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Abstract In the present manuscript, a nonclassical beam

theory is developed to analyze free vibration of piezo-

electric nanobeam by considering surface effects resting on

Winkler–Pasternak elastic medium and thermal loading

with axial preload. The nonclassical Eringen theory is

utilized to incorporate the length-scale parameter to

account for the small-scale effect, while the Gurtin–Mur-

doch model is employed to inject the surface effects

including surface elasticity, surface stress and surface

density. The governing equations are derived using

Hamilton’s principle in the framework of Euler–Bernoulli

beam theory. The governing partial differential equations

of motions of system are reduced to a set of algebraic

equations with the help of differential transformation

method as a semi-analytical–numerical. The mathematical

derivations and numerical results are presented in detail for

various boundary conditions. Some numerical examples

are illustrated in order to investigate the effect of several

parameters such as the nonlocal parameter, piezoelectric

voltage, surface effects, temperature change, axial preload

and elastic medium parameters. Moreover, it is also indi-

cated that the numerical results have good agreement with

previous studies.

1 Introduction

With the advance of energy harvesting from ambient

energy sources to generate other forms of energy such as

electricity, MEM and NEM sensors are employed as

energy harvesters in different fields. As an example, in tire

pressure monitoring systems (TPMS) which directly affect

vehicle’s handling [1], one approach for harvesting is to

provide sustainable power for wireless sensors, while it

will be possible by piezoelectric materials. The piezo-

electric materials when subjected in electrical loads will

produce mechanical deformations for their intrinsic elec-

tro-mechanical coupling effect [2]. Many studies have been

done around the macroscopic piezoelectric materials such

as works done in Refs. [3–5].

Because of high sensitivity of MEMs/NEMs, investi-

gating their mechanical properties and behavior is crucial

to design and manufacture of these structures. It is

observed that the piezoelectric nanostructures have differ-

ent mechanical, electrical and also physical and chemical

properties than their bulk. Among all nanostructures,

investigating piezoelectric nanobeams’ vibrational behav-

ior is important according to their wide range of application

such as nanosensors, actuators, generators, transistors and

diodes [6]. Pan et al. [7] reported the ZnO piezoelectric

nanostructures among other piezoelectric nanomaterials

such as ZnS, PZT, GaN and BaTiO3, and studying

nanostructures has received attention from researchers such

as those in [8, 9].

To date, studying buckling and vibration characteristics

of nanobeams has been theoretically investigated in the

content of size-dependent beam analysis by several

researchers. However, it is known that the classical con-

tinuum mechanics cannot predict and explain the size-

dependent behavior of nanostructures. Therefore, in order
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to incorporate the size effects in continuum mechanics,

there are several higher-order continuum theories, such as

the couple stress theory [34], strain gradient theory [10],

nonlocal elasticity theory [11], micropolar theory [12] and

surface elasticity [13]. But, among all of these theories, the

nonlocal elasticity of Eringen [11] is proved to be capable

for different analyses on nanostructures. The simplicity in

the application of nonlocal elasticity of Eringen resulted in

rapid extension of this theory in different static and

dynamic analyses for various nanostructures such as those

in [14, 15].

As the experimental and atomistic simulations show, the

ratio of surface to volume has undeniable role in nanoscale

problems [16]. Gurtin and Murdoch [17] represented the

surface elasticity theory and also its applications in

nanostructures which have a good agreement with experi-

mental measurements [18]. Recently, surface effects on

static and dynamic analyses of elastic materials have been

extensively studied by researchers, such as works done in

[19–22]. Further, the nonlocal and surface effects are two

inevitable fields which studied simultaneously. For

instance, Hosseini-Hashemi et al. [6] studied the static and

dynamic analyses with considering both surface and non-

local effects on piezoelectric functionally graded nano-

beams. In a similar work, they also studied the nonlinear

free vibration of piezoelectric functionally graded nano-

beams in the framework of the Euler–Bernoulli beam

theory [23].

Also, the study of surface and nonlocal effects on

buckling and vibrational characteristics of Al and Si nan-

otubes is done by Ebrahimi et al. [24]. They also used

DTM for the first time to investigate the nondimensional

natural frequency and buckling loads. In a similar work

[25], the influence of various surface effects on funda-

mental natural frequencies was mentioned.

In addition, investigating the thermal effect in high-

temperature conditions has considerable effect on dynamic

behavior of nanobeams. Afterward, the effect of tempera-

ture changing is studied in different researches, such as

Ebrahimi and Salari [26], whom studied thermo-electrical

buckling characteristics of functionally graded piezoelec-

tric (FGP) nanobeams based on Timoshenko theory sub-

jected to in-plane thermal loads and applied electrical

voltage, while the motion equations have been solved by

Navier-type solution. Furthermore, Ansari et al. [27]

studied thermo-electro-mechanical vibration of postbuck-

led piezoelectric nanobeams based on the nonlocal elas-

ticity theory in the framework of Timoshenko beam theory.

In a similar work, thermo-electric-mechanical vibration of

the piezoelectric nanobeams is done by Ke and Wang [2]

based on the nonlocal theory and Timoshenko beam theory.

Moreover, Ebrahimi and Barati [28] studied the dynamic

modeling of a magneto-thermo-piezoelectrically actuated

nanobeam based on the higher-order shear deformation

beam theory. And also, study of the electro-mechanical

coupling behavior of piezoelectric nanowires in the pres-

ence of both surface and small-scale effects based on

Euler–Bernoulli beam theory is analyzed by Wang and

Wang [29]. So, it can be concluded that it is necessity to

consider the thermal effects in vibration analysis of

nanostructures and should not be ignored in dynamic

analysis.

It is known that studying the mechanical behavior of

nanostructures rested in elastic medium is also achieved

attention from researchers and is considered in analysis. It

should be noted that the Winkler elastic foundation model

consists of closely spaced elastic springs which are inte-

grated to the bottom of beam surface. But this model

cannot incorporate the continuousness of the elastic

environment. Besides, Pasternak model consists of two

parameters elastic foundation which is known as Winkler–

Pasternak model. This model comprises a Winkler-type

elastic spring besides the transverse shear stress as a result

of the shear deformation in the medium, while the Winkler

model incorporates the normal pressure from surrounding

medium [30, 31]. A few investigations have been carried

out in the open literature dealing with the elastic medium

in dynamic analysis of nanostructures such as

[15, 18, 32–34].

Lots of literature works presented the thermo-electro-

mechanical vibration of size-dependent piezoelectric

nanobeams, whereas investigating both surface and non-

local effects in Winkler–Pasternak medium with preload is

rather limited. This motivated the current work which is

concerned with theoretical modeling on thermo-electro-

mechanical analysis of piezoelectric nanobeams which is

complemented with size-dependent model based on the

extended theory of piezoelectricity and Euler–Bernoulli

beam theory. The Gurtin–Murdoch model is used to

incorporate the surface effects including surface elasticity,

surface stress and surface density. The governing motion

equations are obtained by Hamilton’s principle using the

nonlocal elasticity of Eringen within the framework of

Euler–Bernoulli beam theory. The differential transforma-

tion method (DTM) is used as a semi-analytical–numerical

technique which is simpler with high precision in com-

parison with other methods. However, implementing the

DTM to solve similar works is also rather limited, which is

used to solve the current motion equations for various

boundary conditions for the first time. Next, the resultant

natural frequencies are validated for different boundary

conditions as it is shown that they are in good agreement

with well-known literature. Finally, through some numer-

ical examples, the influence of various parameters such as

nonlocality, surface effects, temperature change, preload

and elastic medium is investigated.
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2 Governing equations

2.1 Nonlocal effects

The nonlocal elasticity theory introduces information about

the forces between atoms in the bulk of material and the

internal length scale, the constitutive equations will be

obtained which will can used as the material parameters.

This theory expresses that the stress at a reference point is a

function of the stain at all points in the adjacent region.

This assumption can explain some experimental observa-

tions of atomic and molecular scales, for example high-

frequency vibration and wave dispersion [15]. For a

homogeneous and nonlocal piezoelectric solid, the basic

equations for stress tensor and electrical displacement at

any point x in the bulk of material by neglecting the body

forces can be expressed as [29]:

rij � l2r2rij ¼ Cijklekl � ekijEk � kijDT ð1Þ

Di � l2r2Di ¼ eiklekl þ eikEk þ piDT ð2Þ

where rij; Di are the component of the stress and electrical

field, while the ekl; Cijkl; eikl
; kij are the strain, elastic con-

stant, piezoelectric constants and thermal moduli. DT and

pi are the temperature change and piezoelectric constants;

l ¼ ðe0aÞ2
is the nonlocal constant; moreover, e0a is the

scale length which takes the size effect into account on the

response of nanostructures.

2.2 Surface effects

The energy which is associated by atoms in the surface

layers affects the mechanical properties of nanostructures

which have been extensively studied by researchers. So far,

Gurtin and Murdoch [17] introduced the continuum

framework which represented the influence of the surface

elastic stress and strain field. Their model reflects the

surface elastic, by assuming the surface layers as a two-

dimensional film with zero thickness which is attached to

the material body. Assuming that these surface layers are

only because of modeling purpose and these layers do not

actually exist, so the type of surface is not defined. For the

surface of the piezoelectric materials, the local stresses and

electrical displacement can be expressed as [29]:

sslab ¼ s0
ab þ Cs

abcdecd � esabkEk ð3Þ

Dsl
i ¼ D0

i þ esabieab þ ksijEj ð4Þ

where Cs
abcd, ecd, esabk and ksij are surface elastic constant,

surface strains, surface piezoelectric constants and surface

dielectric constants, respectively. sslab and s0
ab are the non-

local stress tensor and residual surface stress tensor,

respectively.

Assuming the same material properties in top and bot-

tom layers, the relative stress–strain relations for surface

layers will be expressed as:

sxx ¼ s0 þ Esux;x; Es ¼ 2l0 þ k0; snx ¼ s0un;x ð5Þ

The rzz which is often neglected in classical beam the-

ories will be considered to satisfy the equilibrium equations

and has linear relation with the beam thickness which can

be obtained as:

rzz ¼
2zm
h

so
o2w

ox2
� qo

o2w

ot2

� �
ð6Þ

2.3 Problem formulation

Based on the nonlocal theory and surface effects of

piezoelectric material proposed in previous section, the

vibration of size-dependent piezoelectric nanobeam under

thermo-electro-material in elastic foundation is analyzed.

A piezoelectric nanobeam with length L (0� x� L),

thickness h (�h=2� z� h=2) and width b (�b=2�
y� b=2) is subjected to an applied voltage /ðx; zÞ and

uniform temperature change DT. The Euler–Bernoulli

beam theory is utilized to develop the piezoelectric nano-

beam. Based on the Euler–Bernoulli beam model, the cross

section of nanobeam is assumed to remain plane and nor-

mal to the deformed beam axis, and also in this study, the

cross section of nanobeam is assumed to be constant along

the length of the beam. The coordinate system is often

supposed: The x-axis is taken along the length of the beam,

the y-axis is taken along the width, while the z-axis is taken

along the thickness of beam as shown in Fig. 1.

Following the Euler–Bernoulli beam model, the dis-

placement can be expressed as follows:

u1 ¼ u� z
ow

ox
; u2 ¼ 0; u3 ¼ wðx; tÞ ð7Þ

where uðx; tÞ and wðx; tÞ are axial and lateral displacement

components in mid-plane, and t is the time.

The strain relation according to Euler–Bernoulli beam

theory is obtained as:

exx ¼
ou

ox
� z

o2w

o2x
ð8Þ

Fig. 1 Geometry of a nanobeam with length L and thickness h in

elastic medium
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Accordingly, the normal stress (rxx) and the surface

stress (rs) are functions of surface strain exx which is

obtained as follows:

rxx ¼ Eexz þ trzz � e31Ez

rs ¼ s0 þ Esexx
ð9Þ

where e31 and Ez are the piezoelectric coefficient and z-

component of the electrical field, respectively. Also, s0 and

Es are the surface tension and surface Young’s modulus.

The distribution field of the electrical potential should

be assumed for the presented model. The electrical dis-

placement can be defined as [35]:

Ex ¼ � o/
ox

; Ez ¼ � o/
oz

;

Dx ¼ k11Ex; Dz ¼ e31ex þ k33Ez;

oDx

ox
þ oDz

oz
¼ 0

ð10Þ

where k11 and k33 denote the dielectric constants; Dx and Dz

are electrical displacements. Because k11 and k33 are in the

same order and assuming Ex � Ez; so Dx can be ignored in

comparison with Dz. Substituting Eq. (8) into Eq. (10), while

the electrical boundary conditions are assumed /ðx;�hÞ ¼
0; /ðx; hÞ ¼ 2V the electrical potential is obtained as:

/ðx; zÞ ¼ � e31

k33

z2 � h2

2

� �
o2w

ox2
þ 1 þ z

h

� �
V ð11Þ

So, in this case, the equivalent load to the piezoelectric

layers will be obtained as:

Pelectricðx; tÞ ¼ b

Zh

�h

r�xdz ¼ 2Vbe31 ð12Þ

with r�x indicating the normal stress due to the piezoelectric

property.

The governing motion equations and boundary condi-

tions can be obtained by Hamilton’s principle:Z t

0

dðU � T þWextÞdt ¼ 0 ð13Þ

in which, U, T and Wext indicate the strain energy, kinetic

energy and work done by external forces.

The first variation of strain energy is obtained as:

U ¼
ZL

0

Z h
2

�h
2

rxxdexx þ rxzdcxz � DxdEx � DzdEz

� �
dz dx ð14Þ

Combining Eq. (8) and Eq. (14) leads to:

dU ¼
Z l

0

Z h=2

�h=2

Ndu�Md
o2w

ox2

� �
þ Dxd

o/
ox

� �
þ Dzd

o/
oz

� �� 	
dx

ð15Þ

where N the axial force and M the bending moment are

determined through the following equations:

Nx ¼
Z h

2

�h
2

rxxdz; Mx ¼
Z h

2

�h
2

rxxzdz ð16Þ

The kinetic energy for piezoelectric nanobeam can be

calculated as:

T ¼ 1

2
q
ZZ

_u2
1 þ _u2

2 þ _u2
3

� �
dA � dx

¼ 1

2
q
Z

I1
ou

ot

� �2

þI2
o2w

oxot

� �2

þI1
ow

ot

� �2
 !

dx

ð17Þ

where I1 and I2 are defined:

I1 ¼
Z h

2

�h
2

qdz; I2 ¼
Z h

2

�h
2

qz2dz ð18Þ

Accordingly, the first variation of Eq. (17) can be

obtained as:

dT ¼ �
Z l

0

I1
o2w

ot2

� �
dðwÞ � I2

o4w

ox2ot2

� �
dðwÞ þ I1

o2u

ot2

� �
dðuÞ

� �
dx

ð19Þ

In this study, the axial load which is caused by the

elastic medium based on the Winkler–Pasternak foundation

is assumed in the following form:

f ¼ �kwwþ kp

o2w

ox2
ð20Þ

And the work done by external forces is given by:

dWext ¼
Z t

0

qwdðwÞ þ qudðuÞð Þ ð21Þ

where qw is calculated as:

qw ¼ H þ Np þ NT þ Pelectric

� � o2W

ox2

� �

� KwW þ KP

o2W

ox2

� � ð22Þ

In this equation, Np and NT are the normal forces which

are induced by the biaxial force P0 and temperature rise,

and H is a constant which is obtained by residual surface

stress and the shape of cross section.

NP ¼ P0

NT ¼ �k1ADT

H ¼ 2bs0

ð23Þ

Substituting Eqs. (15), (19) and (21) into Eq. (13) with

setting the coefficient of du and dw equal to zero, the

following equations will be obtained:
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oN

ox
þ qu � I1

o2u

ot2

� �
¼ 0 ð24Þ

o2M

ox2
þ qw þ I2

o4w

ox2ot2

� �
� I1

o2w

ot2

� �
¼ 0 ð25Þ

The bending moment for piezoelectric nanobeam with

considering surface effects will be calculated by:

M ¼
Z

rxxzdAþ
Z

sxxzdA�
Z

e31/zzdA ð26Þ

M ¼ �ðEIÞ� o
2w

ox2
þ 2Im

h
s0

o2w

ox2
� q0

o2w

ot2

� �

þ e2
31

k33

I
o2w

ox2

ð27Þ

where ðEIÞ� ¼ Eðbh3=12Þ þ Esðh3=6 þ bh2=2Þ is the

effective bending stiffness. Using the nonlocal elasticity

theory for bending moment:

M � l
o2M

ox2
¼ �ðEIÞ� o

2w

ox2
þ 2Im

h
s0

o2w

ox2
� q0

o2w

ot2

� �

þ e2
31

k33

I
o2w

ox2
ð28Þ

M ¼ l �I2
o4w

ox2ot2

� �
þ I1

o2w

ot2

� �
� qw

� �
� ðEIÞ� o

2w

ox2

þ 2Im
h

s0

o2w

ox2
� q0

o2w

ot2

� �
þ e2

31

k33

I
o2w

ox2
ð29Þ

Substituting Eq. (29) into Eq. (25) the constitutive

motion equation will be obtained:

1�l
o2

ox2

� �
�I2

o4w

ox2ot2

� �
þ I1

o2w

ot2

� �
� qw

� �
�ðEIÞ� o

4w

ox4

þ 2Im
h

s0

o4w

ox4
�q0

o4w

ox2ot2

� �
þ e2

31

k33

I
o4w

ox4
¼ 0 ð30Þ

Assuming the harmonic motion for the free vibration of

nanobeam with natural frequency of x, namely:

wðx; tÞ ¼ WðxÞeixt ð31Þ

Substituting Eq. (31) into Eq. (30) leads to:

1�l
o2

ox2

� �
x2I2

o2W

ox2

� �
�x2I1WðxÞ� qw

� �
�ðEIÞ� o

4W

ox4

þ 2Im
h

s0

o4W

ox4
þq0x

2 o
4W

ox2

� �
þ e2

31

k33

I
o4W

ox4
¼ 0 ð32Þ

2.4 Solution procedure

In addition, the governing motion equation for piezoelec-

tric nanobeam and associated boundary conditions is dis-

cretized using DTM. This method is one of the most useful

techniques for solving the differential equations which

comes from Taylor’s series expansion. Implementing DTM

reduces the governing equations for various boundary

conditions to algebraic equations, and finally, all the cal-

culations turn into simple iterative process [36]. The basic

definitions are defined as:

Y ½k� ¼ 1

k!

dkyðxÞ
dxk

� �
x¼x0

ð33Þ

yðxÞ ¼
X1
k¼0

ðx� x0ÞkY ½k� ð34Þ

Some of the transformation functions in order to trans-

form the constitutive equations and boundary conditions

into algebraic equations are listed in Table 1.

Apply the mentioned equations in Table 1. Using the

DTM to Eq. (32), the resultant equations are obtained as:

ðEIÞ�þ2I3m
h

s0�
e2

31

k33

�l2 NpþNTþPelectricþH
� �

�l2KP

� �

kþ4ð Þ!
k!

W ½kþ4�þ 2I3mq0x
2

h

�

þ NpþNTþPelectricþH
� �

þKPþl2Kw�I1l
2x2
�

ðkþ2Þ!
k!

W ½kþ2�� KwþI1x
2

� �
W ½k�¼0

ð35Þ

Simplifying Eq. (35), the following relation can be

obtained:

Also, the resultant equations for boundary conditions by

using from Table 2 are given as:

W ½k þ 4� ¼
� 2I3mq0x

2

h
þ Np þ NT þ Pelectric þ H
� �

þ KP þ l2Kw � I1l2x2
� �

ðkþ2Þ!
k! W ½k þ 2� þ Kw þ I1x2ð ÞW ½k�

EIð Þ�þ 2I3m
h
s0 � e2

31

k33
� l2 Np þ NT þ Pelectric þ H

� �
� l2KP

� �
ðkþ4Þ!

k!

ð36Þ
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• Simply–simply supported:

W ½0� ¼ 0; W ½2� ¼ 0

X1
k¼0

W ½k� ¼ 0;
X1
k¼0

kðk � 1ÞW ½k� ¼ 0
ð37aÞ

• Clamped–clamped:

W ½0� ¼ 0; W ½1� ¼ 0

X1
k¼0

W ½k� ¼ 0;
X1
k¼0

kW ½k� ¼ 0
ð37bÞ

• Clamped–simply:

W ½0� ¼ 0; W ½1� ¼ 0

X1
k¼0

W ½k� ¼ 0;
X1
k¼0

kðk � 1ÞW ½k� ¼ 0
ð37cÞ

The initial boundary conditions are calculated from the

first four W[k]s, and also the higher quantities will be

obtained by substituting these equations into recurrence

Eq. (36). From Eq. (36) and transformed boundary condi-

tions, the following expression will be obtained:

A11ðxÞ A12ðxÞ
A21ðxÞ A22ðxÞ

� 	
½C� ¼ 0 ð38Þ

The eigenvalue equation is calculated from Eq. (38) as

follows:

A11ðxÞ A12ðxÞ
A21ðxÞ A22ðxÞ










 ¼ 0 ð39Þ

Solving Eq. (39), we get x ¼ xðnÞ
j which xðnÞ

j shows the

jth natural frequency and for calculating n, the following

equation is used:

xðnÞ
j � xðn�1Þ

j




 


� e ð40Þ

in which e is the tolerance parameter which is assumed as

0.0001 which means the value of frequencies had four-digit

precision. The constitutive equations are solved, and fun-

damental natural frequencies are obtained.

3 Numerical results and discussion

In this section, the natural frequencies of piezoelectric

nanobeam based on the nonlocal Euler–Bernoulli beam

theory under thermo-electro-mechanical resting on elastic

medium with various boundary conditions are predicted.

The Al material properties assumed are listed in Table 3

[28, 37].

The selected numerical results are investigated to pre-

sent the influence of nonlocal parameter (l), temperature

change (DT), external electrical voltage (V0) and preload

(Np) with various boundary condition including clamped–

clamped (C–C), clamped–simply (C–S) and simply–simply

supported (S–S).

Table 1 Some basic theorems of DTM for equations of motion

Original function Transformed function

f(x) = g(x) ± h(x) F(K) = G(K) ± H(K)

f ðxÞ ¼ kgðxÞ F(K) = kG(K)

f(x) = g(x)h(x) FðKÞ ¼
PK

l¼0 GðK � lÞHðlÞ

f ðxÞ ¼ dngðxÞ
dxn

FðKÞ ¼ ðkþnÞ!
k! GðK þ nÞ

f(x) = xn
FðKÞ ¼ dðK � nÞ ¼ 1 k ¼ n

0 k 6¼ n

�

Table 2 Transformed

boundary conditions (BC) based

on DTM

X = 0 X = L

Original BC Transformed BC Original BC Transformed BC

f(0) = 0 F[0] = 0 f(L) = 0
P1

k¼0 F½k� ¼ 0

df ð0Þ
dx

¼ 0 F[1] = 0 df ðLÞ
dx

¼ 0
P1

k¼0 kF½k� ¼ 0

d2f ð0Þ
dx2

¼ 0 F[2] = 0 d2 f ðLÞ
dx2

¼ 0
P1

k¼0 kðk � 1ÞF½k� ¼ 0

d3f ð0Þ
dx3

¼ 0 F[3] = 0 d3 f ðLÞ
dx3

¼ 0
P1

k¼0 kðk � 1Þðk � 2ÞF½k� ¼ 0

Table 3 Al and Si material properties

Properties Al [28, 37]

Young’s modulus (E) 70 GPa

Poisson’s ratio (m) 0.3

Mass density (q) 2700 kg m-3

Residual surface tensions (s0) 0.9108 N m

Elasticity surface modules (Es) 5.1882 N m

Density of surface layer (qs) 5.46 9 10-7 kg m2

Thermal coefficient (k1) 2.56 9 10-6 1/k

Piezoelectric coefficient (e31) -10 C m2

Dielectric constants (k33) 1.0275 9 10-8
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In order to validate the numerical results and procedure,

the comparative studies are presented in this section. The

first case study is related to the dimensionless natural fre-

quency; for S–S boundary condition, it is compared with

ones presented in Refs. [38, 39] which are tabulated in

Table 4. As it is indicated from Table 3, the results are in

better agreement with Reddy [39] than Eltaher et al. [38],

and this happens because the numerical results in [39] are

obtained by analytical method which are more reliable in

comparison with those presented in [38] which are

obtained by finite element method (FEM). Table 5 also

includes nondimensional natural frequencies for C–S and

C–C boundary condition presented in Ref. [38], and in the

present study, it can be concluded that results are in good

agreement with those in [38] with a very slight difference

due to solution method.

In the calculation of the natural frequencies by solving

the governing motion equations with DTM, the value of

natural frequencies after some iteration converges to the

constant value. The convergences of first three natural

frequencies are investigated in Table 6. As it can be

observed from Table 6, the first natural frequency in S–S

boundary condition converged after 15 iterations with four-

digit precision, while the second natural frequency con-

verged after 25 iterations.

Table 4 Comparison of the nondimensional fundamental frequency

for a nanobeam with various nonlocal parameters with S–S boundary

conditions

l S–S boundary condition

Present paper Reddy [39] Eltaher et al. [38]

0 9.8696 9.8696 9.8700

1 9.4158 9.4159 9.4162

2 9.0194 9.0195 9.0197

3 8.6691 8.6693 8.6695

4 8.3569 8.3569 8.3571

5 8.0760 8.0761 8.0762

Table 5 Comparison of the

nondimensional fundamental

frequency for a nanobeam with

various nonlocal parameters

with C–S boundary conditions

l C–S C–C

Present paper Eltaher et al. [38] Present paper Eltaher et al. [38]

0 15.4182 15.4189 22.3733 22.3744

1 14.9923 14.9929 21.1086 21.1096

2 14.5991 14.5997 20.0321 20.0330

3 14.2347 14.2353 19.1020 19.1028

4 13.8959 13.8965 18.2884 18.2890

5 13.5798 13.5803 17.5691 17.5696

Table 6 Convergence study of

nanobeam for the first three

natural frequencies (L/h = 100,

l = 2 nm2)

k C–C C–S S–S

�x 1 �x2 �x3 �x 1 �x2 �x3 �x 1 �x2 �x3

11 18.9537 14.4286 9.0384

13 20.4543 14.6787 9.0181

15 19.9907 14.5958 9.0194 27.9180

17 20.0367 14.5995 9.0194 29.9999

19 20.0318 14.5991 43.1861 9.0194 29.4611

21 20.0322 43.6093 14.5991 41.6494 9.0194 29.5137

23 20.0321 44.5424 14.5991 41.8090 9.0194 29.5086

25 20.0321 44.3698 14.5991 41.7900 9.0194 29.5090 52.7212

27 20.0321 44.3893 14.5991 41.7918 9.0194 29.5090 53.3891

29 20.0321 44.3873 14.5991 41.7917 75.2351 9.0194 29.5090 53.2852

31 20.0321 44.3875 69.6921 14.5991 41.7917 74.7880 9.0194 29.5090 53.2962

33 20.0321 44.3875 70.1564 14.5991 41.7917 74.8396 9.0194 29.5090 53.2952

35 20.0321 44.3875 70.0864 14.5991 41.7917 74.8338 9.0194 29.5090 53.2952

37 20.0321 44.3875 70.0943 14.5991 41.7917 74.8344 9.0194 29.5090 53.2952

39 20.0321 44.3875 70.0935 14.5991 41.7917 74.8343 9.0194 29.5090 53.2952

41 20.0321 44.3875 70.0936 14.5991 41.7917 74.8343 9.0194 29.5090 53.2952

43 20.0321 44.3875 70.0936 14.5991 41.7917 74.8343 9.0194 29.5090 53.2952
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After studying convergence and validation, the influence

of temperature and nonlocal parameters with changing

voltage for piezoelectric nanobeam is represented in

Tables 7, 8 and 9 for S–S, C–S and C–C boundary con-

ditions in the presence of surface effects, respectively. And

also according to the previous discussion, the mechanical

properties are considered to be constant and all the results

are calculated for Al in this section. As indicated in

Tables 7, 8 and 9, increasing temperature causes an

increase in natural frequency; the reason is that increase in

temperature change brings in more increase in the nano-

beam stiffness and hence leads to rise in natural frequen-

cies, while increasing the nonlocal parameter and voltage

from negative to positive amount decreases the value of

natural frequencies. Cause of reducing frequency with

growing nonlocal parameter is that the presence of the

nonlocal effect tends to decrease the stiffness of nanos-

tructures and decreases natural frequency. Also, the posi-

tive voltage tends to decrease natural frequency, while the

negative voltage causes an increase in natural frequency. It

happens for the fact that the axial compressive and tensile

forces are generated in nanobeams by applied positive and

negative voltage, respectively. It should be noted that when

the nonlocal parameter assumed to be zero, the resultant

natural frequencies correspond to classical beam theory.

Tables 10, 11 and 12 list the effect of voltage and

temperature on elastics medium. Increasing both linear and

shear stiffness constants (kw, kp) tends to decrease natural

frequency. This happens because the foundation elastic

affects the stiffness of nanobeams and increasing the value

Table 7 First natural frequency for piezoelectric nanobeam by considering surface and nonlocal effects for S–S

ðL ¼ 20 nm; h ¼ 0:1L; b ¼ 0:5hÞ

T (�C) l = 0 nm2 l = 2 nm2 l = 4 nm2

V = -0.5 V = 0 V = 0.5 V = -0.5 V = 0 V = 0.5 V = -0.5 V = 0 V = 0.5

0 20.0202 14.9643 6.8594 19.9887 14.7568 5.998 19.9584 14.5548 5.0347

15 20.0261 14.9722 6.8767 19.9948 14.7650 6.0184 19.9647 14.5634 5.0595

30 20.0321 14.9802 6.8940 20.0009 14.7733 6.0386 19.9709 14.5720 5.0842

45 20.0380 14.9881 6.9112 20.0070 14.7816 6.0588 19.9772 14.5806 5.1088

60 20.0439 14.9960 6.9284 20.0131 14.7898 6.0789 19.9835 14.5892 5.1333

75 20.0499 15.004 6.9455 20.0192 14.7981 6.9900 19.9897 14.5978 5.1577

90 20.0558 14.0119 6.9626 20.0253 14.8063 6.1190 19.996 14.6064 5.1819

105 20.0617 15.0198 6.9796 20.0314 14.8146 6.1389 20.0023 14.6150 5.2060

120 20.0677 15.0277 6.9966 20.0375 14.8228 6.1588 20.0850 14.6235 5.1100

135 20.0736 15.0356 7.0136 20.0436 14.8311 6.1786 20.0148 14.6321 5.2540

150 20.0795 15.0435 7.0305 20.0497 14.8393 6.1983 20.0211 14.6407 5.2778

Table 8 First natural frequency for piezoelectric nanobeam by considering surface and nonlocal effects for C–S

ðL ¼ 20 nm; h ¼ 0:1L; b ¼ 0:5hÞ

T (�C) l = 0 nm2 l = 2 nm2 l = 4 nm2

V = -0.5 V = 0 V = 0.5 V = -0.5 V = 0 V = 0.5 V = -0.5 V = 0 V = 0.5

0 26.8645 23.0550 18.4634 26.8552 22.7235 17.6356 26.8463 22.4011 16.8054

15 26.8692 23.0611 18.4704 26.8603 22.7295 17.6434 26.8517 22.4077 16.8142

30 26.8740 23.0666 18.4773 26.8654 22.7356 17.6512 26.8572 22.4143 16.8230

45 26.8787 23.0722 18.4843 26.8706 22.7416 17.6591 26.8627 22.4208 16.8317

60 26.8834 23.0777 18.4912 26.8757 22.7477 17.6669 26.8681 22.4274 16.8405

75 26.8882 23.0832 18.4982 26.8808 22.7538 17.6747 26.8736 22.4340 16.8493

90 26.8929 23.0888 18.5051 26.8859 22.7598 17.6825 26.8791 22.4405 16.8580

105 26.8977 23.0943 18.5120 26.8910 22.7659 17.6903 26.8845 22.4471 16.8668

120 26.9024 23.0999 18.5190 26.8961 22.7719 17.6981 26.8900 22.4537 16.8755

135 26.9072 23.1054 18.5259 26.9012 22.7780 17.7059 26.8955 22.4602 16.8843

150 26.9119 23.1109 18.5328 26.9064 22.7840 17.7137 26.9009 22.4668 16.8930
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Table 9 First natural frequency for piezoelectric nanobeam by considering surface and nonlocal effects for C–C

ðL ¼ 20 nm; h ¼ 0:1L; b ¼ 0:5hÞ

T (�C) l = 0 nm2 l = 2 nm2 l = 4 nm2

V = -0.5 V = 0 V = 0.5 V = -0.5 V = 0 V = 0.5 V = -0.5 V = 0 V = 0.5

0 36.0621 33.2374 30.1437 36.0831 32.7515 29.0349 36.1029 32.2804 27.9343

15 36.0658 33.2413 30.148 36.0873 32.7562 29.0402 36.1078 32.2858 27.9406

30 36.0694 33.2453 30.1524 36.0916 32.7609 29.0455 36.1127 32.2913 27.9469

45 36.0731 33.2492 30.1568 36.0959 32.7656 29.0508 36.1175 32.2967 27.9532

60 36.0767 33.2532 30.1612 36.1001 32.7703 29.0561 36.1224 32.3021 27.9595

75 36.0804 33.2572 30.1655 36.1440 32.7750 29.0614 36.1272 32.3076 27.9658

90 36.0840 33.2611 30.1699 36.1087 32.7797 29.0667 36.1321 32.3130 27.9720

105 36.0876 33.2651 30.1743 36.1129 32.7844 29.0721 36.1370 32.3185 27.9783

120 36.0913 33.2690 30.1786 36.1172 32.7892 29.0774 36.1418 32.3239 27.9846

135 36.0949 33.2730 30.1830 36.1215 32.7939 29.0827 36.1467 32.3293 27.9909

150 36.0986 33.2769 30.1874 36.1257 32.7986 29.0880 36.1515 32.3348 27.9972

Table 10 First natural frequency for piezoelectric nanobeam by considering surface and nonlocal effects for S–S

ðL ¼ 20 nm; h ¼ 0:1L; b ¼ 0:5h; l ¼ 2 nm2Þ

kw kp DT = 0 DT = 50 DT = 100

V = -0.2 V = 0 V = 0.2 V = -0.2 V = 0 V = 0.2 V = -0.2 V = 0 V = 0.2

0 0 17.0434 14.7568 12.0436 17.0672 14.7843 12.0773 17.0911 14.8118 12.1110

4 16.5285 14.1590 11.3032 16.5531 14.1877 11.3392 16.5777 14.2164 11.375

8 15.9970 13.5348 10.5108 16.0224 13.5648 10.5494 16.0478 13.5948 10.5880

4 0 16.9919 14.6973 11.9707 17.0158 14.6973 11.9707 17.0398 14.7526 12.0385

4 16.4754 14.0970 11.2254 16.5001 14.1258 11.2617 16.5248 14.1546 11.2978

8 15.9422 13.4699 10.4271 15.6770 13.5001 10.4661 15.9932 13.5302 10.5094

8 0 16.9403 14.6376 11.8973 16.9643 14.6654 11.9314 16.9883 14.6931 11.9655

4 16.4222 14.0347 11.1472 16.4469 14.0637 11.1836 16.4717 14.0926 11.2200

8 15.8871 13.4047 10.3428 15.9128 13.4351 10.4212 15.9383 13.4654 10.42212

Table 11 First natural frequency for piezoelectric nanobeam by considering surface and nonlocal effects for C–S

ðL ¼ 20 nm; h ¼ 0:1L; b ¼ 0:5h; l ¼ 2 nm2Þ

kw kp DT = 0 DT = 50 DT = 100

V = -0.2 V = 0 V = 0.2 V = -0.2 V = 0 V = 0.2 V = -0.2 V = 0 V = 0.2

0 0 24.4612 22.7235 20.8395 24.4799 22.7437 20.8615 24.4987 22.7639 20.8836

4 24.0596 22.2902 20.3657 24.0787 22.3108 20.3883 24.0977 22.3314 20.4108

8 23.6511 21.8482 19.8805 23.6705 21.8692 19.9036 23.6899 21.8903 19.9267

4 0 24.4287 22.6886 20.8015 24.4475 22.7088 20.8236 24.4663 22.7291 20.8457

4 24.0266 22.2547 20.3269 24.0457 22.2753 20.3495 24.0648 22.2959 20.3721

8 23.6176 21.8120 19.8407 23.6370 21.8331 19.8639 23.6564 21.8541 19.8870

8 0 24.3963 22.6533 20.7635 24.4151 22.6739 20.7856 24.4338 22.6942 20.8077

4 23.9936 22.2191 20.2880 24.0127 22.2397 20.3106 24.0318 22.2604 20.3332

8 23.5840 21.7757 19.8009 23.6035 21.7968 19.8241 23.6229 21.8179 19.8473
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of medium parameters reduces natural frequency. Also, it

is clear that the Winkler foundation has less effective than

the Pasternak foundation on natural frequency.

Effects of voltage and nonlocal parameter via axial

preload are shown in Table 13. It can be seen that when the

axial comprehensive force is applied, the lower the natural

frequency becomes, and for axial tensile force, natural

frequency increases. Its reason is because the axial tensile

force strengthens the nanobeam stiffness and comprehen-

sive force weakens its stiffness.

Tables 14, 15 and 16 show nonlocal parameter and

voltage effects via length of nanobeam. As the length of

nanobeam increases, natural frequency decreases. The

influence of surface effects on natural frequencies dimin-

ishes from nanoscale to macro-scale.

Moreover, Fig. 2 presents the variation of first natural

frequency for piezoelectric nanobeam as a function of

voltage for different nonlocal parameters in the presence of

surface effects by ignoring the Winkler–Pasternak elastic

medium and thermal effects. For all values of nonlocal

parameter, a descending trend can be observed, while by

increasing the voltage from negative to positive amount the

difference between curves increases. The piezoelectric field

shows increasing effect for negative voltage and decreasing

Table 12 First natural frequency for piezoelectric nanobeam by considering surface and nonlocal effects for C–C

ðL ¼ 20 nm; h ¼ 0:1L; b ¼ 0:5h; l ¼ 2 nm2Þ

kw kp DT = 0 DT = 50 DT = 100

V = -0.2 V = 0 V = 0.2 V = -0.2 V = 0 V = 0.2 V = -0.2 V = 0 V = 0.2

0 0 34.1237 32.7515 31.3185 34.1388 32.7672 31.3349 34.1538 32.7829 31.3513

4 33.8026 32.4166 30.9679 33.8178 32.4325 30.9845 33.8330 32.4484 31.0011

8 33.4784 32.0782 30.6133 33.4937 32.0943 30.6301 33.5091 32.1103 30.6469

4 0 34.1015 32.7284 31.2943 34.1165 32.7441 31.3107 34.1316 32.7598 31.3271

4 33.7802 32.3933 30.9435 33.7954 32.4092 30.9601 33.8106 32.4250 30.9767

8 33.4558 32.0546 30.5886 33.4711 32.0707 30.6054 33.4865 32.0867 30.6222

8 0 34.0792 32.7052 31.2701 34.0943 32.7209 31.2866 34.1094 32.7367 31.3030

4 33.7577 32.3699 30.9190 33.7730 32.3858 30.9357 33.7882 32.4017 30.9523

8 33.4331 32.0310 30.5639 33.4485 32.0471 30.5807 33.4638 32.0631 30.5975

Table 13 First natural frequency for piezoelectric nanobeam by considering surface and nonlocal effects ðL ¼ 20 nm; h ¼ 0:1L; b ¼ 0:5hÞ

Np l ¼ 0 nm2 l ¼ 2 nm2 l ¼ 4 nm2

V = -0.5 V = 0 V = 0.5 V = -0.5 V = 0 V = 0.5 V = -0.5 V = 0 V = 0.5

S–S

-10 18.941 13.4864 2.2368 18.8768 13.2116 – 18.815 12.9425 –

-5 19.4881 14.2445 5.1017 19.4407 14.0055 3.7906 19.3951 13.7723 1.7836

0 20.0202 14.9643 6.8594 19.9887 14.7568 5.998 19.9584 14.5548 5.0347

5 20.5386 15.651 8.2508 20.5221 15.4716 7.5884 20.5062 15.2974 6.8931

10 21.0442 16.3089 9.4392 21.0419 16.1548 8.8989 21.0397 16.0055 8.3476

C–S

-10 24.0104 22.0518 17.1899 25.9335 21.6238 16.1899 25.8596 21.2063 15.1716

-5 24.4409 22.5593 17.8382 26.3984 22.1805 16.9283 26.3576 21.812 16.0095

0 26.8645 23.0555 18.4634 26.8552 22.7235 17.6356 26.8463 22.4011 16.8054

5 27.2813 23.5411 19.068 27.3042 23.2536 18.3153 27.3261 22.9751 17.565

10 27.6917 24.0167 19.6538 27.7459 23.7717 18.9705 27.7976 23.5349 18.2928

C–C

-10 35.4115 32.529 29.3595 35.3199 31.9077 28.0781 35.2321 31.3024 26.7966

-5 35.7383 32.8851 29.7542 35.7036 32.3324 28.5605 35.6702 31.7952 27.3714

0 36.0621 33.2374 30.1437 36.0831 32.7515 29.0349 36.1029 32.2804 27.9343

5 36.383 33.5858 30.5281 36.4586 33.1653 29.5015 36.5305 32.7583 28.4859

10 36.7011 33.9306 30.9077 36.8302 33.5739 29.9607 36.953 33.2293 29.027
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influence for positive voltage amount on fundamental

natural frequencies of nanobeam.

Next, the variation of natural frequency versus the

voltage for various piezoelectric nanobeam lengths is

shown in Fig. 3 by considering surface and nonlocal effects

in the absence of Winkler–Pasternak elastic medium effect,

while the temperature change is considered to be 50 �C.

The numerical results imply that the influence of surface

and nonlocal effects decreases by increasing voltage in

negative region, while they have different manner for

positive voltage. And also, it can be discovered that by

increasing the beam size the nonlocal and surface with

piezoelectric effects have less influence on the natural

frequencies.

Table 14 First natural frequency for piezoelectric nanobeam by considering surface and nonlocal effects for S–S

ðL ¼ 20 nm; h ¼ 0:1L; b ¼ 0:5h; DT ¼ 50 �CÞ

L l ¼ 0 nm2 l ¼ 2 nm2 l ¼ 4 nm2

V = -0.2 V = 0 V = 0.2 V = -0.2 V = 0 V = 0.2 V = -0.2 V = 0 V = 0.2

10 9 10-9 15.4764 13.415 10.9724 15.2794 12.8744 9.9016 15.0988 12.3657 8.8231

50 9 10-9 16.9035 14.9523 12.7048 16.8682 14.9066 12.6443 16.8331 14.8612 12.5841

100 9 10-9 15.3207 13.8049 12.1006 15.3104 13.7927 12.0859 15.3 13.7806 12.0713

1 9 10-6 10.8608 10.5594 10.2491 10.8607 10.5593 10.249 10.8606 10.5592 10.2489

10 9 10-6 9.9778 9.9440 9.9101 9.9778 9.9440 9.9101 9.9778 9.9440 9.9101

100 9 10-6 9.8805 9.8771 9.8736 9.8805 9.8771 9.8736 9.8805 9.8771 9.8736

1 9 10-3 9.8707 9.8703 9.8700 9.8707 9.8703 9.8700 9.8707 9.8703 9.8700

1 9 10-2 9.8697 9.8696 9.8696 9.8697 9.8696 9.8696 9.8697 9.8696 9.8696

Table 15 First natural frequency for piezoelectric nanobeam by considering surface and nonlocal effects for C–S

ðL ¼ 20 nm; h ¼ 0:1L; b ¼ 0:5h; DT ¼ 50 �CÞ

L l ¼ 0 nm2 l ¼ 2 nm2 l ¼ 4 nm2

V = -0.2 V = 0 V = 0.2 V = -0.2 V = 0 V = 0.2 V = -0.2 V = 0 V = 0.2

10 9 10-9 21.8909 20.4139 18.8206 21.606 19.5884 17.3367 21.3464 18.8151 15.8846

50 9 10-9 24.8353 23.4014 21.8703 24.7771 23.3238 21.7704 24.7194 23.2469 21.6713

100 9 10-9 22.8764 21.7541 20.5677 22.8588 21.7328 20.5422 22.8411 21.7115 20.5168

1 9 10-6 16.7974 16.5725 16.3442 16.7972 16.5723 16.344 16.797 16.5721 16.3438

10 9 10-6 15.5688 15.5436 15.5183 15.5688 15.5436 15.5183 15.5688 15.5436 15.5183

100 9 10-6 15.4334 15.4309 15.4283 15.4334 15.4309 15.4283 15.4334 15.4309 15.4283

1 9 10-3 15.4197 15.4195 15.4192 15.4197 15.4195 15.4192 15.4197 15.4195 15.4192

1 9 10-2 15.4184 15.4183 15.4183 15.4184 15.4183 15.4183 15.4184 15.4183 15.4183

Table 16 First natural frequency for piezoelectric nanobeam by considering surface and nonlocal effects for C–C

ðL ¼ 20 nm; h ¼ 0:1L; b ¼ 0:5h; DT ¼ 50 �CÞ

L l ¼ 0 nm2 l ¼ 2 nm2 l ¼ 4 nm2

V = -0.2 V = 0 V = 0.2 V = -0.2 V = 0 V = 0.2 V = -0.2 V = 0 V = 0.2

10 9 10-9 30.352 29.2851 28.1776 29.9574 28.1002 26.1109 29.5985 26.9922 24.1054

50 9 10-9 35.0092 33.9611 32.8782 34.9232 33.8447 32.7293 34.838 33.7293 32.5814

100 9 10-9 32.494 31.6707 30.8241 32.4674 31.6382 30.7853 32.4408 31.6058 30.7467

1 9 10-6 24.2621 24.0965 23.9297 24.2618 24.0962 23.9294 24.2616 24.0959 23.9291

10 9 10-6 22.5796 22.561 22.5424 22.5796 22.561 22.5424 22.5796 22.561 22.5424

100 9 10-6 22.3941 22.3922 22.3903 22.3941 22.3922 22.3903 22.3941 22.3922 22.3903

1 9 10-3 22.3754 22.3752 33.375 22.3754 22.3752 33.375 22.3754 22.3752 33.375

1 9 10-2 22.3735 22.3735 22.3735 22.3735 22.3735 22.3735 22.3735 22.3735 22.3735
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4 Conclusion

In the current study, a semi-analytical method of nonlocal

piezoelectric surface effect on thermal free vibration of

nanobeam lying on Winkler–Pasternak for various bound-

ary conditions with axial preload is presented. The main

motivations of this paper are investigating influences of

thermal, preload and elastic medium in the presence of

electric potential field. As it is presented, governing

equation is derived with using Hamilton’s principle for

Euler–Bernoulli beam; then, DTM as an efficient and

accurate numerical tool was applied to solve vibration of

Fig. 2 Variation of first natural frequency of S–S for a S–S, b C–S

and c C–C piezoelectric nanobeam for different nonlocal parameters

in the presence of surface effects for different nonlocal parameters

Fig. 3 Variation of first natural frequency of S–S for a S–S, b C–S

and c C–C piezoelectric nanobeam for different nanobeam lengths in

the presence of surface effects
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nanobeam subjected to different boundary condition. After

presenting the rate of convergence for first three natural

frequencies and its validation, some were clarified the

influences of piezoelectric, nonlocal and surface effects in

combination with other parameters on the vibration of

nanobeam. Based on the presented numerical results:

1. For all values of nonlocal parameter, voltage and

different boundary condition, the influence of surface

effects on natural frequencies decreases significantly as

the nanobeam length increases.

2. Natural frequency increases with increasing thermal

effect.

3. Increasing voltage parameter tends to decrease funda-

mental frequency.

4. Increasing tension load causes the natural frequency

decrease, and increasing comprehension load tends to

rise natural frequency .

5. Rising elastic medium parameters including Winkler and

Pasternak foundations significantly reduces frequency.
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