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Abstract This study is concerned with the small-scale

effect on the nonlinear flapwise bending vibration of

rotating cantilever and propped cantilever nanobeams.

Euler–Bernoulli beam theory is used to model the nano-

beam with nonlinearity. Nonlinear strain–displacement

relations are employed to account for geometric nonlin-

earity of the system. The axial forces are modeled as the

true spatial and thermal variations due to the rotation.

Hamilton’s principle is used to derive the nonlinear gov-

erning equation and nonlocal nonlinear boundary condi-

tions based on Eringen’s nonlocal elasticity theory. Finally,

the differential quadrature method is used in conjunction

with the direct iterative method to derive the nonlinear

vibration frequencies of the nanobeam. The effects of the

angular velocity, nonlocal small-scale parameter, temper-

ature change and nonlinear amplitude on nonlinear vibra-

tion of the rotary nanobeam are discussed. The results of

this work can be used in nanosensors, nanomotors, nan-

oturbines and NEMS applications.

1 Introduction

The experimental studies proved that as the size effect is

not considered in classical continuum theories, these the-

ories are incapable of predicting the behavior of nanos-

tructures accurately. Besides, the vast applications of

nanocomponents such as nanosensors, micromotors,

nanoturbines, nanomotors and NEMS [22, 28–30, 35, 66]

demand investigations on size effects and physical prop-

erties of nanostructures. Nonclassical elasticity theories

have been widely employed to study size effects on the

mechanical behavior of nanostructures, and the classical

continuum mechanics models offer a useful approach to

analyzing the nanobeam. Thus, to include the size effects in

a classical continuum model, the model can be extended

through the Eringen’s nonlocal elasticity theory [15, 16].

During past few years, researchers have become inter-

ested in studying the behavior of nanomachines which are

necessary in future goals of nanotechnology. Nonlocal

elasticity theory was also employed by Lim et al. [37] to

study the buckling of nanostructures in a temperature field.

Moreover, Pradhan and Murmu [47] studied the flapwise

bending vibration by developing a single nonlocal beam

model by applying DQM method. Wang et al. [61] studied

the free vibration of micro- and nanobeams based on

Eringen’s nonlocal elasticity theory and Timoshenko beam

theory. Murmu and Adhikari [41] studied the vibration of

double-nanobeam systems based on nonlocal theory. The

longitudinal vibration of a cracked nanobeam was exam-

ined by Hsu et al. [24] using the nonlocal elasticity theory.

Thai [58] and Thai and Vo [59], respectively, presented a

nonlocal shear deformation beam theory and a nonlocal

sinusoidal shear deformation beam theory for bending,

buckling and vibration of nanobeams using the nonlocal

differential constitutive relations of Eringen. Ke and Wang

[27] studied the thermoelectric–mechanical vibration of the

piezoelectric nanobeams based on the nonlocal theory and

Timoshenko beam theory. Based on the theory of nonlocal

elasticity, Loya et al. [38] studied the flexural vibrations of

cracked micro- and nanobeams. Ansari et al. [2] examined

the free vibration behavior of piezoelectric Timoshenko

nanobeams based on the nonlocal elasticity theory.
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Bahrami and Teimourian [5] used the wave propagation

approach in conjunction with nonlocal elasticity theory to

study the buckling and free vibrations of Euler–Bernoulli

nanobeams. Rahmani and Jandaghian [48] presented the

investigation on buckling of functionally graded nano-

beams based on a nonlocal third-order shear deformation

theory. Chakraverty and Behera [10] investigated the free

vibration of nonuniform Euler–Bernoulli nanobeams based

on nonlocal elasticity theory. Jandaghian and Rahmani [25]

studied the free vibration analysis of magneto-electro-

thermo-elastic (METE) nanobeams resting on a Pasternak

foundation based on nonlocal theory. Karličić et al. [26]

proposed the nonlocal Euler–Bernoulli beam theory to

study the free vibration and stability of a multiple-nano-

beam system (MNBS) using the Eringen nonlocal contin-

uum theory.

During past recent years, a few studies have been con-

ducted on the nonlinear vibrational behavior of nanobeams

[21, 65]. The nonlinear vibration of nanobeam with the

axial initial load was investigated by Wang and Li [64],

using the nonlocal continuum theory. Eltaher et al. [14]

studied the nonlinear free vibration of material graduations

of a nano-Timoshenko beam considering the neutral axis

position. The free and forced vibrations of simply sup-

ported functionally graded (FG) nanobeams were studied

by El-Borgi et al. [13]. Behera and Chakraverty [6]

investigated nonlocal nonlinear free vibration of nano-

beams using differential quadrature method (DQM). Chang

[12] studied nonlinear free vibration of nanobeam sub-

jected to magnetic field by using Eringen’s nonlocal theory.

Rezaee and Lotfan [51] investigated the nonlinear vibra-

tions of an axially moving Rayleigh nanobeam. The non-

linear vibration behavior of a single-walled carbon

nanotube conveying fluid was investigated by Zhen and

Fang [69]. Togun and Bağdatlı [60] studied the nonlinear

free and forced vibration of a nanobeam resting on an

elastic foundation of the Pasternak type based on the

nonlocal Euler–Bernoulli beam theory. The nonlinear

vibration of a single-walled carbon nanotube conveying

fluid is studied based on nonlocal elastic theory and Euler–

Bernoulli beam theory by Zhen and Fang [69]. Most

recently, Shafiei et al. [54] studied the nonlinear vibration

behavior of axially functionally graded tapered microbe-

ams. Şimşek [56] studied the nonlinear vibration of a

nonclassical nanobeam with axially immovable ends based

on the Eringen’s nonlocal elasticity theory. Nazemnezhad

and Hosseini-Hashemi [44] used the nonlocal elasticity to

study the nonlinear free vibration of functionally graded

(FG) nanobeams with immovable ends. Fang et al. [17]

studied the nonlinear free vibration of double-walled car-

bon nanotubes based on the nonlocal elasticity theory.

Based on Timoshenko beam theory, Askari et al. [3]

studied the nonlinear vibration of the nonlocal nanowires.

Wang and Li [64] analyzed the nonlinear primary reso-

nance of nanobeam with the axial initial load based on the

nonlocal continuum theory. The nonlinear vibration of the

nonlocal elastic nanobeams was studied by Kuo [32] using

the finite element method. Using the nonlocal beam model,

the vibration study of a single-walled carbon nanotube

(SWCNT) conveying nanoflow embedded in biological

soft tissue is performed by Hosseini et al. [23]. Kuo [33]

studied the chaotic behavior of the single-walled carbon

nanotubes on elastic medium by the nonlocal elastic the-

ory. Chang and Yeh [11] studied the nonlinear free vibra-

tion of Euler–Bernoulli nanobeam subjected to magnetic

field based on Eringen’s nonlocal elasticity. The nonlinear

finite element analysis was performed on the nonlinear

vibration of nonlocal elastic multi-walled carbon nanotubes

by Kuo [31]. In another study, Azrar et al. [4] studied the

nonlinear free vibration of single-walled carbon nanotubes

(CNTs) conveying based on Eringen’s nonlocal elasticity

theory.

Rotary effect of nanostructures is of great importance to

study, and a lot of researchers have performed analysis on

rotating beams [2, 36, 41–43, 46]. Aranda-Ruiz et al. [2]

derived the natural frequencies of the flapwise bending

vibrations of a nonuniform rotating cantilever nanobeam

considering the rotational force. Also recently, Ghadiri and

Shafiei [19] investigated free bending linear vibration of

rotating nanoplate for various boundary conditions. The

nonlocal theory has also been utilized in investigations on

rotating nanobeams. Pradhan and Murmu [47] used a single

nonlocal beam model to study the flapwise bending

vibration of a rotating nanocantilever using Eringen’s

nonlocal elasticity theory. Ghadiri and Shafiei [20] inves-

tigated the small-scale effect on the flapwise bending

vibrations of a rotating nanoplate by nonlocal elasticity

theory.

As it is seen, no detailed report has been found in the

literature on the nonlinear nonlocal rotary-thermo-me-

chanical vibration of a nanobeam so far. Motivated by

these considerations and in order to improve optimum

design of rotary nanosystems, this study aims to investigate

the nonlinear thermal vibration of rotating cantilever and

propped cantilever nanobeams under temperature changes

for different nonlocal parameter. Eringen’s theory in con-

junction with Hamilton’s principle is employed to derive

the governing equation and nonlinear boundary conditions.

The differential quadrature method (DQM) is used in

conjunction with direct iterative method to solve the gov-

erning equation. Effects of the nonlocality, temperature

change, rotational velocity and the nonlinearity of the

problem on the normalized vibration properties are inves-

tigated. The results of this investigation would be useful to

design nanobeams, nanorods, nanoturbine and nanomotors

using CNTs, more efficiently.
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2 Problem formulation

The kinematics of deformation is presented by different

theories [49]. As it is shown in Fig. 1, here we consider a

nanobeam of length ‘‘L’’ along the axial coordinate,

thickness ‘‘b’’ and height ‘‘h’’ which is fixed to a rigid hub

at point ‘‘O’’. The dynamic version of the principle of

virtual displacements is used to derive the equations of

motion of Euler–Bernoulli beam.

2.1 Kinematics

The displacement field of a point of the nanobeam is

defined as

u1 ¼ u x; tð Þ þ zh; u2 ¼ 0; u3 ¼ w x; tð Þ

h x; tð Þ ¼ � ow

ox

ð1Þ

where u and w are the axial and transverse displacements of

point x; tð Þ located on the mid-plane (i.e., z ¼ 0) of the

nanobeam and the x-axis is taken along the geometric

centroid of the beam. The nonzero nonlinear strain of the

Euler–Bernoulli beam theory is the axial strain of a fiber at

the distance z from the mid-plane, and it is made up of both

bending and stretching of mid-plane, as shown.

exx ¼
ou

ox
þ 1

2

ow

ox

� �2

�z
o2w

ox2
; eyy ¼ ezz ¼ 0 ð2Þ

2.2 Eringen’s nonlocal theory

The classic theory of elasticity is based on the assumption

that the material and tensor fields of stress and strain are

continuous. The atomic empty spaces are of considerable

size with respect to the nanoscales. Thus, using the con-

tinuum-based theories for modeling the nanostructures are

put into question, and we should instead use the nonclas-

sical theories which consider the small-scale effects and the

inherent discontinuities of nanostructures. The nonlocal

elasticity theory which was first proposed by Eringen [15]

is one of the nonclassical continuum theories which con-

sider the small-scale effects. The classical continuum

mechanic theories consider the stress in a point as a

function of the strain at that point; however, the nonlocal

theory considers the stress at a point as a function of strain

at all of the points of the body. In fact, this theory includes

the atomic forces in a continuous body into the problem.

Using the classic method, studying the large-scale beams

is based on this assumption that the atomic space is negligible

compared with the length of the beam and, thus, the char-

acteristic length is not considered in these studies. But, in

micro- and nanostructures, the atomic spaces are of consid-

erable length compared with the beam length and, thus, the

characteristic length is concluded as an effective parameter

in the dynamic and vibration analysis of small-scale struc-

tures. In classic elasticity, the stress tensor r in the point x is

defined as a function of strain at that point. On the other hand,

the nonlocal elasticity theory relates the stress tensor at point

x of mass environment (X) to the tensor of the strain (e) of the
whole body by a differential equation. Thus, the nonlocal

stress tensor at point x can be expressed as:

r ¼
Z
X

K x0 � xj j; sð Þt x0ð Þdx0 ð3Þ

where K x0 � xj jð Þ is the kernel which is in fact a weight func-
tion for the integral equation and x0 � xj j is the distance of local
point x and nonlocal point x0. s is a parameterwhich depends on

the length of the internal characteristic of the nanostructure (a)

and length of the external characteristic (l) and specifies the

importance of small scales in the integral equation of the non-

local elasticity theory. Also, s can be defined as:

s ¼ e0a

l
ð4Þ

where e0a is a parameter which can be calculated by

comparison of the nonlocal elasticity theory with the

(a) (b) 

o 

r

Length 

Fig. 1 Schematic of rotating nanobeam: a propped cantilever nanobeam and b cantilever nanobeam
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experimental results and is called small-scale parameter.

The general Hook’s law defines the relation between the

strain tensor and macroscopic stress at point x for a Hoo-

kean solid as follows:

t Xð Þ ¼ C Xð Þ : e Xð Þ ð5Þ

where C is the fourth-order elasticity tensor and ‘:’ denotes

the double-dot product. The general Eqs. (3) and (5) state

the nonlocal stress at point x of a Hookean material. Also,

Eq. (3) is the weighted average of the portion of strain field

in all the body with respect to the stress field at point x.

When ‘‘s ? 0,’’ there is no integral and nonlocal effect of

stress and strain and Eq. (3) approaches to the classic

theory. Thus, the kernel K x0 � xj jð Þ should approach to

Kronecker delta when ‘‘s ? 0,’’ which means:

lim
s!0

K x0 � xj j; sð Þ ¼ d x0 � xj jð Þ ð6Þ

Besides, K has its maximum value at the local point x. By

using the kernel, the differential form of the nonlocal

elasticity equation can be obtained from the integral form,

and by substituting that into Eq. (3), the differential form

of the nonlocal elasticity equation can be obtained as

follows:

1� e0að Þ2r2
� �

r ¼ C : e ð7Þ

The scalar form of Eq. (7) is:

1� e0að Þ2r2
� �

rij ¼ Cijkl : ekl ð8Þ

If the small scales are negligible (s, l ? 0), Eqs. (7)

and (8) will approach to classic theory. Eringen’s nonlocal

elasticity theory is vastly utilized in studying the wave

propagation, dislocation mechanics, fracture mechanics,

surface tension fluids, etc., in past decade. First, Peddieson

et al. [45] used this theory to study the size effect in

bending behavior of nano- and microstructures. Zhang

et al. [68] used the nonlocal elasticity theory to study the

small-scale effects on the buckling of the multi-walled

carbon nanotubes. Moreover, Wang [62] and Wang and

Varadan [63] performed an investigation on the wave

propagation in carbon nanotubes. They also examined the

small-scale effects on CNTs.

The nonlocal constitutive relation in Eq. (8) for the

macroscopic stress yields the following relation for the

nonlocal stress component rxx:

Table 1 Comparison of results for nondimensional linear frequency

(W) of the cantilever nanobeam

Nonlocal parameter (l) U = 0

Present Lu et al. [39]

0 1.875123728418543 1.8751

0.1 1.879191691938370 1.8792

0.2 1.891951790079289 1.8919

0.3 1.915390671716985 1.9154

0.4 1.954301042389278 1.9543

0.5 2.021940922370155 2.0219

Table 2 Comparison of results for nondimensional linear frequency

(W) of propped cantilever nanobeam

Nonlocal parameter (l) U = 0

Present Wang et al. [61]

0 3.926601372971887 3.9266

0.1 3.820890779427473 3.8209

0.3 3.282838427986725 3.2828

0.5 2.789926497975809 2.7899

0.7 2.436434773833762 2.4364

Table 3 Comparison of results for nondimensional angular velocity (U) of cantilever non-FG microbeam for d = l = 0

Nondimensional angular velocity (U) Linear fundamental frequency Linear second frequency

Present DQM Shafiei et al. [52, 53] Present DQM Shafiei et al. [52, 53]

0 3.51601530241194 3.5160 22.0344885139431 22.035

1 3.68164684773052 3.6816 22.1810080845569 22.181

2 4.13731960978917 4.1373 22.6149188451461 22.615

3 4.79727857326074 4.7973 23.3202604902556 23.320

4 5.58500146583087 5.5850 24.2733461148644 24.273

5 6.44954479509421 6.4495 25.4460769675718 25.446

6 7.36037306498923 7.3604 26.8090781527899 26.809

7 8.29963696640817 8.2996 28.3340792795054 28.334

8 9.25683762093595 9.2568 29.9953776954400 29.995

9 10.2256862732995 10.226 31.7705084955323 31.771

10 11.2023277404348 11.202 33.6403584147408 33.640
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rxx � e0að Þ2o
2rxx
ox2

¼ Eexx ð9Þ

where E is Young’s modulus. Hence, nonlocal stress

resultants over the cross-sectional area can be written as

Nxx ¼
Z
A

rxxdA; Mxx ¼
Z
A

zrxxdA ð10Þ

Equation (9) together with (10) yields

Nxx � e0að Þ2o
2Nxx

ox2
¼ EA

du

dx
þ 1

2

ow

ox

� �2
" #

;

Mxx � e0að Þ2o
2Mxx

ox2
¼ �EI

o2w

ox2

ð11Þ

where I and A denote the second moment and cross section

of area, respectively, and are defined as:

I ¼
Z
A

z2dA; A ¼
Z
A

dA ð12Þ

Table 4 Comparison of results

for normalized frequency of

nonrotating beam

Amp = 1 Amp = 2 Amp = 3

Clamped beam

Malekzadeh and Shojaee [40] 1.0222 1.0858 1.1823

Present DQM 1.022191382 1.085670519 1.183103641

Simply supported beam

Nazemnezhad and Hosseini-Hashemi [44] 1.0937 1.375 1.8438

Lestari and Hanagud [34] 1.0892 1.3178 1.6257

Singh et al. [57] 1.0897 1.3229 1.6394

Present DQM 1.089158178 1.317776109 1.625677221
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Fig. 2 Normalized frequency of cantilever nanobeam versus the amplitude of nonlinearity when DT ¼ 0
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2.3 Equation of motion and boundary conditions

The governing equation of motion and the associated

boundary conditions are derived according to the Hamil-

ton’s principle as

ZT

0

�dK þ dPU þ dPEð Þdt ¼ 0 ð13Þ

where dK, dPU and dPE, respectively, define the virtual

kinetic, virtual strain and potential energies due to the

applied loads. The virtual kinetic energy of the nanobeam

can be written as:

K ¼ 1

2

Z L

0

Z
A

q _u21 þ _u23
� �

dA dx ð14Þ

dK ¼
Z L

0

m0

ou

ot

odu
ot

þ ow

ot

odw
ot

� ��

� m1

ou

ot

o2dw
oxot

þ odu
ot

o2w

oxot

� �
þ m2

o2w

oxot

o2dw
oxot

	
dx

ð15Þ

where over-dot denotes derivative with respect to time

and

m0 ¼ qA; m2 ¼
Z
A

qz2dA ¼ qI ð16Þ

the virtual strain energy of the nanobeam then can be

defined as:

dPU ¼
Z L

0

Nxxd
ou

ox
þ Nxx

ow

ox
d

ow

ox

� �
�Mxxd

o2w

ox2

� �
dx

ð17Þ

PE x; tð Þ which defines the virtual potential energy due

to the external stimuli is given by

dPE ¼
Z L

0

�N
ow

ox

odw
ox

dx ð18Þ

where �N is the included axial force in the model as the true

spatial variation due to the rotation. Substituting Eqs. (15),

(17) and (18) into Eq. (13), the following equation can be

obtained as:
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Fig. 3 Normalized frequency of propped cantilever nanobeam versus the amplitude of nonlinearity when DT ¼ 0
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Z T

0

Z L

0

�m0

ou

ot

odu
ot

þ ow

ot

odw
ot

� �
� m2

o2w

oxot

o2dw
oxot

þNxxd
ou

ox
�Mxxd

o2w

ox2
þ Nxx

ow

ox

odw
ox

þ �N
ow

ox

odw
ox

2
6664

3
7775dxdt ¼ 0

ð19Þ

and then, by setting the coefficients of du, dw and dow
ox

to be

zero, the Euler–Lagrange equation can be obtained as:

oN

ox
¼ m0

o2u

ot2
ð20Þ

o2Mxx

ox2
þ o

ox
Nxx þ �Nð Þ ow

ox

� 	
¼ m0

o2w

ot2
� m2

o4w

ox2ot2
ð21Þ

For ‘‘0\x\L’’ and ‘‘t[ 0,’’ and boundary conditions at

x ¼ 0 and x ¼ L, we have:

u ¼ 0 or Nxx ¼ 0

w ¼ 0 or
oMxx

ox
þ m2

o3w

oxot2
þ Nxx þ �Nð Þ ow

ox
¼ 0

ow

ox
¼ 0 or Mxx ¼ 0

ð22Þ

In Eq. (18), u and w present the nonlocal displacements of

the beam. By Eqs. (11) and (20), one arrives at

Nxx ¼ EA
ou

ox
þ 1

2

ow

ox

� �2
" #

þ e0að Þ2 m0

o3u

oxot2

� �
ð23Þ

Similarly, from Eqs. (11) and (21) one obtains

Mxx ¼ �EI
o2w

ox2
þ e0að Þ2 m0

o2w

ot2
� m2

o4w

ox2ot2




� o

ox
Nxx þ �Nð Þ ow

ox

� �� 	� ð24Þ

The equation of motion can be derived in terms of the

nonlocal displacement w by substituting Nxx and Mxx into

Eqs. (20) and (21); similarly, the boundary conditions can

be derived in terms of the displacements. The axial accu-

mulation of thermal and rotational forces is expressed as

�Nxx ¼ N thermal þ NrotationðxÞ

¼ EAaDT
1� 2m

þ
ZL

x

qA X2 r þ fð Þdf ð25Þ
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Fig. 4 Normalized frequency of cantilever nanobeam versus the amplitude of nonlinearity under LT condition
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Substituting Eqs. (25) and (24) into (21) yields

o2

ox2
�EI

o2w

ox2

� �
þ EA

2

ow

ox

� �2

e0að Þ2o
2w

ox4
� o2w

ox2

� �

� e0að Þ2 o
2

ox2
o

ox
�Nxx

ow

ox

� �
þ m0

o2w

ot2
� m2

o4w

ox2ot2

� 	

� o

ox
�Nxx

ow

ox

� �
¼ m0

o2w

ot2
� m2

o4w

ox2ot2
ð26Þ

The nondimensional parameters are derived as follows:

�A ¼ AL2

2I

�N ¼ L2

EI

EAa
1� 2m

DTþ
ZL

x

qA X2 r þ xð Þdx

0
@

1
A

U2 ¼ qAX2L4

EI

w ¼ WL

x ¼ XL

r ¼ dL

l ¼ e0a

L

�m ¼ m2

L2m0

ð27Þ

where U, d, l and DS are nondimensional angular velocity,

hub radius, nonlocal parameter and temperature change,

respectively. So nondimensional nonlinear equation of

bending flapwise vibration can be written as:

� o4W

oX4
þ �A

oW

oX

� �2

l2
o4W

oX4
� o2W

oX2

� �
� o

oX
�Nxxð ÞoW

oX

þl2
o2

oX2

o

oX
�N
oW

oX

� �� 	
¼ L4m0

EI

o2

ot2
l2 �m

o4W

oX4
� o2W

oX2

� 	
� �m

o2W

oX2
þW


 �

ð28Þ

Using W x; tð Þ ¼ a �W xð Þcosxt [18], a nondimensional

nonlocal differential equation of nonlinear vibration of

nanobeam can be derived to solve the nonlinear equation,

where ‘‘a’’ is the nonlinear amplitude. Nondimensional

frequency is defined as:
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Fig. 5 Normalized frequency of cantilever nanobeam versus the rotational velocity under LT condition
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W ¼ m0L
4

EI
x2

� �1
4

ð29Þ

Furthermore, the exact boundary conditions are defined as

clamped (at x ¼ 0) and free or simply supported (at x ¼ LÞ
as follows:

clamped at X = 0:

W 0ð Þ ¼ 0 ð30Þ
oW 0ð Þ
oX

¼ 0 ð31Þ

free at X = 1

MXXð1Þ ¼ 0 ð32Þ
oMXXð1Þ

oX
¼ 0 ð33Þ

simply supported at X = 1:

W 1ð Þ ¼ 0 ð34Þ
MXXð1Þ ¼ 0 ð35Þ

2.4 Solution procedure

Differential quadrature method (DQM) is used for solving

the equilibrium equation for the reason that this method is

proven to have high accuracy in solving complicated partial

differential equations. Simple formulation and low compu-

tational cost are the advantages of DQM which was

introduced by Bellman et al. [7, 8], while the other

numerical methods such as finite difference (FD), dynamic

relaxation (DR) and finite element (FE) [50] have not these

advantages. The weighting coefficients of DQM depend on

the grid spacing. Therefore, using these coefficients every

partial differential equation can be simplified to a set of

algebraic equations [55]. DQM can be subdivided into

several subsets with respect to the applied function and

satisfied types of boundary conditions. Thus, the rth-order

derivative of a function f xð Þ is expressed as following

linear sum of the function values [55]

orf xð Þ
oxr

����
x¼xP

¼
Xn
j¼1

C
rð Þ
ij f xið Þ ð36Þ

Table 5 Normalized frequency of cantilever nanobeam versus the temperature change under LT, HT condition, L = 25b = 10h = 50 nm

LT, amp = 1 LT, amp = 2

l = 0 l = 0.1 l = 0.2 l = 0.4 l = 0.5 l = 0 l = 0.1 l = 0.2 l = 0.4 l = 0.5

U = 0

DS = 0 0.936785 0.946152 0.973714 1.07693 1.14827 0.714326 0.762112 0.890211 1.28028 1.508011

25 0.930828 0.941891 0.972739 1.069632 1.123296 0.682467 0.740698 0.885936 1.255569 1.430794

50 0.923629 0.936897 0.971688 1.0636 1.105538 0.642156 0.714913 0.881313 1.234902 1.374358

75 0.914755 0.930962 0.970554 1.058531 1.09226 0.589161 0.683198 0.876298 1.217353 1.331213

100 0.903542 0.923793 0.969324 1.05421 1.081954 0.515318 0.643097 0.870838 1.202263 1.297112

U = 2

DS = 0 0.958689 0.96549 0.984061 1.03874 1.066725 0.822399 0.853629 0.934616 1.147138 1.245635

25 0.956228 0.963789 0.983708 1.0368 1.061166 0.810855 0.845905 0.933126 1.140095 1.226497

50 0.953454 0.961912 0.983339 1.035045 1.056463 0.797683 0.837314 0.931568 1.133697 1.210148

75 0.950305 0.959829 0.982952 1.033449 1.052432 0.782506 0.827699 0.929935 1.12786 1.196015

100 0.946698 0.957505 0.982547 1.031993 1.048938 0.764819 0.816862 0.928222 1.122513 1.183676

HT, amp = 1 HT, amp = 2

U = 0

DS = 0 0.936785 0.946152 0.973714 1.07693 1.14827 0.714326 0.762112 0.890211 1.28028 1.508011

25 0.940317 0.948736 0.974345 1.082906 1.1723 0.732658 0.774856 0.892968 1.300284 1.580237

50 0.943476 0.951084 0.974946 1.089889 1.205702 0.748724 0.786282 0.895589 1.323416 1.677757

75 0.946317 0.953225 0.97552 1.098159 1.255365 0.76293 0.796588 0.898085 1.350487 1.817627

100 0.948886 0.955187 0.976068 1.10811 1.337273 0.775587 0.805934 0.900464 1.382619 2.037938

U = 2

DS = 0 0.958689 0.96549 0.984061 1.03874 1.066725 0.822399 0.853629 0.934616 1.147138 1.245635

25 0.960227 0.966569 0.984295 1.040198 1.071172 0.829544 0.858502 0.935601 1.152408 1.260809

50 0.961654 0.967583 0.984523 1.041769 1.076256 0.836131 0.863059 0.936558 1.158072 1.278008

75 0.962983 0.968538 0.984744 1.043468 1.082122 0.842224 0.86733 0.937486 1.164175 1.297673

100 0.964222 0.969437 0.984958 1.045311 1.088968 0.847877 0.871342 0.938388 1.170771 1.320382
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where the number of grid points along x direction is defined

by n. Also, Cij is obtained as follows:

C
1ð Þ
ij ¼ M xið Þ

xi � xj
� �

M xj
� � i; j ¼ 1; 2; . . .; n and i 6¼ j

C
1ð Þ
ii ¼ �

Xn
j¼1;i 6¼j

C
1ð Þ
ij i; j ¼ 1; 2; ; . . .N

ð37Þ

in which M(x) is defined as:

M xið Þ ¼
Yn

j¼1;j6¼i

xi � xj
� �

ð38Þ

and superscript r is the order of derivative. Also, C rð Þ is the
weighting coefficient along x directions which is written as:

C
rð Þ
ij ¼ r C

r�1ð Þ
ij C

1ð Þ
ij �

C
r�1ð Þ
ij

xi� xj
� �

" #
i; j¼ 1;2; . . .;n; i 6¼ j

and 2� r�n� 1

C
rð Þ
ii ¼�

Xn
j¼1;i 6¼j

C
rð Þ
ij i; j¼ 1;2; . . .;n and 1� r�n� 1

ð39Þ

Chebyshev–Gauss–Lobatto technique has been employed

as follows in order to obtain a better mesh point distribu-

tion and increased convergence of solutions

fi ¼
1

2
1� cos

i� 1ð Þ
N � 1ð Þ p

� �� �
i ¼ 1; 2; 3; . . .; n ð40Þ

Finally, incorporating boundary conditions Eqs. (30–35)

into (28) and using eigenvalue equation in the form of (41)

solve the overall problem, and natural frequency will be

calculated.

KLinear þ 3

4
KNon�linear wð Þ

� 	
total

wf g ¼ x2 wf g ð41Þ

An iterative procedure must be employed for solving the

resulting system of nonlinear eigenvalue Eq. (41). For this

purpose, in the first step, by neglecting the nonlinear terms of

the transverse displacement, the eigenvalue problem is solved

in each case and the linear eigenvector is then normalized by

dividing to the maximum transverse displacement. In the sec-

ond step, the nonlinear vibration equation can be solved using

the eigenvector associated with the eigenvalues of Eq. (41).
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Fig. 6 Normalized frequency of cantilever nanobeam versus the amplitude of nonlinearity under HT condition

728 Page 10 of 18 N. Shafiei et al.

123



Finally, the eigenvalue problems are solved again to obtain the

new eigenvalues and eigenvectors. This procedure continues

until the difference between the nonlinear frequencies of two

subsequent iterations ‘e’ and ‘e ? 1’ in the iterative procedure

is [40],

xeþ1 þ xe
�� ��=xe � e e ¼ 10�4:

3 Numerical results

3.1 Linear vibration

The efficiency of the presented numerical analysis is shown

by comparison of the presented linear results with the

results presented in Shafiei et al. [52, 53], Lu et al. [39] and

Wang et al. [61]. Finally, the parametric study is presented

for considering the effects of different parameters such as

small-scale, angular velocity, amplitude of nonlinearity and

nonlocal effects of the nanobeam. For this purpose, the

nanobeam is assumed to be of ‘‘thickness ¼
height ¼ Length

100
¼ 3:4 nm,’’ the Poisson’s ratio is m ¼ 0:3,

‘‘Young’s modulus E ¼ 971 GPa’’ and ‘‘density

q ¼ 2300 kg/m3’’ [43]. In the room- or low-temperature

(LT) condition, the thermal coefficient is assumed as

‘‘ax ¼ �1:6� 10�6 K�1’’ and for high-temperature (HT)

condition it is set to be ‘‘ax ¼ 1:1� 10�6 K�1’’ as were

used by Yao and Han [67].

Nondimensional frequencies of nonrotating cantilever

(Table 1) and propped cantilever (Table 2) nanobeams are

compared with the results obtained by Lu et al. [39] and

Wang et al. [61], respectively, to validate the present linear

results. In addition, nondimensional linear frequency of

rotating beam is compared with the results obtained by

Shafiei et al. [52, 53], and satisfactory agreement between

the results is given in Table 3.

3.2 Nonlinear vibration

First, to study the nonlinear frequency, the normalized

frequency and nondimensional nonlinear amplitude are

defined as:
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Fig. 7 Normalized frequency of cantilever nanobeam versus the rotational velocity under HT condition

Nonlinear vibration behavior of a rotating nanobeam under thermal stress using Eringen’s… Page 11 of 18 728

123



Normalized frequency

¼ Nonlinear frequency of nanobeam a 6¼ 0ð Þ
Linear frequency of nanobeam a ¼ 0ð Þ

ð42Þ

Amp ¼ a

ffiffiffi
I

A

r
ð43Þ

Table 4 shows the comparison of the results of the nor-

malized fundamental frequency of the nanobeam in this

study and three other studies that used numerical and

analytical solutions. It is observed that the results of the

DQM and other solution procedures have good

agreements.

To study the nonlinear vibration of rotating nanobeam,

‘‘l = 0–0.5’’ as the same range was employed by Aranda-

Ruiz et al. [2]. Lu et al. [39] proposed that eigenvalues can

be calculated in the range of ‘‘l = 0–0.62.’’ Besides, the

nondimensional angular velocity (U), temperature change

(DT) and nonlinear amplitude of the rotary nanobeam are

assumed to be in the range of ‘‘0–2,’’ ‘‘0–100’’ and ‘‘0–3,’’

respectively.

Figures 2 and 3, respectively, show the normalized

frequency of cantilever and propped cantilever nanobeams

versus amplitude for different nonlocal values in four dif-

ferent rotational velocities when temperature change is set

to be zero. It is shown that the normalized frequencies of

cantilever and propped cantilever nanobeams increase with

the nonlocal value. This behavior is the same for all con-

ditions in this paper. Figure 2 shows that the effect of

amplitude and rotational velocity on normalized frequency

of cantilever nanobeam varies by the nonlocal values. As

the Euler–Bernoulli beam theory is mostly suitable for thin

beams, to obtain the best results for the Euler–Bernoulli

nanobeam, we should have L/h C 40. Since the nonlocal

value is normalized by dividing to the length L, by

increasing the nondimensional nonlocal value l and mul-

tiplying it to L, value of e0a increases a lot. Thus, it can be

said that the dependency of Euler–Bernoulli theory on the

nonlocal value is more than the other higher-order theories.

This is shown in Fig. 2 where increasing the nonlocal value

decreases the effect of nonlinearity (amplitude) and when

l C 0.3 the nonlinearity increases the nondimensional
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Fig. 8 Normalized frequency of propped cantilever nanobeam versus the amplitude of nonlinearity under LT condition
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frequency. It should be noted that higher-order theories

such as Timoshenko beam theory do not include this effect

as the length-to-thickness ratio can be much smaller in

these theories. As it is shown in Fig. 2, when l = 0

increasing the nonlinear effect decreases the nondimen-

sional frequency of cantilever nanobeam. On the other

hand, nonlocal value increases the frequency of cantilever

nanobeam, and as shown in Fig. 2, when l C 0.3 the effect

of nonlocal parameter is more than the effect of the non-

linearity of the system. Thus, when l C 0.3 the amplitude

increases the normalized frequency, which is not observed

in other boundary conditions [9, 40]. Furthermore, varia-

tion range of the normalized frequency due to increasing

the nonlocal parameter reduces when the rotational

velocity increases, and it can be said that this is due to

increasing the centrifugal force which reduces the trans-

verse displacement. On the other hand, Fig. 3 shows that

when the rotational velocity increases, the normalized

frequency of propped cantilever nanobeam decreases. In

fact, the effects of nonlocal value and nonlinearity of the

system for propped cantilever nanobeam are the same. So,

increasing one of them increases the effect of the other one

on. This can be observed repeatedly for the propped can-

tilever nanobeam in the following of this paper. It is also

worth to mention that dependency of the normalized fre-

quency on the amplitude increases with nonlocal value and

decreases with rotational velocity. The effect of the non-

linearity increases by decreasing the stiffness of the

nanobeam. Increasing the rotational velocity induces the

eccentricity centrifugal force as the tension load in the

nanobeam which increases the stiffness of the nanobeam.

Thus, increasing the rotational velocity decreases the effect

of the nonlinear amplitude. Also, increasing the nonlocal

value decreases the stiffness of the nanobeam, which leads

to the decrement of the nonlinearity effect on the nano-

beam, which is clearly shown in Fig. 3.

Figures 4 and 5 show the normalized frequency of

cantilever nanobeam under LT condition, versus the

amplitude and rotational velocity, respectively, and

Table 5 shows the normalized frequency of cantilever
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Fig. 9 Normalized frequency of propped cantilever nanobeam versus the rotational velocity under LT condition
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nanobeam with respect to the temperature change under LT

and HT conditions. It can be seen that the normalized

frequency decreases when the temperature change increa-

ses. Comparing Fig. 4a, c, respectively, with Fig. 4b, d

shows that the effect of the amplitude on normalized fre-

quency depends on the nonlocal value which is because of

the effect of the stiffness which was previously explained.

Figure 5 and comparing Fig. 4a with Fig. 4c and Fig. 4b

with Fig. 4d show that the nonlocal value can change the

effect of the rotational velocity.

Figures 6 and 7, respectively, show the normalized

frequency of cantilever nanobeam under HT condition,

versus the amplitude and the rotational velocity. Thus, it

can be concluded that the vibrational behavior of can-

tilever nanobeam is unique. For more explanations, it

should be noted that according to Eq. (27), increasing

the nonlocal value, when L is constant, increases e0a,

which leads to reduction in stiffness of the nanobeam

that normally reduces the frequency, but it increases the

frequency. Figure 7 and comparing Fig. 6a with Fig. 6b

and Fig. 6c with Fig. 6d show that similar to cantilever

nanobeam under LT condition, dependency of the nor-

malized frequency on the amplitude changes with non-

local value, and this is because the nonlocal value

changes the stiffness of the nanobeam and the effect of

the nonlinearity depends on the stiffness of the

nanobeam.

Figure 7 shows that the effect of rotational velocity on

the normalized frequency of cantilever nanobeam under

HT conditions depends on the nonlocal value, which means

when l ¼ 0; 0:1 or 0.2 the normalized frequency increases

with rotational velocity, but when l ¼ 0:3; 0:4 or 0.5 the

rotational velocity reduces the normalized frequency.

Unlike LT condition, the normalized frequency of can-

tilever nanobeam under HT condition increases with the

temperature change.

The normalized frequency of propped cantilever nano-

beam under LT condition with amplitude and rotational

velocity is represented, respectively, in Figs. 8 and 9.

Figure 9 and comparing Fig. 8a with Fig. 8b and Fig. 8c

Table 6 Normalized frequency of propped cantilever nanobeam versus the temperature change under LT, HT condition,

L = 25b = 10h = 50 nm

LT, amp = 1 LT, amp = 2

l = 0 l = 0.1 l = 0.2 l = 0.4 l = 0.5 l = 0 l = 0.1 l = 0.2 l = 0.4 l = 0.5

U = 0

DS = 0 1.171104 1.203408 1.295497 1.612079 1.813605 1.576686 1.671158 1.92698 2.71941 3.18695

25 1.16236 1.191145 1.270134 1.50961 1.638763 1.550589 1.635636 1.858214 2.472991 2.782476

50 1.154471 1.180285 1.248823 1.437255 1.527688 1.526831 1.603835 1.799509 2.294081 2.517008

75 1.147316 1.170599 1.230658 1.383264 1.450365 1.505103 1.575184 1.748735 2.157238 2.326851

100 1.140797 1.161905 1.214986 1.341348 1.39323 1.48515 1.549225 1.704336 2.048624 2.182741

U = 2

DS = 0 1.161046 1.1876 1.25763 1.446735 1.53574 1.546647 1.625292 1.823877 2.317793 2.536532

25 1.153282 1.17713 1.238193 1.390478 1.456156 1.523232 1.594534 1.769885 2.175711 2.341274

50 1.146234 1.167773 1.221508 1.347031 1.397606 1.501803 1.566772 1.722884 2.063486 2.193903

75 1.139809 1.15936 1.207025 1.312418 1.352621 1.482113 1.541577 1.681558 1.972248 2.07806

100 1.133926 1.151754 1.194332 1.284166 1.316924 1.463953 1.5186 1.644906 1.8964 1.984226

HT, amp = 1 HT, amp = 2

U = 0

DS = 0 1.171104 1.203408 1.295497 1.612079 1.813605 1.576686 1.671158 1.92698 2.71941 3.18695

25 1.177686 1.212803 1.315938 1.71196 2.00919 1.596176 1.698106 1.981608 2.953512 3.625932

50 1.184798 1.223115 1.339475 1.853874 2.347306 1.617093 1.727439 2.043714 3.278323 4.363414

75 1.192508 1.234489 1.366882 2.074213 3.123733 1.639604 1.759503 2.115056 3.769541 6.002569

100 1.200894 1.247098 1.399221 2.474132 12.31904 1.663907 1.794718 2.198017 4.635225 24.57712

U = 2

DS = 0 1.161046 1.1876 1.25763 1.446735 1.53574 1.546647 1.625292 1.823877 2.317793 2.536532

25 1.16686 1.195552 1.272967 1.496214 1.609643 1.564049 1.648446 1.865952 2.44021 2.713633

50 1.173112 1.204213 1.290274 1.558535 1.708618 1.582645 1.673475 1.912911 2.591549 2.94576

75 1.179853 1.213684 1.309963 1.639681 1.848964 1.602565 1.700623 1.965708 2.78464 3.267212

100 1.187145 1.224086 1.332569 1.750216 2.066169 1.623962 1.730186 2.025576 3.041879 3.751829
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with Fig. 8d show that the normalized frequency increases

with nonlocal value.

Figure 8 and Table 6 show that the effect of nonlinear

parameter on the normalized frequency increases with

nonlocal value and also when the rotational velocity

decreases.

Figure 9 shows that the normalized frequency decreases

by increasing the rotational velocity. Besides, it can be seen

that dependency of the normalized frequency on the rota-

tional velocity increases by increasing the nonlocal value.

Table 6 shows that the effect of the amplitude on nor-

malized frequency of the propped cantilever nanobeam

under LT and HT conditions is more than that of the

rotational velocity. Besides, it can be seen that the tem-

perature change decreases the normalized frequency and

the effect of temperature change on normalized frequency

increases with nonlocal value. It can be seen that the nor-

malized frequency increases with amplitude and nonlocal

value and decreases with temperature change.

Normalized frequency of propped cantilever nanobeam

under HT condition with respect to the amplitude and

rotational velocity is investigated in Figs. 10 and 11, respec-

tively. Figures 10 and 11 show that the normalized frequency

increases with the temperature change and the nonlocal value

and decreases by the increment of the rotational velocity.

It is also shown that the dependency of normalized

frequency on rotational velocity, temperature change and

amplitude increases with nonlocal value.

Comparing Fig. 8 with Fig. 10 shows that unlike LT

condition, the temperature change increases the normalized

frequency of the propped cantilever nanobeam under HT

condition.

Finally, it should be noted that the thermal stress has

effects on the vibrational behavior of the nanobeam when

the ends of the nanobeam have no vertical or axial move-

ments. Here, the consideration of the thermal stress is to

examine the difference of the behavior of these two

boundary conditions in the response of the fundamental

frequency to the external effect, which is here considered

and employed as the thermal effect. Also, the external

effect can be in shape of thermal, magnetic, etc., which is

shown as the thermal stress in this paper.
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Fig. 10 Normalized frequency of propped cantilever nanobeam versus the amplitude of nonlinearity under HT condition
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4 Conclusion

In the present work, the nonlinear flapwise bending

vibration of rotating cantilever and propped cantilever

nanobeams under thermal effects was investigated. The

equations are solved for the frequencies by using the DQ

approach. It was observed that the nonlocal effect

increases the normalized frequency of both cantilever and

propped cantilever. Unlike propped cantilever, the effect

of amplitude and rotational velocity on normalized fre-

quency of cantilever nanobeam depends on nonlocal

value. It was shown that when the nonlocal value is

l C 0.3 normalized frequency increases with the ampli-

tude and it decreases when the rotational velocity

increases. But, when the nonlocal value is l B 0.2,

increasing the amplitude decreases the normalized fre-

quency and the rotational velocity increases the normal-

ized frequency.

For propped cantilever nanobeam, the normalized fre-

quency always increases with rotational velocity and

decreases with temperature change.

The normalized frequency of both cantilever and prop-

ped cantilever nanobeams increases with temperature

change under HT condition, while increasing the temper-

ature change under LT condition decreases the normalized

frequency. Besides, in all cases, increasing the nonlocal

value increases the effect of temperature change on nor-

malized frequency. The results can provide useful help for

the study and design of the new generation of nanodevice

such as nanosensors, micromotors, nanoturbines, nanomo-

tors and NEMS.
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