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Abstract In this paper, four artificial neural network

(ANN) models [i.e., feed-forward neural network (FFNN),

function fitting neural network (FITNET), cascade-forward

neural network (CFNN) and generalized regression neural

network] have been developed for atomic coordinate pre-

diction of carbon nanotubes (CNTs). The research reported

in this study has two primary objectives: (1) to develop

ANN prediction models that calculate atomic coordinates

of CNTs instead of using any simulation software and (2)

to use results of the ANN models as an initial value of

atomic coordinates for reducing number of iterations in

calculation process. The dataset consisting of 10,721 data

samples was created by combining the atomic coordinates

of elements and chiral vectors using BIOVIA Materials

Studio CASTEP (CASTEP) software. All prediction

models yield very low mean squared normalized error and

mean absolute error rates. Multiple correlation coefficient

(R) results of FITNET, FFNN and CFNN models are close

to 1. Compared with CASTEP, calculation times decrease

from days to minutes. It would seem possible to predict

CNTs’ atomic coordinates using ANN models can be

successfully used instead of mathematical calculations.

1 Introduction

Carbon nanotubes (CNTs) have been introduced as the

alternatives for copper/aluminum metallic interconnects to

overcome problems caused from miniaturization. CNTs are

2-D graphene crystal as rolled-up sheets. They have elec-

tronic structures depending on their direction since they are

rolled up [1].

A deep impact on the investigation of material proper-

ties is made by ab initio calculations for years. Ab initio

methods are parameter-free and do not require any other

input than the atomic number. These are the reasons for the

enormous success of ab initio methods. Also these methods

are applied to a steadily increasing number of physical and

chemical phenomena through improvements in computer

performance and algorithms [2]. Probably, the local density

functional theory proposed by Kohn and Sham [3] is the

most successful method. Given the chemical composition

and the crystalline structure of a periodic system, the aim

of ab initio computational methods is to calculate its

chemical and physical properties of as accurately as pos-

sible at a reasonable cost, without the need for empirical a

priori information [4].

The formula of the ground state energy proposed by

Kohn and Sham is given as

E ¼
XV

1

2j �
1

2

Z
n rð Þn r0ð Þ
r � r0j j drdr0 �

Z
Vxc rð Þn rð Þdr

þ Exc n rð Þð Þ ð1Þ

where the 2j and n are the self-consistent quantities, Vxc is the

exchange correlation potential energy, Exc is the exchange

correlation energy, and n(r) is the electron density [5].

For calculating the properties of materials from first

principles, BIOVIA Materials Studio CASTEP (CASTEP)
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can be defined as a leading code. It can simulate a wide

range of properties of materials proprieties using density

functional theory. Some of these proprieties can be listed as

structure at the atomic level, energetics, electronic response

and vibrational properties [6].

Density functional theory that is the most successful

method calculates atomic coordinates faster than other

mathematical approaches, and it also reaches more accu-

rate results. However, the elapsed time for calculation of

high number atoms is quite long which is yielded in this

study using CASTEP. Calculation may take several days

due to computer’s/server’s power (CPU, RAM, etc.). On

the other hand, users need to use more powerful machines

and parallel computers which are too expensive to reduce

the calculation time.

The motivation of this paper is reducing the calculation

time for atomic coordinates from days to minutes. It is

known that the current mathematical methods cannot

reduce the calculation time up to this level. Here we ap-

proach the problem from a different angle, instead of cal-

culation; the atomic coordinates are predicted accurately in

such a short time. These predicted atomic coordinates can

be used as preliminary coordinates for the simulation

software, and thus, the exact atomic coordinates will be

calculated within minutes or hours instead of days. Also

usage of the predicted atomic coordinates in researches

also helps to achieve approximate results very fast. Then

we directed our studies to machine learning methods that

are used in the literature for prediction problems to obtain

fast and accurate results.

Some paradigms and approaches are used to convert the

learning studies to machine learning. They can be briefly

listed as statistical pattern recognition, symbolic processing,

case-based learning, genetic algorithms, connectionist sys-

tems and evolutionary programming. The aim for the

machine learning can be defined as realizing the human

learning job by computers. During this learning, various

methods and algorithms are used [7]. Artificial neural net-

work (ANN) algorithms such as feed-forward neural net-

work (FFNN), function fitting neural network (FITNET),

cascade-forward neural network (CFNN) and generalized

regression neural network (GRNN) are several of them.

Formany problems, results can be calculated by using long

and hard formulas in real or simulation environment. Gener-

ally, these situations cause long time and expensive hard-

ware/software. Instead of this, ANN algorithms can be used to

predict results of these problems using dataset that obtained

from real or simulation environment. Many studies exist on

various research areas in the literature, and most of them

predict fast and accurate results using some ANN algorithms.

In the literature, some studies were carried out on

transistors and CNTs: Cheng et al. [8] implemented a

model on graphene metal–oxide–semiconductor field-

effect transistor with ANN. The computational time for the

MOSFET model was decreased significantly. The model

for graphene MOSFET was realized in HSPICE software

as a sub-circuit, which might obviously increase the effi-

ciency of simulations on graphene large-scale integrated

circuits. In another study, for constructing mathematical

models to predict mechanical properties of the carbon

nanotubes/epoxy composites according to an experimental

dataset, Cheng et al. [9] combined support vector regres-

sion (SVR) with particle swarm optimization for its

parameter optimization.

Also in other research areas, many researchers studied

on prediction using ANNs. To predict the performance

measures of a message-passing multiprocessor architec-

ture, Zayid and Akay [10] developed multilayer FFNN

models. To simulate the message-passing multiprocessor

architecture and create the training and testing datasets,

OPNET modeler was used. Standard error of estimate

(SEE) and multiple correlation coefficient are used to

evaluate the performance of the multilayer FFNN predic-

tion models. A practical method for solar irradiance fore-

cast using ANN was presented by Mellit and Pavan [11].

They showed that, using the present values of the mean

daily solar irradiance and air temperature, forecasting the

solar irradiance on a base of 24 h becomes possible using

the proposed multilayer perceptron (MLP) model. Sharma

et al. [12] predicted the performance parameters of a single

cylinder four-stroke diesel engine by an ANN at different

injection timings and engine load using blended mixture of

polanga biodiesel. With calculated correlation coefficient

for performance parameters, the developed ANN model

predicted the engine performance and exhaust emissions

quite well. Xiong et al. [13] presented a study that high-

lights application of an ANN and a second-order regression

analysis to predict bead geometry in robotic gas metal arc

welding for rapid manufacturing. By using GRNN a more

general forecasting method was proposed to predict the

sound absorption coefficients and the average sound

absorption coefficient by Liu et al. [14]. For the Greek

long-term energy consumption prediction, ANNs were

used by Ekonomou [15]. Ekonomou showed the accuracy

after the comparison of the produced ANN results with

other methods’ results and real records. An ANN model

was developed and applied by Ferlito et al. [16] to a real

case consisting in a dataset of monthly historical building

electric energy consumption. The occurred surface rough-

ness during turning according to different cutting parame-

ters was measured by Asilturk and Cunkas [17]. For

modeling the surface roughness, ANN and multiple

regression approaches were used. GRNN and conventional

Box–Jenkins time series models were yielded with a

comparative study by Yip et al. [18] for prediction of the

maintenance cost of construction equipment. Some ANN,
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regression and adaptive neuro-fuzzy inference system

models were constructed, trained and tested by considering

concrete constituents as input variables for predicting the

28-days compressive strength of no-slump concrete by

Sobhani et al. [19]. For predicting the compressive strength

of concrete that contains various amounts of blast furnace

slag and fly ash, a multiple regression analysis and an ANN

were applied by Atici [20]. For predicting the uniaxial

compressive strength and modulus of elasticity of intact

rocks, Dehghan et al. [21] used regression analysis and

ANNs. The coefficients of determination to more accept-

able levels improved with GRNN and FFNN.

The present study has two purposes: (1) to develop

FFNN, FITNET, CFNN and GRNN prediction models for

estimating the atomic coordinates of CNTs and (2) to

create initial atomic coordinates using results of ANN

models for decreasing number of iterations in the simula-

tion software. Two separate datasets (i.e., input and output)

are prepared for usage of prediction models. The input

dataset contains 5 parameters (i.e., initial atomic coordi-

nates u, v, w and the pair of integers (n, m) which specifies

the chiral vector [22]), and the output dataset contains three

parameters (calculated atomic coordinates u0, v0, w0).
CASTEP is used to simulate the CNTs, calculate the

geometry optimization and get output of the initial and

calculated atomic coordinates for the selected chiral vector.

To evaluate the performance of ANN prediction models,

mean squared normalized error (MSE), mean absolute error

(MAE), sum squared error (SSE) and multiple correlation

coefficient (R) are calculated. It is shown that FITNET and

FFNN models perform better than CFNN model. The worst

performance was yielded by GRNN model.

This paper is organized as follows. Section 2 gives an

overview of the CNTs. Section 3 explains the basics of

ANN prediction models. Then Sect. 4 describes dataset

generation and applied models. Section 5 gives the results

and discussion. Finally, Sect. 6 concludes the paper.

2 Carbon nanotubes

In the solid phase, three allotropic forms exist for carbon.

These forms are graphite, diamond and buckminster-

fullerene [23]. As the newest forms of carbon, CNTs are

discovered by Iijima in 1991 [24]. CNTs possess a unique

combination of high stiffness, high strength, low density,

small size and a broad range of electronic properties from

metallic to p- and n-doped semiconducting [25].

CNTs have two types of form. First one is multiwalled

CNT and has a structure of nested concentric tubes. The

second-type CNT which is used in simulations of this study

is the basic form of a rolled-up graphitic sheet and is called

as single-walled CNT [25].

CNTs can be thought of as single sheets of graphite

(graphene), rolled into a cylindrical shape with axial

symmetry and diameters between 0.7 and 10 nm. The chiral

vector describes this graphene sheet and is expressed as

Ch ¼ na1 þ ma2 � n;mð Þ ð2Þ

where n and m are integer chiral indices and a1j j ¼ a2j j ¼
2:49 Å is the lattice constant of graphite. ‘Zigzag’ (n, 0) and

‘armchair’ (n, n) nanotubes are the special cases, otherwise

they called as ‘chiral’ (n, m) (Fig. 1). In this study, we did not

use zigzag and armchair nanotubes in simulations.

Depending on the chirality, nanotubes can be semicon-

ducting or metallic. In our simulations, we used both

semiconducting and metallic CNTs according to their

chiralities [25].

3 Artificial neural network models

ANNs are a family of massively parallel architectures that

are capable of learning and generalizing from examples

and experience [26]. A neural network has processing

elements similar to the neuron in the brain. Many simple

computational elements arranged in layers are consisted of

processing elements. An ANN can reproduce and approx-

imate the experimental results [27]. For forecasting and

modeling of engineering problems, different types of ANN

models are used in the literature which is given in Sect. 1.

In this study, four ANN models are considered as follows.

3.1 Feed-forward neural networks (FFNNs)

and function fitting neural networks (FITNETs)

The simplest ANN model is FFNN, and it has three layers

named as input, hidden and output (Fig. 2). These networks

use backpropagation learning algorithm for learning. A

nonlinear activation function transfers the summation of

weighted input signals. The actual observation results are

compared with the response of network. Then the error of

network is calculated. The calculated network error is

propagated backward through the system. Afterward the

weight coefficients are updated [28].

In Fig. 2, Xi is the neuron input, Wij and Wkj are the

weights, M represents the neuron number in the hidden

layer, and Y represents the neuron output [29].

ANN transfer functions are the way to simulate phe-

nomena’s reaction using input and out parameters [30]. The

log-sigmoid transfer function (LOGSIG) is one of the most

commonly used functions (Fig. 3a). The input squashed the

output into the range 0–1 by this transfer function.

Hyperbolic tangent transfer function (TANSIG, Fig. 3b) in

terms of neural networks, is related to a bipolar sigmoid

which has an output in the range of -1 to ?1. Pure linear
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transfer function (PURELIN) (Fig. 3c) can be used to

explain a linear input output relationship [31].

To fit an input–output relationship, a type of FFNN is used

called as FITNET. Any finite input–output mapping problem

can be fit by a FFNN with one hidden layer and enough

neurons in the hidden layers. The default TANSIG transfer

function is used by FITNET in the hidden layer. Also, linear

transfer function is used in the output layer [29].

3.2 Cascade-forward neural networks (CFNNs)

CFNN consists of three or more layers. CFNN has one or more

hidden layers, and each subsequent layer has weights and bia-

ses. Weights come from the input and all previous layers.

Output layer is the last layer of the network [32]. CFNN has a

weight connection from the input and every previous layer to

the following layers, and this makes it different from FFNN.

The speed at which ANN learns the desired relationship might

be improved with additional connections (Fig. 4) [29].

3.3 Generalized regression neural network model

(GRNN)

GRNN is a variation of the radial basis neural networks, and

it is based on kernel regression networks. Unlike backprop-

agation networks, GRNN does not require an iterative

training procedure. Between input and output vectors any

arbitrary function is approximated by GRNN, drawing the

function estimate directly from the training data [33].

Fig. 1 Armchair, zigzag and

chiral nanotube models

Wij

WkjXN

X2

X1 1 

M 

Y 

Input Layer Hidden Layer Output Layer 

Fig. 2 Schematic diagram of FFNN
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Input, pattern, summation and output layers form aGRNN

as shown in Fig. 5. In the input layer, each input corresponds

to individual process parameter. Input layer is fully

connected to pattern layer, where each unit represents a

training pattern and its output is a measure of the distance of

the input from the stored patterns. In the summation layer

there are two neurons named as S- and D-summation neu-

rons. Each pattern layer unit is connected to these two neu-

rons. Sum of weighted outputs of pattern layer is computed

by S-summation neuron. On the other hand, sum of

unweighted outputs of pattern layer is computed by D-

summation neuron. In the output layer just output of each S-

summation neuron is divided by each D-summation neuron,

yielding the predicted value Yi’ to an unknown input vector x

as:

Y 0
i ¼

Pn
i¼1 yi � exp �D x; xið Þ½ �Pn

i¼1 exp �D x; xið Þ½ � ð3Þ

Fig. 3 Transfer functions a LOGSIG, b TANSIG, c PURELIN

Output 
Layer 

Input 
Layer 

Hidden 
Layer 

Fig. 4 Schematic diagram of CFNN
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Input 
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Summation 
Layer 
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Fig. 5 Schematic diagram of GRNN

Fig. 6 Building single-wall nanotube in CASTEP
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D x; xið Þ ¼
Xm

k¼1

xi � xik

r

� �2

ð4Þ

yi represents the weight connection between ith neuron in

pattern layer and S-summation neuron and n represents the

number of training patterns. Gaussian function and number

of elements of an input vector are represented as D and m,

respectively. xk is jth element of x, and xik is jth element of

xi. Optimal value of spread parameter is determined

experimentally, and it is represented as r. All units in the

pattern layer have the same single spread in conventional

GRNN applications [33, 34].

4 Dataset generation and ANN prediction models

4.1 Dataset generation

The dataset used in this study is generated with CASTEP

using CNT geometry optimization. Many CNTs are simu-

lated in CASTEP, then geometry optimizations are calcu-

lated, and the calculated data is saved in distinct files by

CASTEP. Initial coordinates of all carbon atoms are gen-

erated randomly. Figure 6 shows building step of a simu-

lation where chiral vectors are selected before calculation

(Zigzag and armchair CNTs were not used) by user. Dif-

ferent chiral vectors are used for each CNT simulation. The

atom type is selected as carbon, bond length is used as

1.42 Å (default value), and then the nanotube is built by

CASTEP. A screenshot of simulated CNT in CASTEP is

shown in Fig. 7. CNT calculation parameters are used as

default parameters to get general data. Figure 8 depicts a

screenshot of CASTEP calculation interface.

Fig. 7 A screenshot of simulated CNT in CASTEP

Fig. 8 Calculation interface of CASTEP

Fig. 9 Data files created by CASTEP after calculation
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To finalize the computation, CASTEP uses a parameter

named as elec_energy_tol (electrical energy tolerance)

which represents that the change in the total energy from

one iteration to the next remains below some tolerance

value per atom for a few self-consistent field steps. This

parameter also determines the calculation level of inputs

and outputs. The default value of the parameter is

1 9 10-5 eV per atom and is usually suitable [6].

After the calculation step, CASTEP creates many files

and saves all calculated data in these files for each CNT

simulation (Fig. 9). SWNT.castep file is used as output file

to create the input and the output datasets.

Initial atomic coordinates u, v, w and chiral vector n, m

are obtained from the output files to form the input dataset.

Also calculated atomic coordinates u0, v0, w0 are extracted

from same files to form the output dataset. The dataset

consisting of 10,721 data samples firstly was divided ran-

domly into training, validating and testing data randomly,

in which there are 70–15–15 % training, validating and

testing sets. After that, to determine the degree of accuracy,

we used cross-validation techniques that compared the

actual values with the estimated values. The datasets are

evaluated by means of tenfold cross-validation. Cross-

validation predicts the average error of estimates by using

the dataset with one individual removed. Cross-validated

datasets consist of 80 % of the training data and 20 % of

the test data. The generated prediction models are evalu-

ated by whether using tenfold cross-validation or without

using cross-validation.

The calculations are performed on a server that has

2.00 Ghz CPU power on 2 processors with 4 cores and

8 GB RAM. The calculation time according to these cal-

culations are given in seconds in Table 1. A summary of

the descriptive statistics for the dataset is given in Table 2.

4.2 ANN prediction models

FFNN, FITNET, CFNN and GRNN models were trained

and tested with the dataset of atomic coordinates for CNTs.

The FFNN, FITNET and CFNN models have three layers

(input, hidden and output), and the input and output layers

have 5 and 3 neurons, respectively (Figs. 10, 11, 12). The

hidden layers of FITNET and CFNN models have 10

neurons, and FFNN model’s hidden layer has 20 neurons.

A LOGSIG activation function is used in FFNN model, and

the TANSIG activation function is used in FITNET and

CFNN models in the hidden layer. A pure linear activation

function is used in all models in the output layer, and

Levenberg–Marquardt algorithm [35] is utilized for train-

ing the networks. Weights and biases were randomly ini-

tialized. The other important parameters of the FFNN and

FITNET models are the number of epochs (1000), the

learning rate (0.02) and momentum (0.5). Different

network parameters during the training have been tried to

get the overall best performance (average accuracy) over

test sets. These numbers have been obtained by trial and

error. All ANN-based prediction models are coded in

MATLAB [29].

Table 1 Calculation time for CNT simulations in seconds

ID of CNT Number of atoms Calculation time (s)

1 28 1050.14

2 52 1256.4

3 76 2254.18

4 84 2816.61

5 56 834.04

6 148 18,496.07

7 124 33,280.8

8 156 9604.28

9 196 59,998.78

10 244 19,389.07

11 172 64,102.59

12 104 7207.22

13 84 6842.67

14 152 7715.19

15 364 78,421.39

16 228 13,513.07

17 268 27,799.53

18 316 35,982.11

19 372 94,767.02

20 436 266,027.27

21 508 233,190.94

22 292 27,792.55

23 168 13,292.91

24 388 106,542.26

25 112 6838.91

26 516 201,214.72

27 296 34,136.32

28 364 103,759.38

29 412 95,275.6

30 156 9558.96

31 532 427,956.63

32 228 27,392.57

33 444 159,893.39

34 248 74,997.74

35 312 40,999.97

36 140 10,014.92

37 392 83,173.05

38 588 397,369.36

39 344 89,653.65

40 252 26,127.05

41 208 23,123.48

42 168 11,826.42
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The GRNN model’s only parameter r (also called

‘spread’ in MATLAB software) determines the general-

ization capability of the GRNN. The spread parameter is

adopted as 2.

5 Results and discussion

This section presents performance comparisons of the

ANN prediction models and performance improvement of

CASTEP simulation after using predicted data. All pre-

diction models are evaluated in terms of four performances

measured; (1) R value (coefficient of correlation) is used

for measuring correlation between target and predicted

values, (2) MSE measures the average of the squares of the

errors, (3) MAE measures how close predictions are to the

target values, and (4) SSE calculates the sum of the squared

errors of the prediction models. Summaries of

mathematical equations of these performance measures are

given in Eqs. (5)–(8), respectively.

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
Pn

i¼1 Oi � Pið Þ2
Pn

i¼1 Oi � Omð Þ2

s

ð5Þ

MSE ¼
Xn

i¼1

Oi � Pi

n

� �2
" #

ð6Þ

MAE ¼ 1

n

Xn

i¼1

Oi � Pij j ð7Þ

SSE ¼
Xn

i¼1

Oi � Pið Þ2 ð8Þ

where n is the number of data points used for testing, Pi is

the predicted value, Oi is the observed value, and Om is the

average of the observed values.

Table 2 Descriptive statistics
u Input v Input w Input m n u0 Output v0 Output w0 Output

Min. 0.0451 0.0451 0 2 1 0.0385 0.0389 0

Max. 0.9548 0.9548 0.9999 12 6 0.9614 0.9610 0.9996

Mean 0.5000 0.5000 0.4994 8.2252 0.3378 0.5000 0.4999 0.4993

SD 0.2900 0.2900 0.2900 2.1400 1.6800 0.2909 0.2910 0.2884

Fig. 10 FFNN model with 5,

20 and 3 neurons

Fig. 11 FITNET model with 5,

10 and 3 neurons

Fig. 12 CFNN model with 5,

10 and 3 neurons
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5.1 Performance results of ANN prediction models

Table 3 shows prediction performance of the models in

terms of MSE, MAE, SSE and R on non-cross-validated

dataset. The results of the prediction models are com-

pared with each other. Figure 13 shows the training

curves of FFNN-, FITNET- and CFNN-based prediction

models. There is not any training curve for GRNN-based

prediction model because the model does not have

training phase.

Tables 4, 5, 6 and 7 show the performance of all pre-

diction models using tenfold cross-validation. In Table 8,

the overall comparison of the prediction models on tenfold

cross-validated dataset is shown.

When the cross-validation is not considered, the

following inferences can be made from Table 3 and

Fig. 13.

• The results of FFNN-based and FITNET-based models

are nearly the same for all performance measures. This

result can be interpreted as saying that FITNET-based

prediction model is a kind of FFNN-based prediction

model. Also, the best results belong to these two models.

• CFNN-based prediction model gives better results than

GRNN-based prediction model for all performance

measures.

• Figure 13 shows that the best validation performance is

achieved from FFNN-, FITNET- and CFNN-based

Table 3 Performance results of

all prediction models on the

non-cross-validated dataset

FFNN FITNET CFNN GRNN

MSE 6.049476e-006 6.048698e-006 6.497111e-006 7.839317e-002

MAE 1.376493e-003 1.393361e-003 1.576503e-003 2.482294e-001

SSE 2.593410e-002 2.593077e-002 2.785311e-002 7.360715e?001

R 9.999638e-001 9.999635e-001 9.999608e-001 9.096695e-001

Fig. 13 Learning curve of the prediction models and its relation with validation and test sets. a FFNN, b FITNET, c CFNN

Table 4 Results of FFNN-

based prediction model by

means of tenfold cross-

validation

Fold number MSE MAE SSE R

1 6.774062e-006 1.482343e-003 2.032219e-002 9.999590e-001

2 7.680725e-006 1.602885e-003 2.304217e-002 9.999532e-001

3 5.318196e-006 1.357533e-003 1.595459e-002 9.999686e-001

4 6.152468e-006 1.409395e-003 1.845740e-002 9.999628e-001

5 5.346127e-006 1.337258e-003 1.603838e-002 9.999679e-001

6 8.436487e-006 1.892817e-003 2.530946e-002 9.999481e-001

7 6.265620e-006 1.494962e-003 1.879686e-002 9.999623e-001

8 7.929273e-006 1.842293e-003 2.378782e-002 9.999526e-001

9 6.569607e-006 1.437812e-003 1.970882e-002 9.999606e-001

10 6.325530e-006 1.508314e-003 1.897659e-002 9.999618e-001

Average 6.679809e-006 1.536561e-003 2.003943e-002 9.999597e-001

The best and average results are outlined in bold
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Table 6 Results of CFNN-

based prediction model by

means of tenfold cross-

validation

Fold number MSE MAE SSE R

1 8.374742e-006 1.851975e-003 2.512423e-002 9.999499e-001

2 9.096778e-006 1.998724e-003 2.729033e-002 9.999444e-001

3 8.724822e-006 1.655123e-003 2.617447e-002 9.999468e-001

4 7.400171e-006 1.796050e-003 2.220051e-002 9.999558e-001

5 1.584400e-005 2.843949e-003 4.753199e-002 9.999038e-001

6 1.966750e-005 3.020017e-003 5.900249e-002 9.998831e-001

7 1.295598e-005 2.512414e-003 3.886793e-002 9.999229e-001

8 9.541929e-006 1.978344e-003 2.862579e-002 9.999430e-001

9 8.099411e-006 1.702325e-003 2.429823e-002 9.999521e-001

10 7.964141e-006 1.948631e-003 2.389242e-002 9.999525e-001

Average 1.076695e-005 2.130755e-003 3.230084e-002 9.999354e-001

The best and average results are outlined in bold

Table 5 Results of FITNET-

based prediction model by

means of tenfold cross-

validation

Fold number MSE MAE SSE R

1 6.589269e-006 1.557503e-003 1.976781e-002 9.999608e-001

2 5.861648e-006 1.429010e-003 1.758494e-002 9.999648e-001

3 7.277767e-006 1.548961e-003 2.183330e-002 9.999561e-001

4 6.709909e-006 1.471574e-003 2.012973e-002 9.999589e-001

5 6.301777e-006 1.396791e-003 1.890533e-002 9.999622e-001

6 7.128428e-006 1.514411e-003 2.138528e-002 9.999572e-001

7 7.168583e-006 1.537053e-003 2.150575e-002 9.999571e-001

8 6.216803e-006 1.422944e-003 1.865041e-002 9.999626e-001

9 6.011725e-006 1.449355e-003 1.803517e-002 9.999642e-001

10 6.991452e-006 1.460794e-003 2.097436e-002 9.999582e-001

Average 6.625736e-006 1.478840e-003 1.987721e-002 9.999602e-001

The best and average results are outlined in bold

Table 7 Results of GRNN-

based prediction model by

means of tenfold cross-

validation

Fold number MSE MAE SSE R

1 7.680943e-002 2.227795e-001 7.680943e?001 9.427723e-001

2 7.855592e-002 2.237748e-001 7.680943e?001 9.405304e-001

3 7.748048e-002 2.227352e-001 7.748048e?001 9.418140e-001

4 7.993998e-002 2.261713e-001 7.993998e?001 9.422623e-001

5 8.096245e-002 2.266645e-001 8.096245e?001 9.409418e-001

6 7.749710e-002 2.226202e-001 7.749710e?001 9.420573e-001

7 7.781022e-002 2.240045e-001 7.781022e?001 9.396740e-001

8 7.920970e-002 2.236537e-001 7.920970e?001 9.411874e-001

9 7.791531e-002 2.255187e-001 7.791531e?001 9.408844e-001

10 7.617100e-002 2.224810e-001 7.617100e?001 9.403550e-001

Average 7.823516e-002 2.240403e-001 7.773600e?001 9.412479e-001

The best and average results are outlined in bold

Table 8 Overall comparison of

the cross-validated prediction

models

FFNN FITNET CFNN GRNN

Average MSE 6.679809e-006 6.625736e-006 1.076695e-005 7.823516e-002

Average MAE 1.536561e-003 1.478840e-003 2.130755e-003 2.240403e-001

Average SSE 2.003943e-002 1.987721e-002 3.230084e-002 7.773600e?001

Average R 9.999597e-001 9.999602e-001 9.999354e-001 9.412479e-001
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prediction models at epoch 42, 64 and 112, respec-

tively. It shows that these prediction models can

essentially estimate close to the target values. The best

performances are not obtained very early in the training

phase; therefore, the prediction models can be

generalized.

• All prediction models show relevant results to the

models which are tested by tenfold cross-validation

(Tables 4, 5, 6, 7).

Based on the results, the following points can be made

as results of the average values in Table 8:

• For all MSE, MAE, SEE and R performance measures,

FITNET-based prediction model performs better than

FFNN-, CFNN- and GRNN-based prediction models.

• With a general view FITNET-, FFNN- and CFNN-

based prediction models perform good levels of

successes.

• When we look at all results, FITNET-based prediction

model performs best and FFNN-based prediction model

follows it with a small margin.

• GRNN-based prediction model performs with high

errors than others and is not a good predictor for this

problem.

As an important point, if we look through the ten folds

for each model in detail, the following points can be

made:

• The best MSE, SSE and R values are achieved with

FFNN-based prediction model as 5.318196e-006,

1.595459e-002 and 9.999686e-001, respectively, at

third fold.

• The best MAE value is achieved with FFNN-based

prediction model as 1.337258e-003 at fifth fold.

• Above points show that FFNN-based prediction model

achieves best performance measures in all folds.

Also the following points can be made for each model:

• FFNN model achieves best results at fifth fold for MAE

and at third fold for MSE, SSE and R performance

measures.

• FITNET model achieves best results at fifth fold for

MAE and at second fold for MSE, SSE and R

performance measures.

• CFNN model achieves best results at third fold for

MAE and at fourth fold for MSE, SSE and R

performance measures.

• At first fold for R and at tenth fold for MSE, MAE and

SSE performance measures’ best results are achieved

by GRNN model.

• According to the above points, generally best perfor-

mance measures are achieved at same folds.

5.2 Performance improvement of CASTEP

simulation

Another usage of these predicted data is to decrease

number of iterations in calculation process in CASTEP. If

CASTEP simulation starts with random atomic coordi-

nates, the calculation may take several days. The number of

iterations in CASTEP can be decreased from days to

minutes by using prediction results of ANN models as

initial atomic coordinates. The design of this approach is

depicted in Fig. 14. The random values of atomic coordi-

nates are used as inputs of ANN prediction models, and

after that the predicted values are used to calculate final

atomic coordinates by CASTEP (two-staged simulation).

Table 9 shows the number of iterations before and after

using the initial values that are predicted by FITNET,

FFNN, CFNN and GRNN models. The rate of decline in

iteration number is related to performances of ANN pre-

diction models. The best decline is achieved by FITNET-

based model, and the worst is GRNN-based model.

Table 10 shows percentage of declines in number of iter-

ations. As expected, the highest percentage of decline

reached up to &85 % by FITNET-based model.

6 Conclusions

In this study, ANN-based models are proposed to predict

the atomic coordinates of CNTs. The predicted atomic

coordinates can be used instead of simulated ones, or they

can be the initial values of the simulation. In order to carry

out these prediction models, a dataset is created using

Initial random atomic coordinates are 
generated by CASTEP 

The random atomic coordinates are used 
as inputs of ANN prediction models

ANN prediction models calculate 
estimated atomic coordinates

Final atomic coordinates are calculated 
by CASTEP 

The predicted atomic coordinates are 
used as initial values of CASTEP

Fig. 14 Steps of the two-staged CASTEP simulation
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CASTEP. The dataset contains five inputs (initial atomic

coordinates u, v, w and the chiral vector n, m) and three

outputs (calculated atomic coordinates u0, v0, w0). MSE,

MAE, SSE and R values of the developed models have

been calculated for evaluation of the models. FITNET-,

FFNN- and CFNN-based prediction models perform good

levels of successes. For all average MSE, MAE, SSE and

R performance measures, FITNET-based prediction model

Table 9 Number of iterations before and after the two-staged CASTEP simulation

ID of

CNT

Number of

atoms

Number of iteration

before ANN

Number of iteration

after FITNET

Number of iteration

after FFNN

Number of iteration

after CFNN

Number of iteration

after GRNN

1 28 26 4 5 7 9

2 52 18 3 4 5 7

3 76 13 3 3 4 6

4 84 13 3 4 5 7

5 56 6 2 2 3 4

6 148 19 4 5 5 8

7 124 57 12 13 15 21

8 156 8 2 2 2 4

9 196 23 5 5 6 8

10 244 11 3 3 4 6

11 172 32 7 8 8 14

12 104 11 4 4 5 7

13 84 34 7 7 9 16

14 152 15 4 5 5 9

15 364 12 4 4 4 6

16 228 10 3 4 4 6

17 268 14 3 3 5 7

18 316 11 3 3 3 6

19 372 18 4 5 6 7

20 436 31 6 7 9 12

21 508 17 4 4 5 9

22 292 10 3 3 3 5

23 168 22 6 5 7 13

24 388 17 5 6 6 8

25 112 18 5 5 6 8

26 516 15 5 5 6 8

27 296 12 4 3 4 7

28 364 23 7 7 8 10

29 412 14 3 3 3 5

30 156 22 5 5 7 10

31 532 33 8 9 10 17

32 228 21 5 6 7 14

33 444 19 5 5 7 10

34 248 52 14 16 17 28

35 312 13 4 4 4 6

36 140 15 5 6 6 8

37 392 13 5 5 5 6

38 588 16 5 5 6 7

39 344 18 6 5 7 9

40 252 11 3 4 4 7

41 208 18 5 5 6 8

42 168 32 7 7 9 14
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performs better than the other prediction models. The best

performance measure results are achieved with FFNN-

based prediction model which tested tenfold cross-vali-

dated dataset. If the cross-validation is not used, FFNN-

based and FITNET-based prediction models show nearly

the same performance. When the predicted results are used

as preliminary values to calculate exact results in CASTEP,

the number of iterations is decreased up to &85 % of their

Table 10 Percentage of declines in number of iterations

ID of

CNT

Number

of atoms

Number of

iteration before

ANN

Percentage of decline

after FITNET (%)

Percentage of decline

after FFNN (%)

Percentage of decline

after CFNN (%)

Percentage of decline

after GRNN (%)

1 28 26 84.62 80.77 73.08 65.38

2 52 18 83.33 77.78 72.22 61.11

3 76 13 76.92 76.92 69.23 53.85

4 84 13 76.92 69.23 61.54 46.15

5 56 6 66.67 66.67 50.00 33.33

6 148 19 78.95 73.68 73.68 57.89

7 124 57 78.95 77.19 73.68 63.16

8 156 8 75.00 75.00 75.00 50.00

9 196 23 78.26 78.26 73.91 65.22

10 244 11 72.73 72.73 63.64 45.45

11 172 32 78.13 75.00 75.00 56.25

12 104 11 63.64 63.64 54.55 36.36

13 84 34 79.41 79.41 73.53 52.94

14 152 15 73.33 66.67 66.67 40.00

15 364 12 66.67 66.67 66.67 50.00

16 228 10 70.00 60.00 60.00 40.00

17 268 14 78.57 78.57 64.29 50.00

18 316 11 72.73 72.73 72.73 45.45

19 372 18 77.78 72.22 66.67 61.11

20 436 31 80.65 77.42 70.97 61.29

21 508 17 76.47 76.47 70.59 47.06

22 292 10 70.00 70.00 70.00 50.00

23 168 22 72.73 77.27 68.18 40.91

24 388 17 70.59 64.71 64.71 52.94

25 112 18 72.22 72.22 66.67 55.56

26 516 15 66.67 66.67 60.00 46.67

27 296 12 66.67 75.00 66.67 41.67

28 364 23 69.57 69.57 65.22 56.52

29 412 14 78.57 78.57 78.57 64.29

30 156 22 77.27 77.27 68.18 54.55

31 532 33 75.76 72.73 69.70 48.48

32 228 21 76.19 71.43 66.67 33.33

33 444 19 73.68 73.68 63.16 47.37

34 248 52 73.08 69.23 67.31 46.15

35 312 13 69.23 69.23 69.23 53.85

36 140 15 66.67 60.00 60.00 46.67

37 392 13 61.54 61.54 61.54 53.85

38 588 16 68.75 68.75 62.50 56.25

39 344 18 66.67 72.22 61.11 50.00

40 252 11 72.73 63.64 63.64 36.36

41 208 18 72.22 72.22 66.67 55.56

42 168 32 78.13 78.13 71.88 56.25
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first value. The use of ANN ensures that the exact results of

atomic coordinates can be obtained in a short time. Future

research can be performed in two areas: The first one

would be expanding the number of parameters in the

dataset. The second area would be using new models like

support vector machine and regression trees to predict the

atomic coordinates.
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