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Abstract The objective of this paper was the investigation

of vibration characteristics of both nonlinear symmetric

power and sigmoid functionally graded nonlocal nano-

beams. The volume fractions of metal and ceramic are

assumed to be distributed through a beam thickness by sig-

moid law distribution and symmetric power function.

Structures with symmetric distribution with mid-plane such

as ceramic–metal–ceramic and metal–ceramic–metal are

proposed. Nonlocal differential Eringen’s elasticity is

exploited to incorporate size dependency of nanobeam. The

kinematic relations of Euler–Bernoulli beam are proposed,

with the assumption of a small strain. A nonlocal equation of

motion of nanobeam is derived by using principle of virtual

work and then discretized by finite element method to obtain

numerical solution. Numerical results show the effects of the

function distribution, gradient index and nonlocal parameter

on natural frequencies of macro- and nanobeam. This model

is helpful in the mechanical design of nanoelectromechani-

cal systems manufactured from FGM.

1 Introduction

Recently, nanotechnology is concerned with fabrication of

functionally graded materials (FGMs) and engineering

structures at a nanoscale, which enables new generation of

materials and devices with innovative properties [21].

FGMs are suitable for large structures (i.e., aircraft, space

vehicles, automotive industries, optics, barrier coating,

nuclear reactors and propulsion systems) and nanostruc-

tures (i.e., nanoelectromechanical systems, thin films,

shape memory alloys and atomic force microscopes).

A FGM is depicted by a continuous graduation of material

composition in one or more dimensions from one material

to another that provides an elegant solution to the problem

of high transverse shear stresses, interface cracking,

delamination and residual stresses. Power-law distribution

(P-FGM) [3, 21–23, 39, 53, 54, 60] and exponential dis-

tribution (E-FGM) [4, 33, 43, 44] are frequently used to

depict the variations of material properties distribution of

FGMs.

It is observed that the stress concentrations appear in the

interface layer when the material is continuously changing

rapidly for both power and exponential functions distri-

bution [9]. Therefore, Chi and Chung [15] suggested a

sigmoid function, a combination of two types of P-FGM

functions, to reduce the stress intensity factors in cracked

structure. In addition, structures, which have ceramic

constituent at top and bottom surfaces and have metallic

core, can sustain a higher temperature more than power and

exponential FGM.

By using powder metallurgy and thermal spraying

techniques, Kapuria et al. [38] fabricated multilayered FG

beam and then experimentally validated the results on

static and free vibration. For sigmoid function, Ben-Oum-

rane et al. [9] analyzed theoretically a flexional bending of

Al/Al2O3 S-FGM thick beams according to different beam

theories. Mahi et al. [45] presented exact solutions to study

the free vibration of a unified higher-order shear defor-

mation theory. Material properties are proposed to be

temperature dependent and vary continuously through the
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thickness according to E-FGM and S-FGM. Fereidoon and

Mohyeddin [32] exploited differential quadrature method

to analyze bending of thin functionally graded plates. Duc

and Cong [17] investigated the nonlinear dynamic response

of imperfect symmetric thin sigmoid functionally graded

material (S-FGM) subjected to mechanical loads. Lee and

Kim [41] studied thermal post-buckling and snap-through

instabilities of P-FGM, E-FGM and S-FGM panels in

hypersonic flows. Jung and Han [37] illustrated bending

behavior of nonlocal S-FGM nanoplates with first-order

shear deformation.

Tiny beam is the basic structure used in several appli-

cations such as nanoelectromechanical systems (NEMS),

nanowires, nanoprobes, atomic force microscope (AFM),

nanoactuators and nanosensors. For convincing designing

of nanostructure, the size and length-scale effects and the

atomic forces should be included in the mathematical

formulation. The nonlocal elasticity theory developed by

Eringen [29–31] is a promising theory which contains

information about the forces between atoms and the

internal length scale. The use of nonlocal continuum

mechanics has found successful applications in several

areas which include fracture mechanics, lattice dispersion

of elastic waves, mechanics of dislocations and wave

propagation in mechanics [52]. Reddy [51] developed

analytical solutions for bending, buckling and vibration of

isotropic beams using Euler–Bernoulli, Timoshenko,

Reddy and Levinson beam theories.

A lot of researchers have motivated on FG of nanobeams

using nonlocal Eringen’s elasticity in differential model.

According to power-law distribution of functionally graded

nanobeams, Eltaher et al. [21, 22] presented a finite element

model to study a static, buckling and dynamic behavior of

Euler nanobeams. Eltaher et al. [23] illustrated the effect of

neutral plane on natural frequencies and noted that the

calculated frequency at mid-plane is overestimated than that

at neutral axis. Tounsi et al. [59], Benguediab et al. [7] and

Besseghier et al. [10] studied nonlocal chirality and thermal

effects on buckling properties of double-walled carbon

nanotubes (DWCNTs). Simsek and Yurtcu [55] examined

analytically static bending and buckling of Timoshenko and

Euler–Bernoulli nanobeams. Eltaher et al. [25, 26] adopted

previous model to consider the shear effect by using

Timoshenko nanobeams. Reddy et al. [53] developed a

nonlinear finite element models for a static bending of FG

nanobeams with moderate displacements and rotations.

Uymaz [60], Rahmani and Pedram [50] used Navier’s

solution to study the free and forced vibration problem of a

FG nanobeam. Kiani [39] proposed a mathematical model

to explore vibrations and instabilities of moving FG nano-

beams. The longitudinal and lateral equations of motion of

the moving nanostructure were extracted by employing the

nonlocal Rayleigh beam model.

Chaht et al. [14] presented bending and buckling

behavior of FGM size-dependent nanobeams including the

thickness stretching effect. Ebrahimi and Salari [18] used

both Navier method and a semi-analytical differential

transform method to investigate a free flexural vibrational

of FG Euler nanobeams. Ebrahimi and Boreiry [19] inves-

tigated surface effects on nonlocal vibrational behavior of

nanobeams. Salehipour et al. [54] presented a modified

nonlocal elasticity theory for functionally graded materials

by using an imaginary nonlocal strain tensor to directly

obtain the nonlocal stress tensor. Rahmani and Jandaghian

[49] developed an analytical solution of a buckling of third-

order nanofunctionally graded beam by using Rayleigh–

Ritz technique. Filiz and Aydogdu [33] studied a wave

propagation in embedded functionally graded nanotubes

conveying fluid. The material properties are changing

exponentially in the thickness direction. Eltaher et al. [27]

presented a review on nonlocal elastic models for bending,

buckling, vibrations and wave propagation of nanoscale

beams. Agwa and Eltaher [1] presented a vibration behavior

of carbyne nanomechanical mass sensors with surface

effect. Ebrahimi and Barati [20] investigated vibration

behavior of magneto-electro-thermo-elastic functionally

graded nanobeams based on a higher-order shear defor-

mation beam theory. Hosseini and Rahmani [36] presented

free vibration analysis of shallow and deep curved func-

tionally graded (FG) nonlocal nanobeam. Sourki and Hos-

eini [56] investigated a vibration of a cracked microbeam

based on the modified couple stress theory within the

framework of Euler–Bernoulli beam theory. Eltaher et al.

[28] presented nonlinear analysis of size-dependent and

material-dependent nonlocal carbon nanotubes.

To satisfy the zero traction boundary conditions on the

surfaces, Eltaher et al. [12] and Zidi et al. [62] studied

thermo- and hygro-thermo-mechanical bending response of

FG plates using refined shear deformation theory. Meziane

et al. [47], Hebali et al. [35], Belabed et al. [5], Mahi and

Tounsi [46] and Bennoun et al. [8] developed a simple and

accurate shear deformation theory for bending and free

vibration of FG plates without requiring any shear cor-

rection factor. Bourada et al. [13] presented a simple shear

and normal deformations theory for FG beams. Hamidi

et al. [34] presented an accurate sinusoidal plate theory for

the thermomechanical bending analysis of FG sandwich

plates. Yahia et al. [61] studied wave propagation in FG

plates with porosities using various higher-order shear

deformation plate theories. Bellifa et al. [6] and Ahouel

et al. [2] investigated size-dependent mechanical behavior

of FG trigonometric shear deformable nanobeams includ-

ing neutral surface position concept. Bounouara et al. [11]

proposed zeroth-order shear deformation theory to study

vibration of FG plate with parabolic variation within the

plate thickness and vanish on the plate surfaces.
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From the literature review and to the best of the authors’

knowledge, it can be concluded that no researchers have

attempted to use a sigmoidal function and symmetric

power distributions for FG nanobeams. In fact, all of the

related studies use the power and exponential distribution

for FG nanobeams. The present study is intended to fill this

gap in the literature by considering a sigmoidal distribution

through thickness of nanobeams. So, this paper presented a

free vibration of a new FG nonlocal nanobeam. The

manuscript is organized as follows. Section 2 describes the

mathematical formulation and governing equations of sig-

moidal FG nanobeams with Eringen’s nonlocal elasticity

and Euler–Bernoulli kinematics assumptions. Section 3

summarizes the displacement finite element model to study

a buckling stability and free vibration of nanobeam. In

Sect. 4, a code validation and numerical results are dis-

cussed. Section 5 summarizes concluding remarks.

2 Problem formulation

2.1 Spatial material graduation functions

Functionally graded materials (FGMs) are produced by

combining various materials continuously though a specific

spatial direction. The simplest and accepted homogeniza-

tion methods to estimate the effective properties at

micromechanics level are Voigt rule [48] and Mori–Tanaka

mode [58]. The mechanical properties are graded across the

thickness according to the Voigt model [42, 40].

The volume fraction of materials can be expressed as:

Vc ¼
1

2
þ z

h

� �k

0� k\1ð Þ ð1aÞ

Vc þ Vm ¼ 1 ð1bÞ

where V is the volume fraction, k is the nonnegative power

exponent, and subscripts c and m represent the ceramic and

metal, respectively. In the current analysis, symmetric

power function (SP-FGM) and sigmoid function S-FGM

are proposed.

The symmetric power function can be depicted by:

P1 zð Þ ¼ Psurf � Pcoreð Þ �2z

h

� �k

þPcore

�h

2
� z� 0

� �

ð2aÞ

P2 zð Þ ¼ Psurf � Pcoreð Þ 2z

h

� �k

þPcore 0� z� h

2

� �
ð2bÞ

However, the sigmoid functional distribution can be

described by:

P1 zð Þ ¼ PmVm þ PCVc ¼ Pm þ 1

2
Pc � Pmð Þ 1 þ 2z

h

� �k

�h

2
� z� 0

� �
ð3aÞ

P2 zð Þ ¼ PmVm þ PCVc ¼ Pc �
1

2
Pc � Pmð Þ 1 � 2z

h

� �k

0� z� h

2

� �

ð3bÞ

where P is material properties [Young’s modulus (E),

density (q) or Poisson’s ratio (t)] and subscripts surf, core,

m and c are surface, core, metal and ceramics, respectively.

The FG beam in the current manuscript is composed of

aluminum metal [Em = 70 GPa, qm = 2.7 g/cm3 and tm is

0.3] and ceramics of alumina [Ec = 380 GPa, qc = 3.96 g/

cm3 and tc = 0.3]. Delale and Erdogan [16] proved that the

effect of Poisson’s ratio on the deformation is much less

than Young’s modulus. So, the Poisson’s ratio is assumed

to be constant in this analysis. The distribution of Young’s

modulus and mass density through the beam thickness for

ceramic–metal–ceramic (CMC), metal–ceramic–metal

(MCM) and sigmoidal distribution is presented in Figs. 1, 2

and 3, respectively.

2.2 Geometrical fit conditions

Based on the Euler–Bernoulli theory, plane sections per-

pendicular to the axis of the beam before deformation

remain plane, rigid and rotate such that they remain per-

pendicular to the (deformed) axis after deformation. The

assumptions amount to neglecting the Poisson effect and

transverse strains, Reddy (2014). The displacement field

can be assumed as:

u x; zð Þ ¼ u0 xð Þ � z
dw0 xð Þ

dx
ð4aÞ

w x; zð Þ ¼ w0 xð Þ ð4bÞ

where u and w are the total displacements along the

coordinate (x), and u0 and w0 denote the axial and trans-

verse displacements of a point on the neutral axis.

According to Euler hypothesis, the only nonzero strain is

exx x; zð Þ ¼ d

dx
u0 xð Þ � z

dw0 xð Þ
dx

� �
¼ du0 xð Þ

dx
� z

d2w0 xð Þ
dx2

¼ e0
xx þ ze1

xx

ð5Þ

and nonzero classical stress can be presented by:
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rxx x; zð Þ ¼ E zð Þexx x; zð Þ ¼ E zð Þ e0
xx þ ze1

xx

� �
ð6Þ

Axial and bending moment can be written as:

Nxx ¼
Z
A

rxxdA ¼ A11e
0
xx þ B11e

1
xx ð7aÞ

Mxx ¼
Z
A

zrxxdA ¼ B11e
0
xx þ D11e

1
xx ð7bÞ

where

A11;B11;D11½ � ¼ b

Z
h

E zð Þ 1; z; z2
� �

dz

¼ b

Z0

�h
2

E1 zð Þ 1; z; z2
� �

dzþ
Z h

2

0

E2 zð Þ 1; z; z2
� �

dz

2
64

3
75 ð8Þ

Fig. 1 Variation of Young’s modulus and mass density through the

beam thickness according to SP-FGM (CMC)

Fig. 2 Variation of Young’s modulus and mass density through the

beam thickness according to SP-FGM (MCM)
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2.3 Nonlocal stress–strain relations

Based on the nonlocal differential Eringen elasticity the-

ory, the nonlocal constitutive relation can be described by

[31]:

1 � e0að Þ2r2
� 	

rij ¼ tij ð9Þ

where r2 is the Laplacian operator, tij is the classical

macroscopic stress tensor, e0 is a material constant, and a is

the internal characteristic length. For Euler–Bernoulli

nonlocal FG beam, Eq. (9) can be simplified as

rxx � l
o2rxx
ox2

¼ E zð Þexx; l ¼ e2
0a

2

 �

ð10Þ

and nonlocal axial and bending moment can be described

by:

N � l
o2N

ox2
¼ A11e

0
xx þ B11e

1
xx ð11aÞ

M � l
o2M

ox2
¼ B11e

0
xx þ D11e

1
xx ð11bÞ

2.4 Nonlocal equations of motion

According to Hamilton’s principle, the equation of motion of

functionally graded beam can be derived to the following

A11

o2u0

ox2
þ B11

o3wo

ox3
þ 1 � l

o2

ox2

� �
f

¼ I0
o2u0

ot2
� I1

o3w0

ot2ox
� l I0

o4u0

ot2ox2
� I1

o5w0

ot2ox3

� �
ð12aÞ

B11

d3u0

dx3

� �
þ D11

d4w0

dx4
þ 1 � l

o2

ox2

� �
q

þ 1 � l
o2

ox2

� �
�N
o2w0

ox2

� �

¼ 1 � l
o2

ox2

� �
I0
o2w0

ot2
þ I1

o3u0

ot2ox
� I2

o4w0

ot2ox2

� �
ð12bÞ

where f is the axial distributed force in x-direction, q is the

transverse distributed force in z-direction, and �N is the axial

compressive load normal to the cross section and applied at

the neutral axis. Inertia terms I0, I1 and I2 can be described by:

I0; I1; I2½ � ¼ b

Z
h

q zð Þ 1; z; z2
� �

dz

¼ b

Z0

�h
2

q1 zð Þ 1; z; z2
� �

dzþ
Zh

2

0

q2 zð Þ 1; z; z2
� �

dz

2
64

3
75

ð13Þ

3 Numerical formulation

The displacement components at the mid-plane (that is

coincident with neutral plane in the current material dis-

tributions) of a beam element can be described as [24]:

• In-plane displacement u0

u
eð Þ

0 x; tð Þ ¼
X2

i¼1

NiUi tð Þ ¼ N1U1 tð Þ þ N2U2 tð Þ

where i¼ 1; 2 ð14aÞ

Fig. 3 Variation of Young’s modulus and mass density through the

beam thickness according to sigmoidal function
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• Transverse displacement wo

w
eð Þ

0 x; tð Þ ¼
X4

k¼1

~Nk
~Wk ¼ ~N1W1 þ ~N2h1 þ ~N3W2 þ ~N4h2

ð14bÞ

where U, W and h are the nodal displacements and slope,

respectively. Ni is the Lagrangian interpolation function for

in-plane displacement, and ~Nk is the Hermitian interpola-

tion shape function for transverse displacements. The

variational statement of nonlocal Euler–Bernoulli beam has

the following form [57]:

By substituting Eq. (14) into Eq. (15) and integrating

over the domain, the following equation of motion is

derived

Ml þ lMnlð Þ€Y þ KsY þ KGY ¼ F þ Q ð16Þ

where Ml and Mnl are local and nonlocal mass matrices,

respectively. Ks is the stiffness matrix of FG beam, KG is

the geometrical stiffness matrix, Y is the generalized dis-

placement vector, and F and Q are the distributed force

vector and concentrated force vector, respectively. The

element matrices and force vectors can be represented by:

• The mass matrices can be represented by

Ml ¼
Z l

0

I0NiNjdxþ
Z l

0

I0 ~Nk
~Nl þ I2

o ~Nk

ox

o ~N1

ox

� �
dx

þ
Z l

0

I1
oNi

ox
~N1 þ I1

o2 ~N1

ox2
Ni

� �
dx

ð17aÞ

Mnl ¼ �
Z l

0

I0
oNi

ox

oNj

ox
dx

þ
Z l

0

I0 ~Nk

o2 ~N1

ox2
� I2

o2 ~Nk

ox2

o2 ~N1

ox2

� �
dx

þ
Z l

0

I1
oNi

ox

o2 ~N1

ox2
þ I1

o2 ~N1

ox2

oNi

ox

� �
dx ð17bÞ

• Element stiffness matrix can be calculated by

Ku ¼
Z l

0

�
Z0

�h
2

E1 zð Þdz�
Zh

2

0

E2 zð Þdz

2
64

3
75 oNi

ox

oNj

ox
dx

where i and j ¼ 1; 2 ð17cÞ

Kw ¼
Z l

0

�
Z0

�h
2

z2E1 zð Þdz�
Z h

2

0

z2E2 zð Þdz

2
64

3
75 o ~Nk

ox

o ~N1

ox
dx

where k and l ¼ 1; 2; 3; 4

ð17dÞ

Kuw ¼
Z l

0

Z0

�h
2

zE1 zð Þdzþ
Z h

2

0

zE2 zð Þdz

2
64

3
75 o2 ~Nk

ox2

oNi

ox
dx

þ
Z l

0

Z0

�h
2

zE1 zð Þdzþ
Z h

2

0

zE2 zð Þdz

2
64

3
75 oNi

ox

o2 ~Nk

ox2
dx

ð17eÞ

Z T

0

Z L

0

�
Z 0

�h
2

E1ðzÞdz�
Z h

2

0

E2ðzÞdz
" #

ou0

ox

odu0

ox
þ
Z 0

�h
2

zE1ðzÞdz�
Z h

2

0

zE2ðzÞdz
" #

o2w0

ox2

odu0

ox

 (

þ
Z 0

�h
2

zE1ðzÞdzþ
Z h

2

0

zE2ðzÞdz
" #

ou0

ox

o2dw0

ox2
þ �

Z 0

�h
2

z2E1ðzÞdz�
Z h

2

0

z2E2ðzÞdz
" #

o2w0

ox2

odw0

ox2

�

þ fdu0 þ l
of

ox

odu0

ox

� �
þ qdw0 � lq

o2dw0

ox2

� �
þ �N

ow0

ox

odw0

ox
� l �N

o2w0

ox2

o2dw0

ox2

� �

þ I0
ou0

ot

odu0

ot
� lI0

o3u0

ot2ox

odu0

ox

� �
þ I0

ow0

ot

odw0

ot
þ lI0

o2w0

ot2
o2dw0

ox2
þ I2

o2w0

otox

o2dw0

otox
� lI2

o4w0

ot2ox2

o2dw0

ox2

� �

þ I1
o2u0

otox

odw0

ot
þ lI1

o3u0

ot2ox

o2dw0

ox2
� I1

o2w0

otox

odu0

ot
þ I1l

o4w0

ot2ox2

odu0

ox

� ��
dxdtþ

Z t

0

�NBdu0 þ �VBdw0 þ �MB

odw0

ox

� �L
0

dt ¼ 0

ð15Þ
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Ks ¼ Ku þ Kw þ Kuw ð17fÞ

• Element geometrical stiffness matrix can be repre-

sented by

KG ¼
ZL

0

� �N
o ~Nk

ox

o ~N1

ox
þ l �N

o2 ~Nk

ox2

o2 ~N1

ox2

� �
dx ð17gÞ

• The force vector can be represented by

F ¼ q

ZL

0

~Nk � l
o2 ~Nk

ox2

� �
dxþ

ZL

0

fNi þ l
of

ox

oNi

ox

� �
dx ð17hÞ

4 Numerical results

Here numerical examples are considered. In all cases, the

dimensions of beam geometry are described as Eltaher

et al. [21]. These values are used only for the purpose of

numerically evaluating the parametric effects of nonlocal

parameter (l), material distribution (k) and functional

distribution (P). The beam was assumed to be simply

supported at both ends: a mesh of 50 elements (with linear

approximation of u and hermite cubic approximation of w).

Table 1 presents the first five nondimensional frequen-

cies of S-FGM with varying nonlocal parameter (l) and

material distribution (k). Fixing material distribution

parameter and varying the nonlocal parameter results in a

significant change in the natural frequencies. During this

study, it is also found, as others have, that for simply

supported nanobeams, natural frequencies decrease as the

nonlocal parameter increases. For a case in hand, as the

nonlocal parameter changes from 0 to 4 9 10-12, the first

and fifth frequencies reduce by about 15.5 and 60 %,

respectively, at a constant material distribution k = 0.5.

This emphasizes the significance of the nonlocal effect on

the natural frequency of beam. It is also noted that for a

sigmoidal distribution, the natural frequencies decreased by

increasing the material parameter distribution (k), as shown

in Table 1. The first fundamental frequency is reduced by

5 % as k changing from 0 to 10. Qualitative behavior of

Table 1 Dimensionless frequencies for different material distribution and nonlocal parameters for S-FGM

l 9 10-12 ki K = 0.0 K = 0.1 K = 0.2 K = 0.5 K = 1 K = 2 K = 5 K = 10

0 k1 15.9993 15.9892 15.9669 15.8732 15.7215 15.5227 15.3202 15.2532

k2 64.808 64.5754 64.0489 61.97 58.9333 55.465 52.3957 51.4629

k3 149.0202 148.5186 147.3818 142.9129 136.4318 129.092 122.6488 120.6998

k4 175.7171 175.574 175.2376 173.7431 171.0262 167.0211 162.5555 161.013

k5 273.5657 272.6656 270.6361 262.8162 251.9366 240.3158 230.7582 227.9857

1 k1 15.3556 15.2437 15.2222 15.1329 14.9878 14.7978 14.6041 14.5398

k2 54.4681 54.1646 53.7332 52.0279 49.5288 46.6634 44.1189 43.3442

k3 104.7114 104.2463 103.4783 100.4493 96.0286 90.9861 86.5306 85.1778

k4 156.5851 155.5122 153.5614 146.9413 138.4686 129.4637 121.7915 119.4957

k5 167.6366 167.946 168.4722 169.3441 168.9673 166.9546 163.5984 160.6316

2 k1 14.656 14.5932 14.5727 14.487 14.348 14.1656 13.9792 13.9177

k2 47.7991 47.5702 47.1961 45.7159 43.543 41.0469 38.8265 38.1496

k3 85.2585 84.9094 84.2911 81.8502 78.2814 74.2022 70.5908 69.4931

k4 121.0426 120.4581 119.3393 115.0039 108.852 102.0059 96.0627 94.2735

k5 153.486 152.7949 151.4536 146.2149 138.7001 130.2858 122.9668 120.7634

3 k1 14.0643 14.0184 13.9986 13.9163 13.7825 13.6069 13.4274 13.3677

k2 43.1101 42.9154 42.5805 41.2548 39.3067 37.0662 35.071 34.4624

k3 73.7371 73.4441 72.9123 70.8119 67.7385 64.2221 61.1063 60.1588

k4 102.2118 101.7451 100.8457 97.3285 92.268 86.5753 81.5986 80.0955

k5 127.8521 127.287 126.1843 121.8705 115.6658 108.6996 102.6273 100.7972

4 k1 13.5452 13.5078 13.4888 13.4094 13.2804 13.1109 12.9375 12.8799

k2 39.578 39.4048 39.0989 37.8876 36.1065 34.0563 32.2294 31.6719

k3 65.9003 65.6426 65.1689 63.2973 60.5576 57.4213 54.6411 53.7953

k4 90.0997 89.6981 88.9214 85.8749 81.4708 76.4949 72.131 70.8111

k5 111.8704 111.3805 110.422 106.6692 101.2647 95.189 89.8873 88.2886
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Table 1 for the first fundamental frequency k1 is illustrated

in Fig. 4. From Fig. 4, it is observed that the fundamental

frequency is reduced smoothly by changing the material

distribution from 0 to 10 for a certain value of nonlocal

parameter.

The effects of both size effect and material distribution

on the first five fundamental frequencies of ceramics–

metal–ceramics functionally graded nanobeam are pre-

sented in Table 2 and Fig. 5. As concluded form Table 2

and Fig. 5, the frequencies are assumed to be constant as

the material distribution changes from 0 to 1; however,

they are reduced significantly as the material parameter

changes from 1 to 10. In addition, the nonlocal parameter

tends to reduce the fundamental frequency of FG beam at a

specific material distribution.

The variation of frequencies of metal–ceramics–metal

functional graded nanobeams with a nonlocal parameter

and material distribution is illustrated in Table 3. It is noted

that the nonlocal parameter has the same effect on the

natural frequencies for SP-FGM (MCM) as SP-FGM

(CMC) and S-FGM. It is observed that the increase in

Fig. 4 Variation of the fundamental frequency for varying material

distribution and nonlocal parameter of S-FGM

Table 2 Dimensionless frequencies for different material distribution and nonlocal parameters for SP-FGM (CMC)

l 9 10-12 ki K = 0.0 K = 0.1 K = 0.2 K = 0.5 K = 1 K = 2 K = 5 K = 10

0 k1 19.0664 19.0938 19.0899 18.9602 18.5579 17.6391 15.577 13.8059

k2 77.2323 77.3618 77.3621 76.8671 75.2659 71.548 63.1723 55.9695

k3 177.5904 177.9656 178.031 177.0266 173.4458 159.334 138.2242 126.2572

k4 209.4059 204.4702 200.0261 188.9825 175.7171 164.9282 145.5623 128.8836

k5 326.0145 326.9285 327.2349 325.7754 319.4982 303.9542 268.0914 237.135

1 k1 18.2997 18.3223 18.3162 18.1881 17.8002 16.9171 14.9413 13.2445

k2 64.9103 65.004 64.9917 64.5517 63.1874 60.0571 53.037 47.0051

k3 124.7869 124.9566 124.9255 124.0619 121.4254 115.4035 101.9221 90.3412

k4 186.6059 186.8017 186.7074 180.292 167.6366 152.0069 131.8678 120.4512

k5 199.7762 195.0675 190.8277 185.3177 181.3003 172.2721 152.1908 134.9586

2 k1 17.4648 17.488 17.4826 17.3615 16.9923 16.1489 14.2622 12.642

k2 56.9628 57.0398 57.025 56.6303 55.4267 52.6774 46.5239 41.2376

k3 101.6041 101.719 101.6742 100.9314 98.7548 93.8422 82.8971 73.5022

k4 144.249 144.3521 144.2396 143.0845 139.9177 132.9201 117.4614 104.2114

k5 182.9126 182.9452 182.7226 172.6997 160.5772 145.6058 126.3148 115.3789

3 k1 16.7612 16.7828 16.7783 16.6622 16.3084 15.4995 13.6878 12.1328

k2 51.3751 51.4416 51.4258 51.065 49.9751 47.4945 41.9483 37.1856

k3 87.8741 87.9632 87.9163 87.2569 85.3612 81.1086 71.6561 63.5458

k4 121.8081 121.8777 121.7684 120.764 118.0678 112.1521 99.1215 87.9583

k5 152.3642 152.3689 152.1651 150.7719 147.2963 139.8657 121.4089 109.8303

4 k1 16.1412 16.1628 16.1579 16.0466 15.7051 14.9262 13.1823 11.6842

k2 47.1657 47.2248 47.2085 46.8741 45.871 43.5929 38.5039 34.1341

k3 78.5347 78.609 78.5625 77.9641 76.263 72.4603 64.0196 56.7793

k4 107.3738 107.4266 107.3233 106.4237 104.0364 98.8185 87.3433 77.5152

k5 133.3184 133.3121 133.1252 131.8889 128.8348 122.3291 108.1758 96.077
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material distribution tends to increase the frequency at a

constant nonlocal parameter. For example, at a zero non-

local parameter, the first frequency increased from 9.9109

to 17.4289 as material distribution increased from 0 to 10.

Graphical illustration of nonlocal parameter and material

distribution effects on the fundamental frequency of MCM

functionally graded nanobeam is shown in Fig. 6. From

this figure, it can be concluded that the first frequency

increased linearly with a material graduation and decreased

with nonlocal parameter.

5 Conclusions

A numerical finite element model was developed to

investigate the dynamic behavior of both nonlinear sym-

metric power and sigmoid functionally graded nonlocal

nanobeams. The assumed material distributions are sym-

metrical with mid-plane. Nonlocal differential Eringen’s

elasticity is proposed to consider the size dependency of

nanobeam.

Fig. 5 Variation of the fundamental frequency for varying material

distribution and nonlocal parameter of SP-FGM (CMC)

Table 3 Dimensionless frequencies for different material distribution and nonlocal parameters for SP-FGM (MCM)

l 9 10-12 ki K = 0.0 K = 0.1 K = 0.2 K = 0.5 K = 1 K = 2 K = 5 K = 10

0 k1 9.9109 10.3759 10.785 11.7759 12.9489 14.4029 16.3185 17.4289

k2 40.1444 42.0149 43.6602 47.6551 52.3882 58.2715 66.0421 70.5574

k3 92.3086 96.5518 100.2896 109.3862 120.2024 133.7005 151.6157 162.0719

k4 108.8459 126.2572 138.2242 159.334 175.7171 188.9825 200.0261 204.4702

k5 169.457 177.0806 183.8124 200.2602 219.9257 244.6194 277.6399 297.041

1 k1 9.5112 9.9601 10.354 11.309 12.4367 13.8335 15.6701 16.7328

k2 33.7392 35.3225 36.7139 40.0885 44.0795 49.0299 55.5514 59.3325

k3 64.8621 67.9132 70.5939 77.0927 84.7739 94.2947 106.8261 114.0859

k4 96.9947 101.6006 105.6434 115.4283 126.9656 141.2257 159.9292 170.7309

k5 103.8405 120.4512 131.8678 151.6562 166.8904 180.292 190.8277 195.0675

2 k1 9.0779 9.5053 9.8806 10.7915 11.8666 13.1994 14.9528 15.9681

k2 29.6082 31.0013 32.2252 35.1923 38.6988 43.0452 48.7651 52.0788

k3 52.8122 55.3138 57.5102 62.8285 69.1032 76.8643 87.0532 92.9424

k4 74.9783 78.5747 81.7282 89.3479 98.3089 109.351 123.779 132.0832

k5 95.075 99.7086 103.7653 113.5415 124.9916 139.0319 157.265 167.7013

3 k1 8.7119 9.122 9.4822 10.3561 11.3877 12.6668 14.3493 15.3243

k2 26.7039 27.9625 29.0682 31.7477 34.913 38.834 43.991 46.9765

k3 45.6755 47.8467 49.7522 54.3635 59.7991 66.5154 75.3212 80.4049

k4 63.3139 66.3638 69.037 75.4914 83.0737 92.4049 104.5773 111.573

k5 79.1965 83.0731 86.4656 94.6354 104.1934 115.8978 131.0713 139.743

4 k1 8.3899 8.7849 9.132 9.9731 10.967 12.1987 13.8196 14.7577

k2 24.5159 25.673 26.6891 29.1514 32.0589 35.6596 40.3928 43.1322

k3 40.8211 42.7656 44.4718 48.5993 53.4619 59.4666 67.3331 71.8714

k4 55.8111 58.506 60.8674 66.5669 73.2583 81.487 92.2117 98.3703

k5 69.2968 72.6967 75.6713 82.8322 91.2049 101.4503 114.7204 122.298
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The most findings of this study may be summarized as:

• The nonlocal size parameter tends to decrease the

frequencies of nanobeams.

• The material parameter k has different effects on the

frequencies of nanobeams. By increasing k, the fre-

quencies decrease in case of S-FGM distribution and

increase in case of SP-FGM (MCM). However, in case

of SP-FGM (CMC), the frequencies are constant in the

range of 0 B k B 1 and decreased in the range

1 B k B 10.

• The proposed model can give designers and engineers a

scope for proper selection of material distribution,

especially in manufacturing of nanosensors and

nanoactuators.
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