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Abstract In this article, combined effect of moisture and

temperature on free vibration characteristics of functionally

graded (FG) nanobeams resting on elastic foundation is

investigated by developing various refined beam theories

which capture shear deformation influences needless of any

shear correction factor. The material properties of FG

nanobeam are temperature dependent and change gradually

along the thickness through the power-law model. Size-

dependent description of the nanobeam is performed

applying nonlocal elasticity theory of Eringen. Nonlocal

governing equations of embedded FG nanobeam in hygro-

thermal environment obtained from Hamilton’s principle

are solved analytically. To verify the validity of the

developed theories, the results of the present work are

compared with those available in the literature. The effects

of various hygro-thermal loadings, elastic foundation,

gradient index, nonlocal parameter, and slenderness ratio

on the vibrational behavior of FG nanobeams modeled via

various beam theories are explored.

1 Introduction

Hygro-thermal stresses arising from temperature and mois-

ture variations can affect the mechanical performance of

engineering structures even at nanoscale. Also, advanced

structural components composed of functionally graded

materials (FGMs) may experience intense hygro-thermal

environments which show an adverse influence on the

stiffness and safety of such structures. Therefore, an accurate

evaluation of environmental exposure is necessitated to find

the essence of their detrimental influence on the FG struc-

tures. Thus, it is of utmost significance to investigate hygro-

thermally induced mechanical behavior of these structural

elements. To this end, hygro-thermal stress analysis of one-

dimensional functionally graded piezoelectric media via

analytical solutions is carried out by Akbarzadeh and Chen

[1]. Postbuckling of functionally graded (FG) plates under

hygro-thermal environments is studied by Lee and Kim [30].

The static behaviors of exponentially inhomogeneous plates

subjected to a transverse uniform loading and hygro-thermal

conditions are studied by Zenkour [40]. Al Khateeb and

Zenkour [4] presented a refined four-variable plate model

for bending analysis of advanced plates embedded on elastic

foundations in hygro-thermal environments. In another

study, Zenkour et al. [41] researched the influence of tem-

perature and moisture on the mechanical behavior of shear-

deformable composite FGM plates resting on elastic foun-

dations. Tounsi et al. [36] introduced a refined trigonometric

shear deformation theory for thermoelastic bending of FG

sandwich plates. Thermomechanical bending response of

FGM plates was explored by Hamidi et al. [24] and Boud-

erba et al. [10]. Bending analysis of FGM plates under

hygro-thermomechanical loading using a four-variable

refined plate theory was presented by Zidi et al. [42].

Recently, due to the impotency of classical beam theory

or Euler–Bernoulli beam theory (EBT) in adequately

modeling of the transverse shear deformations as well as

shear correction factor dependency of Timoshenko beam

theory (TBT), a number of higher-order theories are pro-

posed and applied in analysis of FG structures. EBT

neglects the effects of thickness stretching and shear

deformation. This simple theory can be successfully used
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in analysis of slender beams with a large aspect ratio.

However, influences of shear and normal deformations

may become more considerable for moderately thick

beams and plates [6], Helabi et al. [25], and Ait Amar

Meziane et al. [3, 7]. Hence, several novel plate theories

are suggested accounting for both transverse shear and

normal deformations and satisfy the zero traction boundary

conditions on the surfaces of the plate without using shear

correction factor [9, 11, 31].

Vo et al. [38] provided finite element vibration and buck-

ling analysis of FG sandwich beams through a quasi-3D the-

ory in which both shear deformation and thickness stretching

effects are included. Ebrahimi and Salari [12] presented a

semi-analytical method for vibrational and buckling analysis

of FG nanobeams considering the physical neutral axis posi-

tion. Recently, Ebrahimi and Barati [16–19] presented static

and dynamic modeling of a thermopiezoelectrically actuated

nanosize beam subjected to a magnetic field. Most recently

small-scale effects on hygro-thermomechanical vibration of

temperature-dependent nonhomogeneous nanoscale beams

are investigated by Ebrahimi and Barati [20]. Ebrahimi and

Barati [21] also proposed a nonlocal higher-order shear

deformation beam theory for vibration analysis of size-de-

pendent functionally graded nanobeams.

Due to the characteristic size of beams applied in nano-

electromechanical systems (NEMs), the small-scale impact

on their behavior is prominent. It is clear that above-men-

tioned works cannot predict the small-size impacts on the

nanostructures. Thus, the nonlocal elasticity theory sug-

gested by Eringen [22] is developed. He extended the

classical continuum mechanics to describe small-scale

influences. Based on the nonlocal constitutive relations of

Eringen, several studies have been carried out to investigate

the mechanical responses of nanostructures. Peddieson et al.

[39] indicated that nonlocal continuum mechanics could be

applicable to analysis of nanoscale structures. To extend

nonlocal elasticity theory for analysis of FG structures,

vibrational behavior of nanosize FG beams via finite ele-

ment method is explored by Eltaher et al. [23]. Tounsi et al.

[35, 36] investigated the nonlocal effects on thermal buck-

ling properties of double-walled carbon nanotubes. Size-

dependent mechanical behavior of FG trigonometric shear-

deformable nanobeams including neutral surface position

concept was introduced by Ahouel et al. [2], while Larbi

Chaht et al. [29] explored the bending and buckling of FG

nanoscale beams including the thickness stretching effect.

Also the chirality and scale effects on mechanical buckling

properties of zigzag double-walled carbon nanotubes were

investigated by Benguediab et al. [8].

The influences of various thermal environments on

buckling and vibration of nonlocal temperature-dependent

FG beams are analyzed by Ebrahimi and Salari [14] using

Navier analytical solution. In another work, Ebrahimi and

Salari [13] investigated thermomechanical vibration of FG

nanobeams with arbitrary boundary conditions applying

differential transform method (DTM). Also, Ebrahimi et al.

[15] explored the effects of linear and nonlinear tempera-

ture distributions on vibration of FG nanobeams.

Hygro-thermal analysis of nanostructures is reported in

a few works. Small-scale bending analysis of nanoplates

resting on elastic foundation under hygro-thermomechani-

cal environments is performed by Alzahrani et al. [5]. Also,

using trigonometric shear deformation plate theory, Sobhy

[34] investigated vibrational behavior of orthotropic dou-

ble-layered graphene sheets subjected to hygro-thermal

loading. Therefore, it is evident that there is no published

work studying hygro-thermomechanical vibration analysis

of FG nanobeams with or without elastic foundation using

higher-order shear deformation theories.

In this study, a unified higher-order beam theory con-

taining parabolic, sinusoidal, hyperbolic, exponential, and

inverse cotangential functions is developed to investigate

the influences of moisture and temperature rise due to

various hygro-thermal loads on small-amplitude vibration

of nanosize FGM beams resting on elastic foundation.

These theories provide a constant transverse displacement

and higher-order variation of axial displacement through

the depth of the nanobeam so that there is no need for any

shear correction factors. Three types of environmental

condition namely uniform, linear, and sinusoidal hygro-

thermal loading are studied. The material properties of

FGM nanobeam are regarded to be temperature dependent

and are graded in the thickness direction via power-law

model. An analytical solution is applied to solve the gov-

erning equations derived from Hamilton’s principle. Sev-

eral numerical and illustrative results are presented to

indicate the effects of the shear deformation, various

hygro-thermal environments, gradient index, nonlocality,

and elastic foundation parameters on the hygro-thermo-

mechanical vibration of FG nanobeams.

2 Theory and formulation

2.1 Power-law FG nanobeam model

A FG nanobeam system of length a, width b, and thickness

h is shown in Fig. 1. The effective material properties of

the nonlocal FG beam including Young’s modulus Ef ,

moisture expansion coefficient bf , thermal expansion af ,
and mass density qf change continuously in the z-axis

direction (thickness direction) according to power-law

model. Hence, the effective material properties, Pf , can be

stated as:

Pf ¼ PcVc þ PmVm ð1Þ
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In which Pm, Pc, Vm, and Vc denote the metal and ceramic

material properties and its volume fractions which have a

relation with the following form:

Vc þ Vm ¼ 1 ð2Þ

The ceramic phase volume fraction of the nanobeam is

described as:

Vc ¼
z

h
þ 1

2

� �P

ð3Þ

Here p is the power-law index which is a nonnegative

variable and estimates the material distribution through the

nanobeam thickness, and z is the distance from the mid-

surface of the nanobeam. It is clear that when p is equal to

zero, the FG nanobeam is fully ceramic. So, according to

Eqs. (1)–(2), the effective material properties of the non-

local FGM beam including Young’s modulus (E), mass

density (q), thermal expansion (a), and moisture expansion

coefficient (b) can be expressed in the following form:

EðzÞ ¼ Ec � Emð Þ z

h
þ 1

2

� �p

þEm

qðzÞ ¼ qc � qmð Þ z

h
þ 1

2

� �p

þqm

aðzÞ ¼ ac � amð Þ z

h
þ 1

2

� �p

þam

bðzÞ ¼ bc � bmð Þ z

h
þ 1

2

� �p

þbm

ð4Þ

For more precise anticipation of FGMs behavior under

extreme temperature fields, material properties must be

dependent on temperature. Therefore, temperature-depen-

dent coefficients of material phases can be expressed

according to the following nonlinear equation:

P ¼ P0 P�1 T
�1 þ 1þ P1 T þ P2 T

2 þ P3 T
3

� �
ð5Þ

where P0;P�1;P1;P2 and P3 are the temperature-depen-

dent coefficients which are tabulated in Table 2 for Si3N4

and SUS 304. The bottom and top surfaces of FG nano-

beam are supposed to be fully metal (SUS 304) and fully

ceramic (Si3N4), respectively.

2.2 Kinematic relations

Based on the refined shear deformation beam theories, the

displacement field at any point of the beam can be written as:

ux x; zð Þ ¼ u xð Þ � z
owb

ox
� f ðzÞ ows

ox
ð6Þ

uzðx; zÞ ¼ wbðxÞ þ wsðxÞ ð7Þ

where u is longitudinal displacement and wb; ws are the

bending and shear components of transverse displacement

of a point on the midplane of the beam. f ðzÞ is the shape

function determining the distribution of the transverse

shear strain and shear stress through the thickness of the

beam for which various beam models (parabolic, sinu-

soidal, hyperbolic, exponential and inverse cotangential)

are presented in Table 1. Nonzero strains of the present

beam model are expressed as follows:

exx ¼
ou

ox
� z

o2wb

ox2
� f ðzÞ o

2ws

ox2
ð8Þ

Fig. 1 Geometry of

functionally graded nanobeam

resting on elastic foundation

Table 1 Shape functions
Beam theory f ðzÞ

Parabolic (PSDT [33]) 4z3

3h2

Sinusoidal (TSDT [37]) z� h
p sin

pz
h

� �
Exponential (ESDT [26])

z� ze�2 z
hð Þ

2

Hyperbolic (HSDT [27]) z� z 1þ 3p
2
sech2 1

2

� �� �
þ 3p

2
h tanh z

h

� �
Inverse cotangential (ITSDT [28]) z� cot�1 rh

z

� 	
þ 4r

hð4r2þ1Þ ; r ¼ 0:46

A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal… Page 3 of 14 792

123



cxz ¼ g
ows

ox
ð9Þ

where gðzÞ ¼ 1� df=dz. By using the Hamilton’s princi-

ple, in which the motion of an elastic structure in the time

interval t1\ t\ t2 is so that the integral with respect to

time of the total potential energy is extremum:Z t

0

dðU þ V � KÞ dt ¼ 0 ð10Þ

Here U is strain energy, V is work done by external forces,

and K is kinetic energy. The virtual strain energy can be

written as:

dU ¼
Z
v

rijd eij dV ¼
Z
v

ðrxxd exx þ rxzd cxzÞ dV ð11Þ

Substituting Eqs. (8)–(9) into Eq. (11) yields:

dU ¼
Z L

0

N
ddu
dx

�Mb

d2dwb

dx2
�Ms

d2dws

dx2
þ Q

ddws

dx

� �
dx

ð12Þ

In which the variables introduced in arriving at the last

expression are defined as follows:

N ¼
Z
A

rxx dA; Mb ¼
Z
A

zrxx dA; Ms ¼
Z
A

frxx dA;

Q ¼
Z
A

grxz dA ð13Þ

The first variation of the work done by applied forces can

be written in the form:

dV ¼
Z L

0

ðNT þ NHÞ dðwb þ wsÞ
dx

ddðwb þ wsÞ
dx

� �
� kwd ðwb þ wsÞ

�

þkp
d2ðwb þ wsÞ

dx2
þ d2dðwb þ wsÞ

dx2

� ��
dx

ð14Þ

where kw and kp are linear and shear coefficient of

elastic foundation, respectively, and NT and NH are

applied forces due to temperature and moisture change

as:

NT ¼
Z h=2

�h=2

Eðz; TÞ aðz; TÞ ðT � T0Þ dz;

NH ¼
Z h=2

�h=2

Eðz; TÞ bðz; TÞ ðC � C0Þ dz
ð15Þ

where T0 and C0 are the reference temperature and mois-

ture concentrations, respectively. The variation of the

kinetic energy can be expressed as:

dK ¼
Z L

0

I0
du

dt

dd u
dt

þ dwb

dt
þ dws

dt

� �
ddwb

dt
þ ddws

dt

� �
 ��

�I1
du

dt

d2dwb

dxdt
þ d2wb

dxdt

ddu
dt

� �

þ I2
d2wb

dxdt

d2dwb

dxdt

� �
� J1

du

dt

d2dws

dxdt
þ d2ws

dxdt

ddu
dt

� �

þ K2

d2ws

dxdt

d2dws

dxdt

� �
þ J2

d2wb

dxdt

d2dws

dxdt
þ d2ws

dxdt

d2dwb

dxdt

� �
Þdx

ð16Þ

where

ðI0; I1; J1; I2; J2;K2Þ ¼
Z
A

qðzÞð1; z; f ; z2; zf ; f 2ÞdA ð17Þ

The following Euler–Lagrange equations are obtained by

inserting Eqs. (12)–(16) in Eq. (10) when the coefficients

of du; dwb and dws are equal to zero:

oN

ox
¼ I0

d2u

dt2
� I1

d3wb

dxdt2
� J1

d3ws

dxdt2
ð18Þ

d2Mb

dx2
¼ ðNT þ NHÞ d

2ðwb þ wsÞ
dx2

þ I0
d2wb

dt2
þ d2ws

dt2

� �

þ I1
d3u

dxdt2
� I2

d4wb

dx2dt2
� J2

d4ws

dx2dt2

þ kwðwb þ wsÞ � kp
d2ðwb þ wsÞ

dx2
ð19Þ

d2Ms

dx2
þ dQ

dx
¼ ðNT þ NHÞ d

2ðwb þ wsÞ
dx2

þ I0
d2wb

dt2
þ d2ws

dt2

� �

þ J1
d3u

dxdt2
� J2

d4wb

dx2dt2
� K2

d4ws

dx2dt2

þ kwðwb þ wsÞ � kp
d2ðwb þ wsÞ

dx2
ð20Þ

2.3 The nonlocal elasticity model for FG nanobeam

According to Eringen nonlocal elasticity model [22] which

contains wide-range interactions between points in a con-

tinuum solid, the stress state at a point inside a body is

regarded to be function of all neighbor points’ strains.

Hence, in the present work in order to capture the small-

size impacts, nonlocal elasticity theory is implemented in

which a linear differential framework of constitutive

equations is expressed as:

ð1� ðe0aÞr2Þrkl ¼ tkl ð21Þ

In which r2 denotes the Laplacian operator. Therefore, the

scale length e0 a considers the influences of small size on the
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response of nanoscale structures. Thus, the constitutive rela-

tions of nonlocal theory for a FG nanobeam can be stated as:

rxx � l
o2rxx
ox2

¼ EðzÞexx ð22Þ

rxz � l
o2rxz
ox2

¼ GðzÞcxz ð23Þ

where ðl ¼ ðe0aÞ2Þ. By integrating Eqs. (22) and (23) over

the area of nanobeam’s cross section, the following relations

for a nonlocal refined FG beam model can be obtained:

N � l
d2N

dx2
¼ A

du

dx
� B

d2wb

dx2
� Bs

d2ws

dx2
ð24Þ

Mb � l
d2Mb

dx2
¼ B

du

dx
� D

d2wb

dx2
� Ds

d2ws

dx2
ð25Þ

Ms � l
d2Ms

dx2
¼ Bs

du

dx
� Ds

d2wb

dx2
� Hs

d2ws

dx2
ð26Þ

Q� l
d2Q

dx2
¼ As

dws

dx
ð27Þ

where the cross-sectional rigidities are calculated as

follows:

ðA;B;Bs;D;Ds;HsÞ ¼
Z
A

EðzÞ ð1 ; z; f ; z2; zf ; f 2Þ dA ð28Þ

As ¼
Z
A

g2GðzÞ dA ð29Þ

The nonlocal governing equations of refined shear-de-

formable FG nanobeams in terms of the displacement can

be obtained by inserting N, Mb, Ms, and Q from Eqs. (24)–

(27), respectively, into Eqs. (18)–(20) as follows:

A
d2u

dx2
� B

o3wb

ox3
� Bs

o3ws

ox3
� I0

d2u

dt2
þ I1

d3wb

dxdt2
þ J1

d3ws

dxdt2

þ l I0
d4u

dx2dt2
� I1

d5wb

dx3dt2
� J1

d5ws

dx3dt2

� �
¼ 0 ð30Þ

B
d3u

dx3
� D

d4wb

dx4
� Ds

d4ws

dx4
� ðNT þ NHÞ d

2ðwb þ wsÞ
dx2

� I0
d2wb

dt2
þ d2ws

dt2

� �
� I1

d3u

dxdt2
þ I2

d4wb

dx2dt2

þ J2
d4ws

dx2dt2
� kwðwb þ wsÞ þ kp

d2ðwb þ wsÞ
dx2

þ l ðþðNT þ NHÞ d
4ðwb þ wsÞ

dx4
þ I0

d4wb

dx2dt2
þ d4ws

dx2dt2

� �
þ I1

d5u

dx3dt2

�

�I2
d6wb

dx4dt2
� J2

d6ws

dx4dt2
þ kw

d2ðwb þ wsÞ
dx2

� kp
d4ðwb þ wsÞ

dx4

�
¼ 0

ð31Þ

Bs

d3u

dx3
�Ds

d4wb

dx4
�Hs

d4ws

dx4
þAs

d2ws

dx2

�ðNT þNHÞd
2ðwbþwsÞ

dx2
� I0

d2wb

dt2
þd2ws

dt2

� �
�J1

d3u

dxdt2

þJ2
d4wb

dx2dt2
þK2

d4ws

dx2dt2
�kwðwbþwsÞþkp

d2ðwbþwsÞ
dx2

þl ðNT þNHÞd
4ðwbþwsÞ

dx4
þ I0

d4wb

dx2dt2
þ d4ws

dx2dt2

� ��

þJ1
d5u

dx3dt2
�J2

d6wb

dx4dt2
�K2

d6ws

dx4dt2
þkw

d2ðwbþwsÞ
dx2

�kp
d4ðwbþwsÞ

dx4

�
¼0 ð32Þ

3 Solution procedures

Here, to satisfy simply supported boundary condition for

hygro-thermomechanical free vibration of FG nanobeams,

analytical solution of the coupled governing equations is

proposed. To this purpose, the displacement variables

adopted are of the form:

uðx; tÞ ¼
X1
n¼1

Un cos ðaxÞ eixnt ð33Þ

wbðx; tÞ ¼
X1
n¼1

Wbn sin ðaxÞ eixnt ð34Þ

wsðx; tÞ ¼
X1
n¼1

Wsn sin ðaxÞ eixnt ð35Þ

where a ¼ np
L
and (Un,Wbn,Wsn) are the unknown Fourier

coefficients. Inserting Eqs. (33)–(35) into Eqs. (30)–(32),

respectively, leads to:

k11 k12 k13
k21 k22 k23
k31 k32 k33

0
@

1
A� �x2

n

m11 m12 m13

m21 m22 m23

m31 m32 m33

0
@

1
A

8<
:

9=
;

Un

Wbn

Wsn

8><
>:

9>=
>;

¼ 0

ð36Þ

where

k1;1 ¼ �Aa2; k1;2 ¼ Ba3; k1;3 ¼ Bsa
3; k2;3 ¼ �Dsa

4;

k2;2 ¼ ðNT þ NHÞa2ð1þ la2Þ � kpa
2ð1þ la2Þ

� kwð1þ la2Þ � Da4;

k3;3 ¼ ðNT þ NHÞa2ð1þ la2Þ � kpa
2ð1þ la2Þ

� kwð1þ la2Þ � Asa
2 � Hsa

4;

m1;1 ¼ I0ð1þ la2Þ; m1;2 ¼ �I1a� lI1a
3;

m1;3 ¼ �J1a� lJ1a
3;

m2;2 ¼ I0ð1þ la2Þ þ I2a
2 þ lI2a

4;

m2;3 ¼ I0ð1þ la2Þ þ J2a
2 þ lJ2a

4;

m3;3 ¼ I0ð1þ la2Þ þ K2a
2 þ lK2a

4; ð37Þ
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Table 2 Temperature-

dependent material properties of

FGM constituents [13]

Material Properties P0 P�1 P1 P2 P3

Si3N4 E ðPaÞ 348.43e?9 0 -3.070 e-4 2.160e-7 -8.946

a ðK�1Þ 5.8723e-6 0 9.095e-4 0 0

q ðkg=m3Þ 2370 0 0 0 0

m 0.24 0 0 0 0

SUS 304 E ðPaÞ 201.04e?9 0 3.079e-4 -6.534e-7 0

a ðK�1Þ 12.330e-6 0 8.086e-4 0 0

q ðkg/m3Þ 8166 0 0 0 0

m 0.3262 0 -2.002e-4 3.797e-7 0

Table 3 Comparison of the

nondimensional frequency of a

FG nanobeam under linear

temperature rise without elastic

foundation (L/h = 20)

l (nm2) p = 0 p = 0.2 p = 1 p = 5

TBT [15] Present TBT [13] Present TBT [13] Present TBT [13] Present

0 9.1475 9.15733 7.342 7.34189 5.3537 5.34002 4.2875 4.26591

1 8.6601 8.67039 6.9419 6.94219 5.048 5.03448 4.0317 4.00998

2 8.231 8.24169 6.5892 6.58979 4.7777 4.76429 3.8049 3.78297

3 7.8488 7.85997 6.2747 6.27558 4.536 4.5226 3.6015 3.57925

4 7.5053 7.51682 5.9916 5.99269 4.3177 4.30429 3.4172 3.3946

Table 4 Variation of the fundamental nondimensional frequencies of S–S FG nanobeam under uniform hygro-thermal loading for various beam

theories (Kw ¼ Kp ¼ 0, L/h = 20)

l Beam

theory

(DT, DC) = (0, 0) (DT, DC) = (1, 20) (DT, DC) = (2, 40)

p = 0.2 p = 1 p = 5 p = 0.2 p = 1 p = 5 p = 0.2 p = 1 p = 5

0 CBT 7.97186 5.93447 4.84828 7.44767 5.22017 4.01029 6.87174 4.37638 2.92354

PSDBT 7.96802 5.93142 4.84498 7.44355 5.21668 4.00630 6.86728 4.37221 2.91804

TSDBT 7.96806 5.93144 4.84498 7.44359 5.21671 4.00630 6.86732 4.37224 2.91804

ESDBT 7.96817 5.93152 4.84503 7.44371 5.2168 4.00636 6.86745 4.37235 2.91813

HSDBT 7.96804 5.93143 4.84497 7.44357 5.21669 4.00629 6.8673 4.37223 2.91803

ITSDBT 7.96847 5.93175 4.84522 7.44404 5.21707 4.00659 6.86781 4.37267 2.91844

1 CBT 7.60538 5.66165 4.62539 7.05386 4.90744 3.73731 6.4427 3.99785 2.53565

PSDBT 7.60172 5.65874 4.62224 7.0499 4.90406 3.73341 6.43837 3.9937 2.52988

TSDBT 7.60175 5.65876 4.62224 7.04994 4.90409 3.73341 6.43841 3.99373 2.52988

ESDBT 7.60186 5.65884 4.62229 7.05005 4.90418 3.73347 6.43853 3.99384 2.52998

HSDBT 7.60174 5.65875 4.62224 7.04992 4.90408 3.7334 6.43839 3.99372 2.52987

ITSDBT 7.60215 5.65906 4.62247 7.05037 4.90444 3.73369 6.43888 3.99416 2.5303

2 CBT 7.2852 5.4233 4.43067 6.70727 4.63011 3.49302 6.06116 3.65178 2.15895

PSDBT 7.28169 5.42051 4.42765 6.70345 4.62682 3.48919 6.05693 3.64761 2.15273

TSDBT 7.28173 5.42053 4.42765 6.70349 4.62685 3.48919 6.05697 3.64764 2.15273

ESDBT 7.28183 5.42061 4.4277 6.7036 4.62694 3.48925 6.0571 3.64776 2.15283

HSDBT 7.28171 5.42052 4.42765 6.70347 4.62684 3.48918 6.05695 3.64763 2.15272

ITSDBT 7.28211 5.42082 4.42787 6.7039 4.62719 3.48947 6.05743 3.64807 2.15318
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Table 5 Variation of the fundamental nondimensional frequencies of S–S FG nanobeam under linear hygro-thermal loading for various beam

theories (Kw ¼ Kp ¼ 0, L/h = 20)

l Beam

theory

(DT, DC) = (0, 0) (DT, DC) = (1, 20) (DT, DC) = (2, 40)

p = 0.2 p = 1 p = 5 p = 0.2 p = 1 p = 5 p = 0.2 p = 1 p = 5

0 CBT 7.88513 5.85175 4.76926 7.66750 5.56297 4.39707 7.43796 5.25198 3.98250

PSDBT 7.88167 5.84907 4.7664 7.66493 5.56148 4.39598 7.43625 5.25156 3.98286

TSDBT 7.88174 5.84913 4.76645 7.66510 5.56166 4.3962 7.4365 5.25185 3.98320

ESDBT 7.88189 5.84926 4.76655 7.66534 5.56191 4.39647 7.43684 5.25219 3.98358

HSDBT 7.88171 5.8491 4.76642 7.66501 5.56157 4.39609 7.43638 5.25171 3.98304

ITSDBT 7.88083 5.84813 4.76526 7.66093 5.5563 4.38879 7.42907 5.24214 3.96966

1 CBT 7.51438 5.5748 4.5424 7.28554 5.27052 4.14947 7.04344 4.94085 3.70687

PSDBT 7.51111 5.57227 4.53971 7.2832 5.26924 4.14862 7.04198 4.94067 3.70747

TSDBT 7.51119 5.57234 4.53976 7.28337 5.26943 4.14884 7.04225 4.94096 3.7078

ESDBT 7.51134 5.57246 4.53986 7.28362 5.26968 4.14912 7.04258 4.94131 3.70818

HSDBT 7.51115 5.57231 4.53973 7.28329 5.26934 4.14873 7.04212 4.94082 3.70764

ITSDBT 7.51019 5.57126 4.53849 7.27897 5.26378 4.14107 7.03442 4.93078 3.69361

2 CBT 7.19012 5.33249 4.34386 6.95047 5.01323 3.93075 6.69615 4.66513 3.45986

PSDBT 7.18702 5.3301 4.34133 6.94834 5.01212 3.93010 6.69493 4.66515 3.46065

TSDBT 7.1871 5.33017 4.34138 6.94852 5.01232 3.93033 6.6952 4.66544 3.46099

ESDBT 7.18724 5.33029 4.34148 6.94877 5.01257 3.93061 6.69554 4.66579 3.46135

HSDBT 7.18706 5.33014 4.34135 6.94843 5.01223 3.93022 6.69507 4.6653 3.46083

ITSDBT 7.18602 5.32902 4.34004 6.9439 5.00641 3.92221 6.68702 4.65481 3.44618

Table 6 Variation of the fundamental nondimensional frequencies of S–S FG nanobeam under sinusoidal hygro-thermal loading for various

beam theories (Kw ¼ Kp ¼ 0, L/h = 20)

l Beam

theory

(DT, DC) = (0, 0) (DT, DC) = (1, 20) (DT, DC) = (2, 40)

p = 0.2 p = 1 p = 5 p = 0.2 p = 1 p = 5 p = 0.2 p = 1 p = 5

0 CBT 7.88513 5.85175 4.76926 7.7383 5.66427 4.51641 7.58466 5.4659 4.24321

PSDBT 7.88167 5.84907 4.7664 7.73545 5.66239 4.5148 7.58241 5.46477 4.24272

TSDBT 7.88174 5.84913 4.76645 7.73559 5.66254 4.51498 7.58261 5.465 4.24299

ESDBT 7.88189 5.84926 4.76655 7.73581 5.66274 4.5152 7.58289 5.46528 4.24332

HSDBT 7.88171 5.8491 4.76642 7.73552 5.66246 4.51489 7.58251 5.46489 4.24286

ITSDBT 7.88083 5.84813 4.76526 7.73246 5.65865 4.50946 7.57724 5.45822 4.2332

1 CBT 7.51438 5.5748 4.5424 7.36002 5.37735 4.27575 7.1982 5.16772 3.98573

PSDBT 7.51111 5.57227 4.53971 7.35739 5.37566 4.27436 7.19619 5.16681 3.98549

TSDBT 7.51119 5.57234 4.53976 7.35753 5.37581 4.27454 7.1964 5.16703 3.98577

ESDBT 7.51134 5.57246 4.53986 7.35775 5.37602 4.27477 7.19668 5.16732 3.98609

HSDBT 7.51115 5.57231 4.53973 7.35746 5.37574 4.27445 7.1963 5.16692 3.98563

ITSDBT 7.51019 5.57126 4.53849 7.35422 5.37171 4.26875 7.19074 5.15991 3.9755

2 CBT 7.19012 5.33249 4.34386 7.02851 5.12543 4.06385 6.85877 4.90481 3.75718

PSDBT 7.18702 5.3301 4.34133 7.02608 5.12391 4.06266 6.85698 4.90409 3.75715

TSDBT 7.1871 5.33017 4.34138 7.02623 5.12407 4.06285 6.8572 4.90432 3.75744

ESDBT 7.18724 5.33029 4.34148 7.02644 5.12428 4.06308 6.85748 4.90461 3.75777

HSDBT 7.18706 5.33014 4.34135 7.02615 5.12399 4.06276 6.85709 4.90421 3.7573

ITSDBT 7.18602 5.32902 4.34004 7.02273 5.11977 4.05679 6.85126 4.89687 3.74672
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4 Various hygro-thermal environments

4.1 Uniform moisture and temperature rise

For a FG nanobeam at reference moisture concentration C0

and reference temperature T0, the moisture and temperature

are uniformly raised to a final value C and T , respectively,

in which the moisture and temperature change are

DT = T - T0 and DC = C - C0.

4.2 Linear moisture and temperature rise

For a FG nanobeam for which the plate thickness is thin

enough, the moisture and temperature distributions are

linearly variable through the thickness as follows:

T ¼ Tm þ ðDTÞ 1

2
þ z

h

� �
; C ¼ Cm þ ðDCÞ 1

2
þ z

h

� �
ð38Þ

The ðDT ;DCÞ in Eq. (38) could be defined

DT ¼ Tc � Tm; DC ¼ Cc � Cm.

4.3 Sinusoidal moisture and temperature rise

The moisture and temperature fields when FG nanobeam is

exposed to sinusoidal moisture/temperature rise across the

thickness can be defined as [32]:

T ¼ Tm þ DT 1� Cos
p
2

1

2
þ z

h

� �� �
;

C ¼ Cm þ DC 1� Cos
p
2

1

2
þ z

h

� �� � ð39Þ

where DT = Tc - Tm and DC = Cc - Cm are temperature

and moisture change.

5 Numerical results and discussion

The results of various numerical analyses are provided in

this section for hygro-thermomechanical vibration analysis

of a simply supported nanoscale FGM beam modeled via

various higher-order shear deformation theories (PSDT,
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Fig. 2 Influence of moisture and nonlocal parameter on the dimensionless frequency of the S–S FG beam for various hygro-thermal loadings

(p ¼ 1; L=h ¼ 20, Kw = Kp = 0, DT = 40 (K))
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TSDT, HSDT, ESDT, and ITSDT). Material properties of

the nonlocal FG beam such as Young’s modulus, Poisson

ratio, thermal, and moisture expansion coefficients vary

through the thickness direction according to power-law

model. Temperature-dependent material properties of

nonlocal P-FGM beam which is made from steel (SUS 304)

with bm ¼ 0:0005 and silicon nitride (Si3N4) with bc ¼ 0

are given in Table 2. The geometry dimensions of the

nanobeam are: L (length) = 10 nm, b (width) = 1 nm, and

h (thickness) = varied. It is supposed that the temperature

rise in fully metal surface of FG nanobeam to reference

temperature T0 is Tm � T0 ¼ 5K. For comparison study,

numerical results are provided to show the validity of

present model in the analysis of nanostructures.

Therefore, natural frequency of presented third-order FG

nanobeam under linear temperature rise is compared with

those obtained by Ebrahimi and Salari [13] for Timoshenko

beam model when nonlocal parameter changes from 0 to

4 nm2 in Table 3. It is proved that the present model can

evaluate the vibrational behavior of FG nanobeams with

excellent agreement. Also, for better presentation of the

results, the following dimensionless quantities are adopted:

x̂ ¼ xL2
ffiffiffiffiffiffiffiffi
qcA
EcI

r
; Kw ¼ kw

L4

EcI
; Kp ¼ kp

L2

EcI
ð40Þ

The variations of the dimensionless frequencies of FG

nanobeam resting on elastic foundation for various beam

theories and three environmental conditions called uni-

form, linear, and sinusoidal hygro-thermal loadings at L/

h = 20 are presented in Tables 4, 5, and 6. It is observed

that all of the proposed higher-order beam theories provide

approximately same results for free vibration of FG

nanobeams, and only some negligible differences exist.

Also, it is obvious that frequency results of higher-order

theories are lower than classical beam theory due to the

reason that CBT is impotent to capture shear deformation

effect. For any type of hygro-thermomechanical loading, as

nonlocal parameter grows, the dimensionless frequency

diminishes. The reason is the lower rigidity of the nano-

beam when its size reduces.
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A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal… Page 9 of 14 792

123



Also, the rise of moisture and temperature degrades

plate stiffness and natural frequencies regardless of hygro-

thermal loading type. Therefore, humidity or moisture

changes have a notable effect on the mechanical responses

of size-dependent FG nanobeams. Moreover, it is found

that sinusoidal distribution of temperature and moisture

(sinusoidal hygro-thermal loading) provides higher natural

frequency than other hygro-thermal loads, while uniform

hygro-thermal loading has the lowest one.

The variation of dimensionless natural frequency of

simply supported third-order FG nanobeam versus uniform,

linear, and sinusoidal moisture concentration rise in pre-

buckling domain for different nonlocal parameters at

p = 1, L/h = 20, Kw = Kp = 0 and DT = 40 (K) is plot-

ted in Fig. 2. At a prescribed humidity condition, the

nonlocal beam model estimates lower natural frequency

than local beam model. Also, it can be seen that for any

type of hygro-thermal loading, the dimensionless fre-

quency degrades with the increase in moisture.

Therefore, moisture concentration and nonlocality have

a softening impact on the beam structure and should be

considered in the analysis of size-dependent FG nano-

beams. Figure 3 shows the dimensionless frequency of S–

S higher-order FG nanobeam as function of various

temperature rises for different values of moisture con-

centration at p = 1, L/h = 20, Kw = Kp = 0 and l = 2

(nm)2. It is known that beam structures may buckle with

the rise of temperature which creates compressive axial

loads. Therefore, for all hygro-thermal loadings with the

temperature increment, the natural frequency of FG

nanobeam reaches to zero nearby the critical temperature

point. This feature refers to stiffness degradation of

nanobeam when the temperature grows. After the

branching point, the increase in temperature yields larger

values of natural frequency. Moreover, it is seen that

moisture concentration has a significant impact on the

pre-/postbuckling configuration of FG nanobeam under

hygro-thermal loads.
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Therefore, increasing the value of moisture concentra-

tion leads to lower values of the critical buckling temper-

ature, especially in the case of uniform temperature rise.

So, imposing a linear or sinusoidal hygro-thermal loading

can delay the critical buckling temperature.

Figure 4 indicates the influence of elastic foundation

on pre-/post-buckling vibrational behavior of FG nano-

beam versus various temperature rises under thermal

DC = 0 and hygro-thermal DC = 2 loadings when p = 1,

L/h = 20 and l = 2 (nm)2. It is found that an increase in

Winkler and Pasternak parameters leads to a remarkable

postponement in critical buckling temperature. Also, with

the presence of moisture or humidity, the critical tem-

perature has shifted to the left which highlights destruc-

tive influence of hygroscopic condition on the beam

structure.

Figure 5 illustrates the variation of natural frequency

with respect to gradient index for various thermal and

hygro-thermal loadings with and without elastic founda-

tion at L/h = 20 and l = 2 (nm)2. It is observable that

under any type of environmental conditions, the natural

frequency reduces with the rise in gradient index,

prominently for lower gradient indexes. Moreover, for all

values of gradient index, existence of elastic foundation

enhances the beam structure and increases the dimen-

sionless frequency. Also, it is found that the effect of

moisture concentration on the frequency responses of FG

nanobeams is more significant for larger values of gra-

dient index. This is due to the fact that lower values of

gradient index are correspond to more portion of the

ceramic phase which has a moisture expansion coefficient

equal to zero (bc ¼ 0).

The influence of slenderness ratio on the natural fre-

quencies of FG nanobeams for various types of thermal and

hygro-thermal loadings with and without elastic foundation

at p = 1 and l = 2 (nm)2 is demonstrated in Fig. 6. For all

environmental conditions, the dimensionless frequency

increases for lower slenderness ratios and then reduces for

higher slenderness ratios which indicates the significance

of shear deformation when the beam thickness is large.

Also, the influence of moisture concentration on natural

frequencies is negligible at lower slenderness ratios so that
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it becomes outstanding for larger values of slenderness

ratio. So, thinner nanobeams are more affected by the

hygro-thermal loadings.

The variation of the dimensionless frequency of S–S

higher-order FG nanobeam with respect to Winkler and

Pasternak parameters for different uniform and linear
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moisture concentrations is presented in Fig. 7, at p = 1, L/

h = 20 and l = 2 (nm)2.

In this figure it is seen that with increase in the

Winkler and Pasternak parameters, dimensionless fre-

quency increases for all values of moisture concentra-

tion. Also, it is found that the influence of the Pasternak

parameter (Kp) on the nondimensional frequency is

more prominent than that of the Winkler parameter

(Kw). So, it is very important to regard the shear layer

of an elastic foundation in the analysis of FG

nanostructures.

6 Conclusions

In this paper, hygro-thermomechanical free vibration

analysis of embedded functionally graded size-dependent

nanobeams exposed to various hygro-thermal loadings is

performed by using different higher-order beam theories.

Three kinds of environmental conditions namely, uniform,

linear, and sinusoidal hygro-thermal loadings are

investigated.

Temperature-dependent material properties of nonlo-

cal FG beam change gradually according to the power-

law distribution. Size-dependent description of nano-

beam is conducted using nonlocal elasticity theory of

Eringen. Applying Navier solution the nonlocal coupled

governing equations obtained from Hamilton’s principle

are solved. Finally the impacts of moisture concentra-

tion, temperature rise, shear deformation, nonlocal

parameter, elastic foundation, material composition, and

slenderness ratio on the vibrational characteristics of

nanosize FG beams are explored. As a general conse-

quence, all of the higher-order theories provide accurate

and approximately same results for the hygro-thermal

vibrational behavior of FG nanobeams. The results of

higher-order theories are smaller than of classical beam

theory since they consider the shear deformation effect.

Also, it is seen that the influence of moisture or humidity

is significant for higher values of gradient index and

slenderness ratio. Moreover, it is found that at a pre-

scribed environmental condition, nonlocality and gradi-

ent index have a notable decreasing effect on the natural

frequency of FG nanobeams. Also, various hygro-ther-

mal loadings estimate different values of natural fre-

quency and critical temperature so that uniform and

sinusoidal hygro-thermal environments produce smallest

and largest amount of dimensionless frequency, respec-

tively. Also, it is indicated that with an increase in

Winkler or Pasternak parameter, the beam becomes more

rigid, and the dimensionless frequency of FG nanobeams

enlarges.
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