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Abstract The potentials of carbon nanotubes (CNTs) as

mechanical resonators for atomic-scale mass sensing are

presented. To this aim, a nonlocal continuum-based model

is proposed to study the dynamic behavior of bridged

single-walled carbon nanotube-based mass nanosensors.

The carbon nanotube (CNT) is considered as an elastic

Euler–Bernoulli beam with von Kármán type geometric

nonlinearity. Eringen’s nonlocal elastic field theory is uti-

lized to model the interatomic long-range interactions

within the structure of the CNT. This developed model

accounts for the arbitrary position of the deposited atomic-

mass. The natural frequencies and associated mode shapes

are determined based on an eigenvalue problem analysis.

An atom of xenon (Xe) is first considered as a specific case

where the results show that the natural frequencies and

mode shapes of the CNT are strongly dependent on the

location of the deposited Xe and the nonlocal parameter of

the CNT. It is also indicated that the first vibrational mode

is the most sensitive when the mass is deposited at the

middle of a single-walled carbon nanotube. However, when

deposited in other locations, it is demonstrated that the

second or third vibrational modes may be more sensitive.

To investigate the sensitivity of bridged single-walled

CNTs as mass sensors, different noble gases are consid-

ered, namely Xe, argon (Ar), and helium (He). It is shown

that the sensitivity of the single-walled CNT to the Ar and

He gases is much lower than the Xe gas due to the

significant decrease in their masses. The derived model and

performed analysis are so needed for mass sensing appli-

cations and particularly when the detected mass is ran-

domly deposited.

1 Introduction

Recently, the need for the production and use of nano-

components and nano-devices has been significantly

increased. These nano-systems are intensively needed for

biological, medical, physical, and chemical purposes. A

nano-device can reflect a property change to measure a

certain physical quantity. To improve the sensitivity of

these devices, highly sensitive small resonators are inte-

grated. These resonators should be very small in size and

should be made of special materials to enhance their

abilities for measuring different physical quantities.

Nowadays, mechanical resonators are widely used in

various micro-/nanoscale applications. The operating

principle of a mechanical resonator is based upon a fre-

quency shift due to the deposited physical quantity. Then,

the value of the physical quantity which is proportional to

the induced shift in the frequency of the resonator is esti-

mated using a mathematical model. To achieve accurate

predictions and high sensitivity, mechanical resonators

with high quality factors and high frequencies are needed

[1, 2, 3]. In addition, these nano-devices have to be inte-

grated with accurate mathematical models to get precise

measurements and estimations. For more illustration,

mechanical resonators with high quality factors give very

high amplitude of vibration at resonance, and hence, their

resonant frequencies can be easily detected when compared

to resonators with lower quality factors. In addition to that,

resonators with high frequencies are more sensitive than
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those of lower frequencies. In addition to the quality factor

and the frequency, the accuracy of the measurements is

highly affected by how much the used mathematical model

fits with the real behavior of the resonator. To achieve

precise measurements, accurate mathematical models

should account for the resonators’ size effects and the

discrete nature of their material structures [4, 5–7].

Some attempts have been made to propose mechanical

resonators with high quality factors and sensitivities. One

attempt is to control the dimensions of the resonator along

with the material type and their material structure contents

[8, 9]. A quality factor up to 10,000 is obtained by fabri-

cating 40-nm-thick resonators made of nanocrystalline

materials with grain sizes within the range 10–100 nm

[8, 9]. In a recent study, quality factors exceeding one

million are achieved using a single-crystalline diamond

nano-resonator [1]. Other trials have been performed in

which the resonators were operated in special conditions,

such as putting them in vacuum chambers and/or at cryo-

genic temperatures [3]. Although these attempts were

successful, CNTs have shown unrivaled success when

integrated in mass sensing applications. Lassagne et al.

[10] reported that carbon nanotubes (CNTs) are promising

candidates to fabricate ultra-sensitive mechanical res-

onators. For example, 1.4 zepto-gram resolution is

achieved using 1-nm-diameter CNT [10]. The mass of a

nanotube is very small (few attograms) and its mechanical

stiffness is very high which result in very high resonant

frequency for CNTs-based resonators [10]. Moreover, a 5

million quality factor is achieved with an ultra-clean CNT

[3], a number that is not achieved using any other material

so far.

Due to the intensive decrease in their sizes, mechanical

resonators are made of nanomaterials, such as single-

crystalline silicon/diamond, nano-crystalline silicon/dia-

mond, or CNTs. In fact, the properties of nanomaterials are

completely related to their material structure and their

material size. The classical theories of materials science are

not applicable for these materials because they lack the

suitable length scales that can capture the size-dependent

behavior of these types of materials. For instance, to model

the mechanics of nanomaterials in micro-/nanoscale

applications, the nonlocal features of their dispersive

phonons should be counted in the developed model.

Experimental investigations on materials composing a

single crystal have shown that the dissociation energies and

the interatomic potentials have nonlocal long-range con-

tributions [11, 12, 13]. A CNT is a single-/multi-graphite

layer(s) consisting of repeated unit cells, and each unit cell

contains 1–4 graphite atoms depending on its structure type

(chiral, zigzag, or armchair). Thus, CNTs exhibit acoustic

and optical phonons with nonlocal features. Consequently,

to accurately model CNTs, new measures should be

introduced in the context of the mathematical model to

reflect the nonlocal fields of dispersion phonons of CNTs.

Recently, due to their ultra-high quality factors and reso-

nant frequencies, their superior electronic properties, and

their manufacturability, several studies were carried out to

investigate the performance of CNTs as mass detectors

[14, 15, 16, 10, 17], nano-sensors [15, 16, 18, 19, 20], and

nanoresonators [21, 22, 23]. For example, Li and Zhu [24]

proposed an optical weighing technique using a CNT. They

were able to measure the mass of a single Xe-atom where a

frequency shift of the CNT is observed due to the deposited

atom. Chiu et al. [17] developed a clamped–clamped CNT-

based nano-mechanical resonator as an atomic-scale mass

sensor to measure the mass of Xe gas atoms. In their

analysis, the atoms were assumed to be deposited at the

middle point of the CNT-resonator because of its higher

absorbability rather than other locations. In other efforts,

the classical theories of continuum mechanics were used to

model and/or characterize the mechanical behaviors of

CNTs [25, 26, 27, 28, 29, 30]. As previously discussed, to

accurately model CNTs in mass sensing applications, some

measures should be introduced in the context of the con-

tinuum model to capture their material structure and size

effects. This exceeds the limit of the applicability of the

classical theories of continuum mechanics. In several

recent researches [31, 32, 33, 34, 35, 36, 37], Eringen’s

nonlocal elastic field theory [38, 39] has been used to study

the mechanical and dynamic characteristics of CNTs and

CNT-based mass nano-sensors. Shen et al. [34] proposed a

nonlocal-based Euler–Bernoulli beam model to study the

sensitivity of double-walled CNTs and single-walled

CNTs. They demonstrated that double-walled CNTs have

less nano-mass detective sensitivity with respect to single-

walled CNTs. Li et al. [37] developed a nonlocal Euler–

Bernoulli beam model to determine the dynamic behavior

of a single-walled carbon nanotube (SWCNT)-based mass

sensors. In their analyses, the nanoscale mass is assumed to

be landed at the middle span of the clamped–clamped

CNT. However, depositing atomic-masses at a definite

location on the nano-resonator’s surface is not easy. Fur-

thermore, it cannot be guaranteed that the atoms are kept

attached to the same location all the time. This inspired us

to propose a model which accounts the effects of the inertia

and the arbitrary location of the deposited atomic-mass on

the resonator’s natural frequencies and its accuracy for

mass detection.

In the present study, a nonlocal Euler–Bernoulli beam

model is proposed to investigate the sensitivities of single-

walled carbon nanotubes (SWCNTs) for the atomic-scale

mass sensing applications. Eringen’s nonlocal elasticity is

utilized to capture the mechanics of CNTs in mass sensing

applications. The applicability of the nonlocal theory for

CNTs is discussed in Sect. 2. The geometric nonlinearity
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of the CNT is included in the proposed model based on the

von Kármán theory. Then, the derived nonlinear model is

analytically solved to characterize the dynamic behaviors

of bridged SWCNT-based mass sensors. In the context of

this model, the arbitrary position of the atomic-scale mass

is considered in the continuity equations of the beam where

the atomic-mass can be deposited at any position along the

beam’s length. Through an eigenvalue problem analysis,

the structural natural frequencies and associated mode

shapes are analytically obtained. The developed model and

the proposed analytical solutions are used to propose

effective CNT-based mechanical resonator for atomic-

scale mass sensing. The rest of this work is organized as

follows: In Sect. 2, the concept of the nonlocal elasticity is

discussed, showing the different nonlocal theories and the

applicability for CNTs. Then, in Sect. 3.1, a CNT-based

mechanical resonator for atomic-scale mass sensing is

modeled based on the differential nonlocal elasticity. In

Sect. 3.2, an eigenvalue problem analysis is carried out to

determine the natural frequencies and associated mode

shapes depending on the location of the atomic-mass.

Sensitivity of a CNT-based sensor for various noble gas

particles including Xe, Ar, and He is investigated in

Sect. 4. Summary and conclusions are presented in Sect. 5.

2 Nonlocal elasticity review and applicability
for CNTs

In the classical theories of continuum mechanics, the

elastic body is modeled consisting of an infinite number of

mass points that only account for the nearest neighbor

interaction. However, the nonlocal interactions between the

particles strongly affect the behavior of solids in micro-/-

nanoscale applications [11, 12, 13]. In fact, in a continuum

volume, each specific particle receives energies (or

momentums) diffused by all of the other particles inside the

continuum domain. Because of these diffused energies, the

total momentum at a specific particle becomes the sum-

mation of the diffused momentums to the particle in

addition to its local momentum. Eringen [38] showed the

impacts of the nonlocal fields on different problems

including electromagnetism, fluid dynamics, elasticity, and

thermoelasticity. In the context of the nonlocal field theo-

ries, the elastic domain of application is modeled as an

infinite number of points and each point receives energies

diffused due to its long-range interactions with the other

points in the domain. Because of these diffusion processes,

the principle of thermodynamics does not hold at a local

point, but it can be written only for the whole domain of

application [40]. Consequently, in nonlocal domains, only

the global balance laws should be applied [38]. On the

other hand, in the case where the effects of nonlocality are

trivial, the balance laws become local, and hence, the

classical theories hold.

In the context of elasticity field problems, the strain (as a

deformation measure) is introduced as the fundamental

field. In linear theories of classical elasticity, the strain

energy density at a certain point in the continuum is only a

function of the local infinitesimal strain field at the con-

sidered point. However, Eringen proposed the nonlocal

elasticity in which the strain energy density at a point

depends on the local infinitesimal strain at the point of

interest in addition to the strains of the neighboring points

according to a weighted function (attenuation function)

which depends on the in-between distances. This simple

theory of nonlocal elasticity can be enhanced by modeling

the material particle inside the elastic domain as a volume

element accounting for the various forms of nonlocal

residuals inside the material structure. This introduces the

nonlocal micromorphic theory [38, 41]. Eringen’s simple

nonlocal elasticity can fit well with the acoustic branches of

crystals [39]. However, the nonlocal micromorphic theory

can fit with the various acoustic and optical branches of

crystals [41].

According to Eringen’s nonlocal elasticity theory, a

stress field in an isotropic elastic continuum at a point x

exists as a consequence of accumulating the imposed

nonlocal strains of the neighboring points over the local

strain field [39, 40] such that:

rij xð Þ ¼ < kerr xð Þdij þ 2leij xð Þ
� �

ð1Þ

where < �ð Þ ¼ r
V or V 0

a x� x0j jð Þ �ð ÞdV 0 is an integral

operator used to transform the local stress field,

sij ¼ kerr xð Þdij þ 2leij xð Þ, at a point x into a nonlocal stress

field, rij xð Þ. This integral operator depends on a kernel

function which reflects the effects of the strain field of a

neighbor point, x
0
, on the local strain field of the reference

point x. k and l are the material Lame constants.

It should be mentioned that the attenuation function,

a x� x0j jð Þ, depends on an intrinsic material length scale

parameter e0a/l where a is a lattice parameter (granular

distance), l is a macroscopic material length parameter

(crack length, wavelength), and eo is a constant appropriate

to the material of the elastic body. The attenuation func-

tion, a x� x0j jð Þ, is a positive scalar function which decays

rapidly with increase in the distance x0 � xj j. When a tends

to zero, the attenuation function converts to a Dirac delta

function where this function satisfies the normalization

condition:
Z

V 0

a x0 � xj j; sð ÞdV 0 ¼ 1 ð2Þ

The infinitesimal strain measure in Eq. (1) is the con-

ventional strain tensor which is given by:
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eij xð Þ ¼ 1

2
ui;j xð Þ þ uj;i xð Þ
� �

ð3Þ

where ui xð Þ is the displacement field of a material particle

located at a point x.

In the nonlocal linear elasticity problems, the stress

field, rij, is represented as a nonlocal field conjugate to the

fundamental field which is the strain, eij. Therefore, the

equilibrium equation for a nonlocal elastic field can be

written as follows:

rji;j xð Þ þ fi xð Þ ¼ q xð Þ€ui xð Þ ð4Þ

where fi xð Þ is the body force and q xð Þ is the mass density.

It should be noted that the nonlocal stress tensor is a

symmetrical tensor. When compared to the local stress

tensor, the nonlocal stress tensor has a wider bandwidth.

The total potential energy of a nonlocal elastic contin-

uum occupying a volume V and bounded by a surface S can

be obtained as follows:

P¼
Z

V

Z

V 0

a x0 � xð Þ 1

2
keii x

0ð Þejj xð Þþleij x
0ð Þeij xð Þ

� �
dV 0dV

�
Z

V

fiuidV �
Z

S

tiuidS

ð5Þ

Equation (5) is formed such that the strain energy den-

sity at a point depends on the local infinitesimal strain in

addition to the diffused fractions of the strains (depending

on the attenuation function) at the neighbor points. In

addition, the surface traction forces tidS and the body

forces are considered having nonlocal features. The surface

traction vector is related to the nonlocal stress tensor as

follows:

ti xð Þ ¼ rji xð Þnj ð6Þ

where nj is the surface normal vector.

Equation (4) demonstrates that Eringen’s nonlocal the-

ory is a modified classical theory of linear elasticity where

the local stress field is replaced with a corresponding

nonlocal stress field. Accordingly, Eringen’s nonlocal

elasticity can fit with the acoustic branches of CNTs. This

forms the limit of the applicability of the theory for CNTs.

To capture more nonlocal residuals, more advanced theo-

ries are needed such as nonlocal Micromorphic theory.

The necessity of applying the global balance laws forms

the difficulty of applying the nonlocal theories to model the

mechanics of continua in different applications [38].

Hence, solving the equilibrium equation, Eq. (4), for the

local strain or displacement fields in its current form is

challenging. Equation (4) is an integro-partial differential

equation where it is very difficult to derive an analytical

solution for the local fields [39]. This motivated Eringen

[39] to introduce a differential operator as a replica for the

integral one. This introduces the differential nonlocal

elasticity. Eringen [39] derived the linear differential

operator for a Green’s function type attenuation kernel,

a x0 � xð Þ, having the following form:

‘ ¼ ð1 � e0að Þ2r2Þ i:e: ‘a x0 � xð Þ ¼ d x0 � xð Þ ð7Þ

where r2 is the Laplace operator and d is the Dirac delta

function. Hence, the nonlocal stress can be defined using

the differential operator as:

‘rji ¼ sji ð8Þ

Substituting Eq. (8) into Eq. (4) gives the equilibrium

equation for a differential nonlocal elastic continuum as

follows:

sji;j þ ‘ fi � q€uið Þ ¼ 0 ð9Þ

It follows from Eq. (9) that a set of singular differential

equations can be derived. These equations are easy to solve

using the differential nonlocal elasticity. However, some

difficulties still exist for applying the natural boundary

conditions in the context of the differential nonlocal elas-

ticity. According to Eqs. (5) and (6), the surface tractions

should be considered accounting for its nonlocal charac-

teristics. Solutions for the bending, vibration, and buckling

behaviors of differential nonlocal beams were successfully

derived accounting for the nonlocal natural boundary

conditions [42, 43, 44, 45, 46, 47, and 48]. Lu et al. [46]

derived the frequency equations and the mode shapes for

simple supported, cantilever, and clamped–clamped Euler–

Bernoulli differential nonlocal beams. Reddy [48] pro-

posed analytical solutions for bending, vibration, and

buckling of differential nonlocal simple supported beams.

On the other hand, deriving solutions for differential non-

local plates with natural boundary conditions is more

complicated [49, 50]. This motivated Shaat [49] to propose

an iterative procedure to solve nonlocal beams and plates

where the local form of the boundary conditions can be

used within the context of this iterative method.

3 CNT-based mass sensor modeling

3.1 System’s modeling

One of the purposes in this study is to propose an accurate

modeling of a CNT-based mechanical resonator for mass

sensing applications. This developed model accounts for

the nonlocal residuals inside the structure of the CNT and

the geometric nonlinearity. The mechanical resonator is a

clamped–clamped SWCNT with a length L and a diameter

D, as shown in Fig. 1. The operating principle of this

resonator is based on measuring the frequency shift due to
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the added mass and converting the frequency shift to an

equivalent mass value. The mechanical resonator under

consideration is designed to attract an atomic particle

which can be deposited at any arbitrary location xm along

the resonator’s free length, as shown in Fig. 1.

The considered SWCNT-based resonator is modeled

according to Euler–Bernoulli beam theory with accounting

for the interatomic long-range interaction via Eringen’s

nonlocal elasticity. The Hamilton’s principle is utilized to

derive the governing equations of motions and the corre-

sponding boundary conditions of the bridged CNT.

The displacement fields as defined by Euler–Bernoulli

beam theory are:

ux x; zð Þ ¼ u xð Þ � zw0 xð Þ; uy x; zð Þ ¼ 0; uz xð Þ ¼ w xð Þ
ð10Þ

where u and w are the axial and the transverse displace-

ments of a point that belongs to the axis of the CNT,

respectively. The prime (0) represents the partial differen-

tiation with respect to x.

To account for the geometric nonlinearity based on von

Kármán theory, the beam (CNT) strain field can be defined

as follows:

exx ¼ u0 þ 1

2
w0ð Þ2�zw00 ð11Þ

According to Eringen’s differential nonlocal elasticity, the

nonlocal stress is related to the local stress via a differential

operator, as presented in Eqs. (7) and (8). Consequently,

the nonlocal stress of the CNT-based resonator is derived

as follows:

rxx � e0að Þ2o
2rxx
ox2

¼ sxx where sxx ¼ Eexx ð12Þ

The deposited or grabbed atomic-mass contributes to the

resonator’s frequencies where an additional inertia term

that depends on the atomic-mass appears in the beam’s

characteristics equation. This additional inertia works in

parallel with the mass of the resonator to form its total

inertia. This can be clearly shown in the performed works

by Aboelkassem et al. [51] and Shaat and Abdelkefi [5, 7].

However, in addition to its inertia contribution, the atomic-

mass can affect the fields, such as moments, forces,

deflections, and slopes, depending on its location. Thus, in

addition to the conventional boundary conditions of the

mechanical resonator, some continuity conditions should

be considered at the atomic-mass location.

According to the previous discussion, the displacement

field of the SWCNT is divided with respect to the atomic-

mass location, xm, as follows:

u x; tð Þ ¼
u1 x; tð Þ; 0� x� xm

u2 x; tð Þ; xm\x� L

�
;

w x; tð Þ ¼
w1 x; tð Þ; 0� x� xm

w2 x; tð Þ; xm\x� L

� ð13Þ

To derive the equations of motion of the SWCNT-mass

sensor, the Hamilton’s principle is used which states:

dH ¼
Z t2

t1

dTb þ dTm � dPð Þdt ¼ 0 ð14Þ

where Tb and Tm are, respectively, the kinetic energy of the

SWCNT and the kinetic energy of the atomic-mass. P
denotes the total potential energy of the SWCNT.

For a free vibration analysis of the resonator, the forcing

terms in Eq. (5) are omitted. Consequently, the first vari-

ation of the total potential energy of the resonator can be

expressed as:

dP ¼
Z L

0

Z

A

rxxdexxdAdx

¼
Z xm

0

N1d u01 þ
1

2
w0

1

� �2

� �
�M1dw

00
1

� �
dx

þ
Z L

xm

N2d u02 þ
1

2
w0

2

� �2

� �
�M2dw

00
1

� �
dx ð15Þ

where N1, i.e., 0 B x B xm, and N2, i.e., xm B x B L, are

the nonlocal axial force resultants through the beam span.

M1(x), i.e., 0 B x B xm, and M2(x), i.e., xm B x B L, are

Fig. 1 Schematic

representation of a bridged

SWCNT-based atomic-scale

mass sensor
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the nonlocal bending moment resultants. These stress

resultants can be expressed in terms of the nonlocal stress

as follows:

N1;2 ¼
Z

A

rxxð Þ1;2dA; M1;2 ¼
Z

A

z rxxð Þ1;2dA ð16Þ

Therefore, by integrating both sides of Eq. (12) over the

cross-sectional area, A, of the beam,

Z

A

rxxdA� e0að Þ2 o
2

ox2

Z

A

rxxdA ¼ E

Z

A

exxdA

Z

A

zrxxdA� e0að Þ2 o
2

ox2

Z

A

zrxxdA ¼ E

Z

A

zexxdA

ð17Þ

and by substituting for the strain from Eq. (11) into

Eq. (12), the nonlocal stress resultants can be derived in

terms of the axial and the transverse displacements as

follows:

N1;2 � e0að Þ2
N 00

1;2 ¼ EA u01;2 þ
1

2
w0

1;2

	 
2
� �

ð18aÞ

M1;2 � e0að Þ2
M0

1;2 ¼ �EIw00
1;2 ð18bÞ

where I denotes the second area moment of inertia of the

SWCNT and A represents the cross-sectional area.

The first variation of the kinetic energy of the SWCNT-

resonator, dTb, and the atomic-mass particle, dTm, can be

defined as follows:

dTb ¼
Z L

0

Z

A

q _wd _wdAdx

¼
Z xm

0

m0 _w1d _w1dxþ
Z L

xm

m0 _w2d _w2dx ð19Þ

dTm ¼ m _w1d _w1ð Þx¼xm
ð20Þ

where q is the mass density of the SWCNT and m0 = qA
denotes the mass per unit length of the resonator. m repre-

sents the mass of the deposited atomic particle. The (.)

denotes partial differentiation with respect to time t.

Substituting Eqs. (15), (19), and (20) into Eq. (14) and

using the standard variation techniques, the following

variations are obtained:
Z t2

t1

dPdt ¼
Z t2

t1

N1du1jxm0 þN1w
0
1dw1

��xm
0
�M1dw

0
1

��xm
0
þM0

1dw1

��xm
0

	 

dt

þ
Z t2

t1

N2du2jLxmþN2w
0
2dw2

��L
xm
�M2dw

0
2

��L
xm
þM0

2dw2

��L
xm

	 

dt

þ
Z t2

t1

�
Z xm

0

N 0
1du1dx�

Z xm

0

N1w
0
1

� �0
dw1dx

�

�
Z xm

0

M00
1dw1dx

�
dt þ

Z t2

t1

�
Z L

xm

N 0
2du2dx

�

�
Z L

xm

N2w
0
2

� �0
dw2dx�

Z L

xm

M00
2dw2dx

�
dt

ð21Þ

Z t2

t1

dTbdt ¼
Z xm

0

m0 _w1dw1jt2t1
	 


dxþ
Z xm

0

�
Z t2

t1

m0 €w1dw1dt

� �
dx

þ
Z L

xm

m0 _w2dw2jt2t1
	 


dxþ
Z L

xm

�
Z t2

t1

m0 €w2dw2dt

� �
dx

ð22Þ
Z t2

t1

dTmdt ¼ m _w1dw1jt2t1�
Z t2

t1

m €w1dw1dt ð23Þ

then, the governing equations of motion are derived as:

N 0
1 ¼ N 0

2 ¼ 0 ð24aÞ

�m0 €w1 þM00
1 þ N1w

0
1

� �0 ¼ 0 ð24bÞ

�m0 €w2 þM00
2 þ N2w

0
2

� �0 ¼ 0 ð24cÞ

and the associated boundary conditions and continuity

equations for the clamped–clamped SWCNT can be

defined as follows:

u1 ¼ 0; w1 ¼ w0
1 ¼ 0 at x ¼ 0; u2 ¼ 0;

w2 ¼ w0
2 ¼ 0 at x ¼ L

ð25Þ

u1 ¼ u2; w1 ¼ w2; w0
1 ¼ w0

2; M1 ¼ M2;

N1 ¼ N2 at x ¼ xm

M0
2 þ N2w

0
2 �M0

1 � N1w
0
1 � m €w1 ¼ 0 ) M0

2 �M0
1 � m €w1

¼ 0 at x ¼ xm ð26Þ

Equation (25) presents the boundary conditions at the

beam ends. Equation (26) introduces the continuity con-

ditions at the atomic-mass location where the inertia of the

atomic-mass affects the beam shear force resultant.

To form the axial force resultant, N, Eq. (24a) is sub-

stituted into Eq. (18a) to give:

N1;2 ¼ EA u01;2 þ
1

2
w0

1;2

	 
2
� �

ð27Þ

According to Eq. (24a), the axial force resultant N should

be constant. Therefore, it can be formed as the induced axial

force due to the beam axial stretching [52, 53]. By integrating

Eq. (27) over the beam’s length, one obtains:

EAu1 xmð Þ � EAu1 0ð Þ þ EAu2 Lð Þ � EAu2 xmð Þ

þ EA

2

Z xm

0

w0
1 nð Þ

� 2
dnþEA

2

Z L

xm

w0
2 nð Þ

� 2
dn

¼ N1xm þ N2L� N2xm ð28Þ

where n is a dummy variable.

Considering the defined boundary conditions and con-

tinuity equations (Eqs. (25, 26)) of the considered beam,

the axial stress resultant N1,2 can be extracted from

Eq. (28) and can be expressed as follows:

N1;2 ¼ EA

2L

Z xm

0

w0
1

� �2
dxþEA

2L

Z L

xm

w0
2

� �2
dx ð29Þ
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Similarly, substituting Eqs. (24b) and (24c) into

Eq. (18b) gives the bending moment resultant in the form:

M1;2 ¼ ðe0aÞ2
m0 €w1;2 � N1;2w

0
1;2

	 
0	 

� EIw00

1;2 ð30Þ

Then, by substituting Eqs. (29) and (30) into Eqs. (24b)

and (24c), the equations of motion of the SWCNT-res-

onator can be derived in terms of the beam’s transverse

displacement (deflection) as follows:

EIw0000
1 þ m0 €w1 �

EA

2L

Z xm

0

w0
1

� �2
dxþEA

2L

Z L

xm

w0
2

� �2
dx

� �
w00

1

� ðe0aÞ2
m0 €w

00
1 �

EA

2L

Z xm

0

w0
1

� �2
dxþEA

2L

Z L

xm

w0
2

� �2
dx

� �
w0000

1

� �
¼ 0

ð30aÞ

EIw0000
2 þ m0 €w2 �

EA

2L

Z xm

0

w0
1

� �2
dxþEA

2L

Z L

xm

w0
2

� �2
dx

� �
w00

2

� ðe0aÞ2
m0 €w

00
2 �

EA

2L

Z xm

0

w0
1

� �2
dxþEA

2L

Z L

xm

w0
2

� �2
dx

� �
w0000

2

� �
¼ 0

ð30bÞ

Moreover, the boundary conditions and the continuity

conditions can be expressed in terms of deflection as:

w1 ¼ w0
1 ¼ 0 at x ¼ 0; w2 ¼ w0

2 ¼ 0 at x ¼ L

ð31aÞ
w1 ¼ w2; w0

1 ¼ w0
2; w00

1 ¼ w00
2 at x ¼ xm

EIw000
1 � EIw000

2 þ e0að Þ2

EA

2L

Z xm

0

w0
1

� �2
dxþEA

2L

Z L

xm

w0
2

� �2
dx

� �
w000

1 � w000
2

� �� �

� m €w1 ¼ 0 at x ¼ xm

ð31bÞ

It should be noted that €w1 ¼ €w2; at x ¼ xm, that is

why the continuity conditions in Eq. (31b) are obtained in

this form. In the current study, the following dimensionless

quantities are introduced to normalize the derived equa-

tions of motion and boundary conditions:

v¼ x=L; W1;2 ¼w1;2

ffiffiffiffiffiffiffiffi
A=I

p
; s¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=m0L4

p
t;

x¼x�
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EI=m0L4
p

; e¼ e0a=L; g¼ xm=L;a¼m=m0L

ð32Þ

where x* is the dimensional natural frequency of SWCNT-

resonator. Equations (30) and (31) can be rewritten in the

dimensionless form as:

o4W1

ov4
þ o2W1

os2
� 1

2

Z g

0

oW1

ov

� �2

dvþ 1

2

Z 1

g

oW2

ov

� �2

dv

 !
o2W1

ov2

� e2 o4W1

ov2os2
� 1

2

Z g

0

oW1

ov

� �2

dvþ 1

2

Z 1

g

oW2

ov

� �2

dv

 !
o4W1

ov4

" #

¼ 0

ð33aÞ

o4W2

ov4
þ o2W2

os2
� 1

2

Z g

0

oW1

ov

� �2

dvþ 1

2

Z 1

g

oW2

ov

� �2

dv

 !
o2W2

ov2

� e2 o4W2

ov2os2
� 1

2

Z g

0

oW1

ov

� �2

dvþ 1

2

Z 1

g

oW2

ov

� �2

dv

 !
o4W2

ov4

" #

¼ 0

ð33bÞ

W1 ¼ W 0
1 ¼ 0 at v ¼ 0; W2 ¼ W 0

2 ¼ 0 at v ¼ 1

ð34aÞ

W1 ¼W2; W 0
1 ¼W 0

2; W 00
1 ¼W 00

2 at v¼ g

o3W1

ov3
� o3W2

ov3
þ e2

1

2

Z g

0

oW1

ov

� �2

dvþ 1

2

Z 1

g

oW2

ov

� �2

dv

 !
o3W1

ov3
� o3W2

ov3

� �" #

� a
o2W1

os2
¼ 0 at v¼ g ð34bÞ

Usually, when the CNT size is much higher than the

atomic lattice parameter of its unit cells (L � a), the

contribution of the nonlocal residual to the CNT behavior

is negligible. By inspecting Eqs. (33) and (34), it is clear

that when L � a, the derived equations of motions and

boundary conditions reduce to the classical ones where

e � 1.

3.2 Determination of the natural frequencies

and mode shapes

To determine the natural frequencies and mode shapes of

the SWCNT-resonator, the beam’s deflection is decom-

posed as:

W1 ¼ U1 vð Þeixs; W2 ¼ U2 vð Þeixs ð35Þ

where U1(v) and U2(v) are the nondimensional mode shape

functions of the resonator. x denotes the nondimensional

natural frequency.

The substitution of Eq. (35) into Eqs. (33) and (34)

gives:

o4U1

ov4
�x2U1 �

1

2

Z g

0

oU1

ov

� �2

dvþ1

2

Z 1

g

oU2

ov

� �2

dv

 !
o2U1

ov2
e2ixs

þe2 x2o
2U1

ov2
þ 1

2

Z g

0

oU1

ov

� �2

dvþ1

2

Z 1

g

oU2

ov

� �2

dv

 !
o4U1

ov4
e2ixs

" #

¼ 0

ð36aÞ

o4U2

ov4
�x2U2 �

1

2

Z g

0

oU1

ov

� �2

dvþ 1

2

Z 1

g

oU2

ov

� �2

dv

 !
o2U2

ov2
e2ixs

þ e2 x2 o
2U2

ov2
þ 1

2

Z g

0

oU1

ov

� �2

dvþ 1

2

Z 1

g

oU2

ov

� �2

dv

 !
o4U2

ov4
e2ixs

" #

¼ 0

ð36bÞ
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U1 ¼ U0
1 ¼ 0 at v ¼ 0; U2 ¼ U0

2 ¼ 0 at v ¼ 1

ð37aÞ

U1 ¼U2; U0
1 ¼U0

2; U00
1 ¼U00

2 at v¼ g

o3U1

ov3
� o3U2

ov3
þ e2 1

2

Z g

0

oU1

ov

� �2

dvþ 1

2

Z 1

g

oU2

ov

� �2

dv

 !"

o3U1

ov3
� o3U2

ov3

� �
e2ixs

�
þ ax2U1 ¼ 0 at v¼ g

ð37bÞ

In order to proceed with the eigenvalue problem anal-

ysis, the nonlinear terms in Eqs. (36) and (37) should be

omitted. Therefore, the linearized version of the equation

of motion and boundary conditions can be expressed as

follows:

o4U1

ov4
� x2U1 þ e2x2 o

2U1

ov2
¼ 0 ð38aÞ

o4U2

ov4
� x2U2 þ e2x2 o

2U2

ov2
¼ 0 ð38bÞ

U1 0ð Þ ¼ oU1 0ð Þ
ov

¼ 0; U2 1ð Þ ¼ oU2 1ð Þ
ov

¼ 0 ð39aÞ

U1 gð Þ ¼U2 gð Þ; oU1 gð Þ
ov

¼ oU2 gð Þ
ov

;
o2U1 gð Þ
ov2

¼ o2U2 gð Þ
ov2

o3U1 gð Þ
ov3

� o3U2 gð Þ
ov3

þ ax2U1 gð Þ ¼ 0 ð39bÞ

The general solutions for Eqs. (38a) and (38b) can be

expressed in the form:

U1 vð Þ ¼ C1 sin kj1vð Þ þ C2 cos kj1vð Þ þ C3 sinh kj2vð Þ
þ C4 cosh kj2vð Þ ð40aÞ

U2 vð Þ ¼ C5 sin kj1vð Þ þ C6 cos kj1vð Þ þ C7 sinh kj2vð Þ
þ C8 cosh kj2vð Þ ð40bÞ

where

j1

j2

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4k4 þ 4

p
� e2k2

2

s

; k ¼
ffiffiffiffi
x

p
ð41Þ

The constants C1 - C8 can be obtained by applying the

boundary conditions (Eq. (39a)) and the continuity condi-

tions (39b). By considering the following relations:

j1j2 ¼ 1; j2
1 þ j2

2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4k4 þ 4

p
; j2

1 � j2
2 ¼ e2k2

ð42Þ

The exact mode shapes of the SWCNT-resonator can be

then derived as:

U1 ¼ C A1 cos kj1v� cosh kj2vð Þf
�A2 sin kj1v� j2

1 sinh kj2v
� �� ð43aÞ

U2 ¼ C

B1 sin kj1vþ B1 � cosh kj2 sin kj1 þ j2
1 cos kj1 sinh kj2

� �
cosh kj2v

þ B1 �j2
1 cos kj1 cosh kj2 þ sin kj1 sinh kj2

� �
sinh kj2vþ B2 cos kj1v

� B2 cos kj1 cosh kj2 1 � vð Þ þ j2
1 sin kj1 sinh kj2 1 � vð Þ

� �

8
>><

>>:

9
>>=

>>;

ð43bÞ

where

A1 ¼ cosh kj2 1 � gð Þ sin kj1 � sin kj1g

� cosh kj2 sin kj1 1 � gð Þ
þ j2

1 cos kj1 1 � gð Þ sinh kj2 � j2
1 sinh kj2g

� j2
1 cos kj1 sinh kj2 1 � gð Þ

A2 ¼� cos kj1gþ cos kj1 1 � gð Þ cosh kj2 � cosh kj2g

þ cos kj1 cosh kj2 1 � gð Þ � j2
2 sin kj1 1 � gð Þ

sinh kj2 þ j2
1 sin kj1 sinh kj2 1 � gð Þ

B1 ¼� cos kj1gþ cos kj1 1 þ gð Þ cosh kj2 þ cosh kj2g

� cos kj1 cosh kj2 1 � gð Þ
þ j2

1 cos kj1g sin kj1 � j2
2 sin kj1g cos kj1

� �
sinh kj2

� j2
1 sin kj1 sinh kj2 1 � gð Þ

B2 ¼ cosh kj2 1 � gð Þ sin kj1 þ sin kj1g

� cosh kj2 sin kj1 1 þ gð Þ
þ j2

1 cos kj1g cos kj1 þ j2
2 sin kj1g sin kj1

� �

sinh kj2 � j2
1 sinh kj2g� j2

1 cos kj1 sinh kj2 1 � gð Þ

The constant C in Eq. (43) can be obtained using the

normalization condition:
Z g

0

U2
1dvþ

Z 1

g
U2

2dv ¼ 1 ð44Þ

The natural frequencies can be determined from the

following characteristic equation:

� 2j1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4k4 þ 4

p
þ 2j1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4k4 þ 4

p
cos kj1 cosh kj2

þ j1e
2k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4k4 þ 4

p
sin kj1 sinh kj2

þ ak 2 cosh kj2g sin kj1g� cosh kj2 sin kj1f
þ 2 sin kj1 1 � gð Þ cosh kj2 1 � gð Þ
� 2j2

1 sinh kj2 1 � gð Þ cos kj1 1 � gð Þ
þ j2

1 cos kj1 1 � gð Þ cos kj1gþ j2
2 sin kj1 1 � gð Þ

�

� sin kj1gÞ sinh kj2 � 2j2
1 cos kj1g sinh kj2g

þ j2
1 cos kj1 sinh kj2� cosh kj2 1 � gð Þð

� cosh kj2g� j4
1 sinh kj2 1 � gð Þ sinh kj2g

�
sin kj1

�
¼ 0

ð45Þ
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4 Results and discussions

The ability of CNTs as mechanical resonators used to

detect the mass of atoms is investigated. To this aim, a

clamped–clamped SWCNT is considered and the proposed

accurate model is utilized to perform the next analyses.

First, a parametric study is carried out to investigate the

effects of the location of the deposited mass, the res-

onator’s size, and the nonlocal residuals on the natural

frequencies and mode shapes of the CNT-resonator. Sec-

ond, the sensitivity of the proposed SWCNT-resonator for

atomic-mass sensing is assessed for different noble gas

particles.

4.1 Impacts of the location of the deposited mass

and nonlocal parameter on the natural

frequencies and mode shapes

Chiu et al. [17] developed a clamped–clamped CNT-based

nano-mechanical resonator as an atomic-mass sensor to

measure the mass of Xe gas atoms assuming the atom to be

deposited at the middle point of the CNT-resonator. In

addition, Li et al. [37] studied the dynamic behavior of

clamped–clamped CNT-based mass sensors via a nonlocal

Euler–Bernoulli beam model assuming the atomic-mass to

be landed at the middle span of the CNT. As we previously

mentioned, atomic-masses can be deposited at any location

through the span of the CNT. Thus, the proposed models

for CNTs-based mass sensors should account for the effects

of the inertia and the arbitrary location of the deposited

atomic-mass on the resonator’s natural frequencies and its

accuracy for mass detection.

Next, a zigzag (10, 0) SWCNT-based mechanical res-

onator is considered with diameter D & 0.8 nm, axial

length L = 10 nm, density q = 2.3 g/gcm3 cm3, Young’s

modulus E = 1 TPa, and wall thickness h = 0.34 nm [30].

The cross-sectional area A and the area moment of inertia I

of the resonator can be defined in terms of the diameter and

the wall thickness of the CNT as:

A ¼ p=4 Dþ hð Þ2� D� hð Þ2
h i

I ¼ p=64 Dþ hð Þ4� D� hð Þ4
h i ð46Þ

A single Xe-atom with a mass and a diameter of 0.218 zg

and 322 pm, respectively, is deposited on the resonator’s

surface. In the developed model, the nonlocal elasticity is

employed to capture the effects of the interatomic inter-

actions on the resonators sensitivity and accuracy for mass

detection. The value of the nonlocal parameter e0a for

carbon nanotubes has been represented as e0a B 2 nm

[32]. The internal characteristic length (the atomic lattice

length) is represented as a = 0.142 nm which denotes the

length of a carbon–carbon covalent bond in the atomistic

lattice of SWCNTs. It should be noted that if the nonlocal

parameter is set equal to zero, i.e., e0a = 0, the nonlocal

Euler–Bernoulli beam model converts to its classical

counterpart.

The plotted curves in Fig. 2 show the induced shifts in

the SWCNT natural frequencies due to the addition of a

single Xe-atom. Moreover, these plots address the influ-

ences of the location of the deposited atomic-mass on the

frequency shifts of the CNT-resonator. The horizontal lines

in Fig. 2a–c refer to the CNT natural frequencies when no

masses are added to the mechanical resonator. Inspecting

the plotted curves in Fig. 2a, a high shift of 16.5 GHz is

obtained in the first natural frequency of the resonator

when the atomic-scale Xe-mass is deposited in the mid-

span (g = 0.5) of the clamped–clamped CNT-resonator. In

addition, a 26.5-GHz second mode frequency shift can be

obtained when the atomic-mass is deposited at g = 0.3 or

g = 0.7, as shown in Fig. 2b. It follows from Fig. 2c that

two different frequency shifts in the third natural frequency

of the resonator, respectively, 22.5 and 36.5 GHz, are

obtained when the Xe atomic particle is deposited at

g = 0.5 and g = 0.2 or g = 0.8, respectively.

Inspecting the obtained results in Fig. 2a–c, it can be

concluded that designing mechanical resonators that oper-

ate at higher frequencies increases their sensitivities for

mass sensing. Furthermore, the sensitivity of the resonator

strongly depends on the location of the deposited mass.

Hence, these resonators can be operated such that,

depending on the location of the deposited mass, the best

mode of the CNT-resonator can be selected to estimate the

mass of the deposited particle. In addition, designing

CNTs-resonators that operate at different vibrational

modes is beneficial where the deposited mass can be

located anywhere through the beam length. Thus, the

vibrational mode of the device can be adjusted according to

the mass location to give higher sensitivity. Moreover, the

obtained results demonstrate that without knowing the

exact location of the deposited particle, its estimated mass

cannot be accurately determined.

To investigate the influences of the nonlocal parameter

on the natural frequencies of the SWCNT-resonator, we

plot in Fig. 3a–c the variations of the first three natural

frequencies as functions of the location of the deposited

single Xe-mass when considering three different values of

the nonlocal parameter. It follows from these plots that the

nonlocal parameter strongly affects the dynamic behavior

of the CNT. Indeed, a significant decrease is observed in

the natural frequencies of the CNT when the nonlocal

parameter is increased, and hence, a reduction in the sen-

sitivity of the CNT-based mass sensor is obtained. It is

clear that modeling the CNT-resonator based on the clas-

sical model (e0 = 0) results in an overestimation of the
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deposited mass value because the classical model reflects

higher frequencies when compared to the nonlocal model.

Inspecting the plots in Fig. 3a–c, it is clear that the most

sensitive locations of the deposited mass are independent

of the nonlocal parameter.

As for the impacts of the nonlocal parameter on the

first three mode shapes of the SWCNT-resonator, we

plot in Figs. 4, 5, and 6 the variations of these mode

shapes when considering various locations of the

deposited atomic-scale mass for different nonlocal

parameters. When the added mass is located in the

middle of the CNT (g = 0.5), it is obvious that the

nonlocal parameter has a negligible effect on the first

mode shape, as shown in Fig. 4a. Zooming near the

location of the deposited Xe-mass as presented in

Fig. 4b, it is noted that the amplitude of the first mode

shape is increased when the nonlocal parameter is

increased. However, a remarkable impact is observed in

the second and third mode shapes when the nonlocal

parameter is varied between 0 and 0.2, as presented in

Fig. 4c, d, respectively. In fact, an increase in the

nonlocal parameter is accompanied by a reduction in the

width between the two peaks of the second structural

mode shape. In addition, a slight increase in the ampli-

tude of the second mode shape is obtained when the

nonlocal parameter is set equal to 0.2, as shown in

Fig. 4c. Concerning the third mode shape, it follows

from Fig. 4d that a decrease in the value of the nonlocal

parameter is associated with an increase in the amplitude

of this mode shape without any change in the placement

of its peak.

When the atomic-scale mass is deposited at g = 0.3, the

influence of the nonlocal parameter on the first and second

mode shapes is negligible, as shown in Fig. 5a, c, respec-

tively. As for the first mode shape, it follows from Fig. 5b

that the amplitude does not change when increasing the

nonlocal parameter from zero to 0.1. However, increasing

the nonlocal parameter from 0.1 to 0.2, there is an increase

in the amplitude of this mode. Concerning the second mode

shape, zooming near its peak (g = 0.7), it is shown in

Fig. 5d that the variation of this mode with the nonlocal

parameter is so dependent on the position. Similar to the

Fig. 2 Variations of the a first, b second, and c third natural frequencies of the SWCNT-resonator as functions of the location of the deposited

Xe atomic-mass when the nonlocal parameter is set equal to e0 = 0.1
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case when the atomic-scale mass is deposited at g = 0.5,

the third mode shape is impacted by the value of the

nonlocal parameter, as shown in Fig. 5e.

Inspecting the variations of the first three mode shapes

presented in Fig. 6 where the atomic-mass is deposited at

g = 0.1, similar results as the case of g = 0.3 are obtained.

Indeed, the nonlocal parameter acts as an amplifier for the

first mode shape amplitude, as presented in Fig. 6b. As for

the second mode shape of vibration, the nonlocal parameter

has a negligible impact on its amplitude, as presented in

Fig. 6c. When zooming near its peak, as shown in Fig. 6d, it

is noted that an increase in the nonlocal parameter is

accompanied by an increase in the amplitude of this mode

shape. As for the behavior of the third mode shape with

respect to the nonlocal parameter, it remains the same for all

cases of mass locations. It is concluded that the nonlocal

parameter has diverse influences on the vibration mode

shapes depending on the location of the single Xe-atom.

These results show the necessity of this analysis and the

developed mathematical model for accurate estimation of

the natural frequencies as well as the associated mode shapes

of CNT-mass sensors. It should be mentioned that the

developed model as well as the derived mode shapes are so

needed when forced or nonlinear analyses are performed.

4.2 Sensitivity of SWCNT for different noble gases

Another important parameter which is considered in ana-

lyzing the performance of CNT-based mass sensors is

called ‘‘frequency shift percent’’ (FSP). As it has been

mentioned in [54], the FSP indicates the difference

between the resonant frequency of SWCNT before and

after depositing a mass as a percentage of the SWCNT’s

natural frequency without the attached mass which can be

expressed as:

FSP ¼ 100 � xWithout attached mass � xWith attached mass

xWithout attached mass

ð47Þ

In Fig. 7, the variations of the FSP with respect to the

nonlocal parameter and the location of the deposited single

Xe-atom for the first three vibration modes of the SWCNT-

resonator are plotted. Clearly, the nonlocal parameter has a

Fig. 3 Variations of the a first, b second, and c third natural frequencies of the SWCNT-resonator when varying the nonlocal residual parameter
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great impact on the FSP of the SWCNT where reductions

in FSP of the second and the third vibrational modes are

obtained when increasing the nonlocal parameter. For the

first vibrational mode, a decrease in the FSP with the

increase in the nonlocal parameter is observed when the

atomic-mass is deposited at g = 0.5 and 0.3, as shown in

Fig. 7a, b. On the other hand, with the increase in the

nonlocal parameter, an increase in FSP of the first mode is

observed when depositing the mass at g = 0.1. These

obtained trends assure the importance of considering the

coupled effects of the nonlocal and the atomic-mass

position.

In Fig. 8a, b, we plot the FSP when noble gas atoms

Ar and He are deposited on the top of the SWCNT-res-

onator at g = 0.5. As previously demonstrated, the second

vibrational mode is not useful to estimate a deposited

mass when g = 0.5 where it gives a zero frequency shift.

To investigate the effects of the nonlocal parameter on the

frequencies of the CNT-resonator, the FSP for different

nonlocal parameters is compared to the ones obtained

according to the classical model (e0 = 0). Clearly, almost

92 and 100 % reductions in the third mode frequency are

obtained when increasing the nonlocal parameter from 0

to 0.2 for the Ar and the He atoms, respectively. Com-

pared with the SWCNT-Xe, the FSP of both SWCNT-Ar

and SWCNT-He is much lower than the SWCNT-Xe one.

This is due to the fact that the masses of Ar and He,

which are, respectively, 66 and 6.6 yg, are much smaller

than the mass of Xe. By comparing the results obtained in

Figs. 7 and 8, it can be concluded that the proposed CNT-

resonator can easily detect masses with few zepto-grams

(10-21 g). Moreover, acceptable frequency shifts can be

obtained with the proposed CNT for tens of yocto-gram

(10-24 g) masses. However, for few yocto-grams, special

considerations should be taken when designing mechani-

cal resonators for these small sensitivities. Thus, with the

aid of CNTs with smaller sizes and by adjusting the

vibrational mode of the resonator according to the mass

location, higher sensitivities (few yocto-grams) can be

obtained.

Fig. 4 Variations of the first three mode shapes of SWCNT when considering various values of the nonlocal parameter and when a single Xe-

atom is deposited at g = 0.5
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Fig. 5 Variations of the first three mode shapes of SWCNT when considering various values of the nonlocal parameter and when a single Xe-

atom is deposited at g = 0.3
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5 Conclusions

The nonlocal nonlinear equations of motion of bridged

SWCNT-based mass nano-sensors have been derived based

on the Euler–Bernoulli beam assumptions. An eigenvalue

problem has been carried out in order to determine the

effects of a deposited mass and its location on the natural

frequencies and mode shapes of the SWCNT. A SWCNT-

resonator was proposed to detect the mass of Xe, Ar, and

He atoms. It was shown that the first three natural fre-

quencies and mode shapes of the resonator are strongly

dependent on the location of the deposited atomic-scale

Fig. 6 Variations of the first three mode shapes of SWCNT when considering various values of the nonlocal parameter and when a single Xe-

atom is deposited at g = 0.1
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mass and the nonlocal nature of the CNT structure. It was

proved that an increase in the nonlocal parameter is

accompanied by a decrease in the natural frequencies of the

mechanical resonator. According to the obtained results

through this study, it can be concluded that the sensitivity

of CNTs-resonators strongly depends on the location of the

deposited mass. In addition, designing CNTs-resonators

that can operate at different vibrational modes is beneficial

Fig. 7 Variations of FSP for the first three vibrational modes when varying the location of the deposited Xe-mass and the nonlocal parameter

Fig. 8 Variations of FSP for the first three vibrational modes when considering a Ar and b He atoms and when the mass is located at g = 0.5
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where the deposited mass can be located anywhere through

the beam’s length. Hence, to achieve higher sensitivities,

the vibrational mode of the device can be adjusted

according to the mass location. The obtained results also

demonstrate that without knowing the exact location of the

deposited particle, its estimated mass cannot be accurately

determined.
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