þ

where l = ea and k = l. By integrating Eqs. (35) and (36)

over the cross-sectional area of nanobeam provides the

following nonlocal relations for FGM beam model as:

N � l2 o
2N

ox2
¼ 1 � k2 o2

ox2

� �

� A
ou

ox
� B

o2wb

ox2
� Bs

o2ws

ox2
þ Xwz

� �
ð37Þ

Mb � l2 o
2Mb

ox2
¼ 1 � k2 o2

ox2

� �

� B
ou

ox
� D

o2wb

ox2
� Ds

o2ws

ox2
þ Ywz

� �

ð38Þ

Ms � l2 o
2Ms

ox2
¼ 1 � k2 o2

ox2

� �

� Bs

ou

ox
� Ds

o2wb

ox2
� Hs

o2ws

ox2
þ Yswz

� �

ð39Þ

Q� l2 o
2Q

ox2
¼ 1 � k2 o2

ox2

� �
As

ows

ox
þ owz

ox

� �� �
ð40Þ

Rz � l2 o
2Rz

ox2
¼ 1 � k2 o2

ox2

� �

� X
ou

ox
� Y

o2wb

ox2
� Ys

o2ws

ox2
þ Zwz

� �

ð41Þ

where the cross-sectional rigidities are expressed as:

ðA;B;Bs;D;Ds;HsÞ ¼
Z h=2

�h=2

EðzÞ
1 � v2ðzÞ ð1 ; z; f ; z

2; zf ; f 2Þdz

ð42Þ

As ¼
Z h=2

�h=2

g2G zð Þdz ð43Þ

ðX; Y ; Ys; ZÞ ¼
Z h=2

�h=2

EðzÞvðzÞ
1 � v2ðzÞ ð1 ; z; f ; g

0Þg0dz ð44Þ

The governing equations of a quasi-3D FG nanobeam in

terms of displacements are obtained by inserting for N, Mb,

Ms, Q and Rz from Eqs. (37)–(41), respectively, into

Eqs. (27)–(30) as follows:

A 1 � k2 o2

ox2

� �
o2u

ox2

� �
� B 1 � k2 o2

ox2

� �
o3wb

ox3

� �

� Bs 1 � k2 o2

ox2

� �
o3ws

ox3

� �

þ X 1 � k2 o2

ox2

� �
owz

ox
� I0

o2u

ot2
þ I1

o3wb

oxot2
þ J1

o3ws

oxot2

þ l2 I0
o4u

ox2ot2
� I1

o5wb

ox3ot2
� J1

o5ws

ox3ot2

� �
¼ 0 ð45Þ
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B 1� k2 o2

ox2

� �
o3u

ox3

� �
�D 1� k2 o2

ox2

� �
o4wb

ox4

� �

�Ds 1� k2 o2

ox2

� �
o4ws

ox4

� �

þ Y 1� k2 o2

ox2

� �
o2wz

ox2
� NT

1

� �o2ðwb þwsÞ
ox2

� NT
2

� �o2wz

ox2

� I0
o2wb

ot2
þ o2ws

ot2

� �
� I1

o3u

oxot2
þ I2

o4wb

ox2ot2
þ J2

o4ws

ox2ot2

� Ig
o2wz

ot2
þ l2 NT

1

� �o4ðwb þwsÞ
ox4

þ NT
2

� �o4wz

ox4

�

þ I0
o4wb

ox2ot2
þ o4ws

ox2ot2

� �
þ I1

o5u

ox3ot2
� I2

o6wb

ox4ot2

� J2

o6ws

ox4ot2
þ Ig

o2wz

ox2ot2

�
¼ 0 ð46Þ

Bs 1 � k2 o2

ox2

� �
o3u

ox3

� �
� Ds 1 � k2 o2

ox2

� �
o4wb

ox4

� �

� Hs 1 � k2 o2

ox2

� �
o4ws

ox4

� �
þ As 1 � k2 o2

ox2

� �

� o2ws

ox2
þ o2wz

ox2

� �
þ Ys 1 � k2 o2

ox2

� �
o2wz

ox2

� �

� NT
1

� � o2ðwb þ wsÞ
ox2

� NT
2

� � o2wz

ox2
� I0

o2wb

ot2
þ o2ws

ot2

� �

� J1

o3u

oxot2
þ J2

o4wb

ox2ot2
þ K2

o4ws

ox2ot2
� Ig

o2wz

ot2

þ l2 NT
1

� � o4ðwb þ wsÞ
ox4

þ NT
2

� � o4wz

ox4

�

þI0
o4wb

ox2ot2
þ o4ws

ox2ot2

� �
þ J1

o5u

ox3ot2
� J2

o6wb

ox4ot2

�K2

o6ws

ox4ot2
þ Ig

o2wz

ox2ot2

�
¼ 0 ð47Þ

� X 1 � k2 o2

ox2

� �
ou

ox

� �
þ Y 1 � k2 o2

ox2

� �
o2wb

ox2

� �

þ ðAs þ YsÞ 1 � k2 o2

ox2

� �
o2ws

ox2

� �

þ As 1 � k2 o2

ox2

� �
o2wz

ox2
� Z 1 � k2 o2

ox2

� �
wz

� NT
1

� � o2ðwb þ wsÞ
ox2

� NT
2

� � o2wz

ox2

� Ig
o2wb

ot2
þ o2ws

ot2

� �
� Kg

o2wz

ot2

� �

þ l2 NT
1

� � o4ðwb þ wsÞ
ox4

þ NT
2

� � o4wz

ox4

�

þ Ig
o4wb

ox2ot2
þ o4ws

ox2ot2

� �
þ Kg

o2wz

ox2ot2

� ��
¼ 0: ð48Þ

3 Solution procedure

The solution of governing equations of nonlocal FGM

nanobeam can be presented by:

u x; tð Þ ¼ Un exp i bx� xtð Þ½ � ð49Þ
wb x; tð Þ ¼ Wbn exp i bx� xtð Þ½ � ð50Þ
ws x; tð Þ ¼ Wsn exp i bx� xtð Þ½ � ð51Þ
wz x; tð Þ ¼ Wzn exp i bx� xtð Þ½ � ð52Þ

In which (Un, Wbn, Wsn, Wzn) are the wave amplitudes; b and

x denote the wave number and circular frequency, respec-

tively. Inserting Eqs. (49)–(52) into Eqs. (45)–(48) gives:

½K�4�4 � x2½M�4�4

� 	
Un

Wbn

Wsn

Wzn

8>>><
>>>:

9>>>=
>>>;

¼ 0 ð53Þ

where
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By setting the determinant of above matrix to zero, the

circular frequency x can be obtained. Hence, the roots of

Eq. (45) can be expressed by:

x1 ¼ M0ðbÞ; x2 ¼ M1ðbÞ; x3 ¼ M2ðbÞ ð54Þ

These roots are corresponded with the wave modes M0, M1

and M2, respectively. The wave modes M0, M2 are related

to the flexural waves, and mode M1 is related to the

extensional waves. Also, the phase velocity of waves can

be calculated by the following relation:

cp ðiÞ ¼
MiðbÞ
b

; i ¼ 1; 2; 3 ð55Þ

which displays the dispersion relation of phase velocity cp

and wave number b for the FGM nanobeam. Also, the

escape frequencies of FGM nanobeam can be calculated by

setting b ? ?. It is worth mentioning that after the escape

frequency, the flexural waves will not propagate anymore.

And the group velocity of wave propagation in a FG plate

can be expressed as:

cgðiÞ ¼
oMiðbÞ
ob

ði ¼ 1; 2; 3Þ: ð56Þ

4 Numerical results and discussions

A nonlocal strain gradient theory is developed for wave

dispersion analysis of quasi-3D FG nanobeams in thermal

environments. The thickness of nanobeam shown in Fig. 1

is considered as h = 100 nm. In Table 2, comparison of

frequencies of FG nanobeams with those of presented by

Ebrahimi and Salari [25] is presented. In this table, fre-

quency results are presented for various gradient indices

and nonlocality parameters at L/h = 20, while thickness

stretching is neglected (ez = 0). The results of present

study are in good agreement with the previous ones.

Variation of the wave frequency (f = x/2p) of FG

nanobeam versus wave number (b) for different tempera-

ture changes (DT = 0, 200, 500, 800 K) at a fixed gradient

index (p = 1) and nonlocal parameter l = 1 nm according

to various wave modes is illustrated in Fig. 2. It is observed

that for b B 0.1, temperature changes have no observable

effect on the wave frequency, but for higher values of wave

number, the temperature effect is more considerable. With

the increase in temperature, wave frequencies reduce

especially at higher values of wave number. So, effect of

temperature change on wave frequency depends on the

value of wave number. Also, increasing wave number lead

to higher frequencies according to nonlocal strain gradient

theory (k = 1 nm). Moreover, when l = 0, wave number

has no sensible effect on wave frequencies.

Influence of temperature rise (DT) and length scale

parameter (k) on the phase velocity (cp) of FG nanobeam

versus wave number at p = 1 and l = 1 nm is depicted in

Fig. 3. It is found that for b B 0.1, changing length scale

Fig. 1 Geometry and coordinates of functionally graded nanobeam.

a M0 mode, b M1 mode and c M2 mode

k1;1 ¼ �Ab2 � k2Ab4; k1;2 ¼ �iBb3 � ik2Bb5; k2;1 ¼ þiBb3 þ ik2Bb3;

k1;3 ¼ �iBsb
3 � ik2Bsb

5; k1;4 ¼ �Xib� Xk2ib3; k4;1 ¼ þXibþ Xk2ib3;

k2;4 ¼ �Yb2 � k2Yb4 þ NT
1 b

2ð1 þ l2b2Þ; k4;2 ¼ �Yb2 � k2Yb4 þ NT
2 b

2ð1 þ l2b2Þ;
k3;1 ¼ þiBs b

3 þ igBb5; k2;3 ¼ NT
1 b

2ð1 þ l2b2Þ � Dsb
4 � k2Dsb

6;

k2;2 ¼ NT
1 b

2ð1 þ l2b2Þ � Db4 � k2Db6; k3;3 ¼ NT
1 b

2ð1 þ l2b2Þ � Asb
2 � Hsb

4 � k2Hsb
6 � k2Ab4 ;

k3;4 ¼ �ðAs þ YsÞb2 � k2ðAs þ YsÞb4 þ NT
1 b

2ð1 þ l2b2Þ; k4;4 ¼ �Asb
2 � k2Asb

4 � Z � k2Zb2 þ NT
2 b

2ð1 þ l2b2Þ
m1;1 ¼ I0ð1 þ lb2Þ; m1;2 ¼ þiI1bþ il2I1b

3; m2;1 ¼ �iI1b� il2I1b
3

m1;3 ¼ þiJ1bþ il2J1b
3; m3;1 ¼ �iJ1b� il2J1b

3; m1;4 ¼ 0; m2;4 ¼ m3;4 ¼ Igð1 þ l2b2Þ;
m2;2 ¼ I0ð1 þ l2b2Þ þ I2b

2 þ l2I2b
4 ; m4;2 ¼ m4;3 ¼ Igð1 þ l2b2Þ;

m2;3 ¼ I0ð1 þ l2b2Þ þ J2b
2 þ l2J2b

4; m3;3 ¼ I0ð1 þ l2b2Þ þ K2b
2 þ l2K2b

4;

m4;4 ¼ Kgð1 þ l2b2Þ;
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parameter has no effect on the phase velocity, but the effect

of length scale parameter on phase velocity becomes

prominent at higher values of wave number in a constant

temperature change. Also, it is observable that phase

velocity tends to be constant with the change in wave

number for higher value of wave number. Also, irrespec-

tive of the value of length scale parameter, increasing

temperature leads to reduction in phase velocities. When

length scale parameter is zero (k = 0), effect of tempera-

ture change becomes less important at higher wave modes.

Table 2 Comparison of the

frequency of a Mori–Tanaka

based FG nanobeam without

elastic foundation (L/h = 20)

l Gradient index (p)

0 0.2 1 5

EBT [25] Present EBT [25] Present EBT [25] Present EBT [25] Present

0 9.8594 9.82961 8.5788 8.55415 6.9131 6.89568 5.8869 5.86719

1 9.4062 9.37773 8.1844 8.16086 6.5953 6.57866 5.6163 5.59746

2 9.0102 8.98293 7.8399 7.81730 6.3176 6.30170 5.3798 5.36182

3 8.6603 8.63414 7.5354 7.51376 6.0723 6.05701 5.1709 5.15362

4 8.3483 8.32306 7.2639 7.24305 5.8536 5.83878 4.9846 4.96794
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Fig. 2 Influence of temperature rise and length scale parameter on the frequency of temperature-dependent FG nanobeam for various wave

modes (l = 1 nm, p = 1). a M0 mode, b M1 mode and c M2 mode
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Variation of phase velocity of FG nanobeams versus

wave number is demonstrated in Fig. 4 for various gra-

dient indices and length scale parameters when

l = 1 nm and DT = 800. It is found that for b B 0.1,

the effect of length scale parameter on phase velocity

can be neglected in constant gradient index. Also, it is

deduced that for larger values of wave number, the phase

velocity becomes constant and does not change with the

increase in wave number for every value of gradient

index. Also, it is found that increasing gradient index

leads to lower phase velocities at a fixed nonlocal and

length scale parameters.

Influence of nonlocality parameter on the phase velocity

of FG nanobeam is plotted with respect to wave number

when p = 1 and DT = 800. One can see that influence of

nonlocal parameter on phase velocities depends on the

value of wave number. In fact, effect of nonlocal parameter

is remarkable only for larger wave numbers. However,

increasing nonlocal parameter decreases the phase velocity

regardless of the value of length scale parameter. Also, at

k = 0 by increasing wave number, the phase velocity

approaches to zero, and effect of nonlocal parameter

becomes less sensible (Fig. 5).

Group velocity (cg) as a function of temperature rise,

length scale parameter and wave number when p = 1 is

shown in Fig. 6. It can be deduced that for lower wave

numbers, the group velocity of different length scale

parameters are not detectable from each other. But, the

group velocities become distinguished at higher values of

wave number. It is clear that at a fixed length scale
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Fig. 3 Influence of temperature rise and length scale parameter on the phase velocity of temperature-dependent FG nanobeam for various wave

modes (l = 1 nm, p = 1). a M0 mode, b M1 mode and c M2 mode
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parameter, the group velocity decreases by increasing in

temperature. Also, at k = 0 and higher wave numbers,

effect of temperature change on group velocities is not

notable. Furthermore, due to stiffness-hardening effect of

length scale parameter introduced by nonlocal strain gra-

dient theory, the group velocities are increased with the rise

of length scale parameter.

Figure 7 indicates the impact of gradient index on the

group velocity of temperature-dependent FG nanobeam

with respect to wave number (b) at DT = 800 and

l = 1 nm. It is concluded that at a constant wave number

and length scale parameter, with the increase in gradient

index, the group velocity decreases. In fact, higher values

of gradient index are correspond to lower portion of cera-

mic phase in FG nanobeams. Thus, increasing gradient

index shows a reducing effect on the wave characteristics

of FG nanobeams. This is due to higher portion of metal

phase with increase in gradient index.
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Fig. 4 The effect of diverse gradient index and Length scale parameter on the phase velocity of temperature-dependent FG nanobeam for

various wave modes (l = 1, DT = 800). a M0 mode, b M1 mode and c M2 mode
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Figure 8 illustrates the variation of escape frequencies of

nonlocal strain gradient FG nanobeams with changing of

gradient index when l = k = 1 nm. To this purpose, the

wave number is set to infinity. It is clear that with the increase

in gradient index the escape frequency decreases, especially at

lower gradient indices. Furthermore, it is observable that the

escape frequencies of different temperatures are more distin-

guished at higher values of gradient index. Also, it is

observable that with the increase in temperature in constant

gradient index escape frequency reduces.
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Fig. 5 The effect of various nonlocality parameter and length scale parameter on the temperature-dependent FG nanobeam for various wave

modes (DT = 800, p = 1). a M0 mode, b M1 mode and c M2 mode
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5 Conclusions

In this article, nonlocal strain gradient theory which con-

tains both nonlocal and length scale parameters for more

accurate description of size effects is employed to examine

the wave propagation behavior of size-dependent FG

nanobeams in thermal environments. The material prop-

erties of nanobeam change gradually through the thickness

via Mori–Tanaka scheme and are considered to be tem-

perature-dependent. The governing equations of FG
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Fig. 6 Effect of different temperatures and length scale parameters on the group velocity of temperature-dependent FG nanobeam for various

wave modes (p = 1). a M0 mode, b M1 mode and c M2 mode
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nanobeam modeled via a quasi-3D sinusoidal theory are

derived by using Hamilton’s principle. An analytical

solution is applied to find the wave frequency, escape

frequency and phase velocities of FG nanoplate. It is

observed that the wave frequency, phase velocity, group

velocity and escape frequency decrease with the increase in

temperature. Also, nonlocal parameter has a stiffness-

softening influence and reduces the phase velocities. Also,

length scale parameter possesses a stiffness-hardening

effect and increases the phase velocities and escape fre-

quencies. The gradient index has a considerable decreasing

influence on the phase velocities and escape frequencies.
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Fig. 7 The effect of various gradient index and length scale parameter on the group velocity of temperature-dependent FG nanobeam

(DT = 800, l = 1). a M0 mode, b M1 mode and c M2 mode
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Also, when the effect of length scale parameter is omitted,

the nonlocal parameter and gradient index have no

important influence on phase velocity at larger wave

numbers.

References

1. A. Tounsi, M.S.A. Houari, S. Benyoucef, A refined trigonometric

shear deformation theory for thermoelastic bending of function-

ally graded sandwich plates. Aerosp. Sci. Technol. 24(1),

209–220 (2013)

2. M. Zidi, A. Tounsi, M.S.A. Houari, O.A. Bég, Bending analysis

of FGM plates under hygro-thermo-mechanical loading using a

four variable refined plate theory. Aerosp. Sci. Technol. 34,

24–34 (2014)

3. A. Hamidi, M.S.A. Houari, S.R. Mahmoud, A. Tounsi, A sinu-

soidal plate theory with 5-unknowns and stretching effect for

thermomechanical bending of functionally graded sandwich

plates. Steel Compos. Struct. 18(1), 235–253 (2015)

4. A. Tounsi, S. Benguediab, B. Adda, A. Semmah, M. Zidour,

Nonlocal effects on thermal buckling properties of double-walled

carbon nanotubes. Adv. Nano Res. 1(1), 1–11 (2013)

5. A. Chakraborty, S. Gopalakrishnan, A spectral finite element for

axial–flexural–shear coupled wave propagation analysis in

lengthwise graded beam. Comput. Mech. 36(1), 1–12 (2005)

6. A. Chakraborty, S. Gopalakrishnan, A spectrally formulated finite

element for wave propagation analysis in functionally graded

beams. Int. J. Solids Struct. 40(10), 2421–2448 (2003)

7. D. Sun, S.N. Luo, Wave propagation and transient response of a

FGM plate under a point impact load based on higher-order shear

deformation theory. Compos. Struct. 93(5), 1474–1484 (2011)

8. D. Sun, S.N. Luo, Wave propagation of functionally graded

material plates in thermal environments. Ultrasonics 51(8),

940–952 (2011)

9. W.Q. Chen, H.M. Wang, R.H. Bao, On calculating dispersion

curves of waves in a functionally graded elastic plate. Compos.

Struct. 81(2), 233–242 (2007)

10. S.A. Yahia, H.A. Atmane, M.S.A. Houari, A. Tounsi, Wave

propagation in functionally graded plates with porosities using

various higher-order shear deformation plate theories. Struct.

Eng. Mech. 53(6), 1143 (2015)

11. M.A.A. Meziane, H.H. Abdelaziz, A. Tounsi, An efficient and

simple refined theory for buckling and free vibration of expo-

nentially graded sandwich plates under various boundary condi-

tions. J. Sandwich Struct. Mater. 16(3), 293–318 (2014)

12. H. Bellifa, K.H. Benrahou, L. Hadji, M.S.A. Houari, A. Tounsi,

Bending and free vibration analysis of functionally graded plates

using a simple shear deformation theory and the concept the

(a) (b)

(c)

2

4

6

8

10

12

0 2 4 6 8 10

Es
ca

pe
 fr

eq
ue

nc
y

Gradient index, p

ΔT=0
ΔT=200
ΔT=500
ΔT=800

2

4

6

8

10

12

0 2 4 6 8 10

Es
ca

pe
 fr

eq
ue

nc
y

Gradient index, p

ΔT=0
ΔT=200
ΔT=500
ΔT=800

4

6

8

10

12

14

0 2 4 6 8 10

Es
ca

pe
 fr

eq
ue

nc
y

Gradient index, p

ΔT=0
ΔT=200
ΔT=500
ΔT=800

Fig. 8 Effect of gradient index and nonlinear temperature changes on the escape frequency of FG nanobeam for various wave modes

(l = 1 nm2, l = 1 nm2). a M0 mode, b M1 mode and c M2 mode

843 Page 14 of 15 F. Ebrahimi, M. R. Barati

123



neutral surface position. J. Braz. Soc. Mech. Sci. Eng. 38,

265–275 (2016)

13. K.S. Al-Basyouni, A. Tounsi, S.R. Mahmoud, Size dependent

bending and vibration analysis of functionally graded micro

beams based on modified couple stress theory and neutral surface

position. Compos. Struct. 125, 621–630 (2015)

14. S. Benguediab, A. Tounsi, M. Zidour, A. Semmah, Chirality and

scale effects on mechanical buckling properties of zigzag double-

walled carbon nanotubes. Compos. B Eng. 57, 21–24 (2014)

15. A.C. Eringen, D.G.B. Edelen, On nonlocal elasticity. Int. J. Eng.

Sci. 10(3), 233–248 (1972)

16. A.C. Eringen, On differential equations of nonlocal elasticity and

solutions of screw dislocation and surface waves. J. Appl. Phys.

54(9), 4703–4710 (1983)

17. Y. Yang, L. Zhang, C.W. Lim, Wave propagation in double-

walled carbon nanotubes on a novel analytically nonlocal

Timoshenko-beam model. J. Sound Vib. 330(8), 1704–1717

(2011)

18. A. Assadi, B. Farshi, Size-dependent longitudinal and transverse

wave propagation in embedded nanotubes with consideration of

surface effects. Acta Mech. 222(1–2), 27–39 (2011)

19. S. Narendar, S.S. Gupta, S. Gopalakrishnan, Wave propagation in

single-walled carbon nanotube under longitudinal magnetic field

using nonlocal Euler–Bernoulli beam theory. Appl. Math. Model.

36(9), 4529–4538 (2012)

20. A.G. Arani, R. Kolahchi, S.A. Mortazavi, Nonlocal piezoelas-

ticity based wave propagation of bonded double-piezoelectric

nanobeam-systems. Int. J. Mech. Mater. Des. 10(2), 179–191

(2014)

21. M.A. Eltaher, M.E. Khater, S.A. Emam, A review on nonlocal

elastic models for bending, buckling, vibrations, and wave

propagation of nanoscale beams. Appl. Math. Model. 40(5),

4109–4128 (2016)
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