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Abstract Creating microvoids, cracks or refractive index

modifications within dielectrics focusing intense laser

radiation into the transparent material offers many

promising applications, such as holographic data storage,

laser-written waveguides or optical gratings. For further

improvements in the quality of the named applications, a

deep understanding of the involved processes during

interaction of laser radiation with material is necessary. In

this work, the change in the laser intensity distribution of

focused laser radiation into PMMA by spherical aberration,

caused by the transition of the radiation from air to matter,

is discussed. Theoretical and numerical investigations

including nonlinear effects of laser radiation material

interaction as well as multi-physical approaches, such as

combined calculation of the beam propagation, the tem-

perature distribution and induced tensions, require a lot of

effort and long computation time. Therefore, simple linear

simulations are performed including calculation of the

beam propagation without nonlinear optical effects, like

self-focusing. Comparing the calculated intensity distribu-

tions with experimental data, regarding the lateral and axial

size as well as the position of the laser-generated voids

within PMMA, the applicability of the simulation approa-

ches is demonstrated. The different simulation approaches

are characterized in regard to their calculation time and

accuracy depending on the simulation task.

1 Introduction

Ultrafast laser radiation offers the opportunity to process

materials with a high quality as well as a high precision.

Due to the high intensity resulting from concentrating the

pulse energy within a temporal range of a few hundred

femtoseconds and a spatial range of a few micrometers, all

known materials are decomposed. This allows especially

the processing of transparent material by nonlinear pro-

cesses. In recent years, an increased interest on creating

microvoids or the modification of the refractive index

within transparent materials took place [1–4]. The forma-

tion process of the laser-induced voids is very complex and

not fully understood in all details. For the understanding of

the involved processes and to identify the limiting pro-

cesses, a simulation of the laser radiation material inter-

action is necessary. To cover most of processes, a multi-

physical simulation approach including calculations such

as the calculation of the beam propagation [5, 6], absorp-

tion of the laser radiation resulting in an induced temper-

ature [7] and tension distribution [8] should be performed.

On the other hand, this approach is computationally

expensive and a clear identification of the driving mecha-

nism can be realized by single observation of each physical

process in comparison with the whole result. Therefore,

this article focuses on the separate calculation of the beam

propagation to identify the relevant driving mechanism. In

contrast to other authors, such as [6, 9] where analytical

formulas proposed by [10] have been used to calculate the

intensity distribution within the focal region or as an input

for considering nonlinear effects [11], in this article the

experimental setup is reproduced and includes a gaussian

intensity distribution as input for the calculations of the

intensity distribution within the focal region, instead of a

plane wave.
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This article is subdivided into five sections. The first part

describes the experimental setup followed by investiga-

tions on the different simulation approaches facing their

advantages and disadvantages in order to identify the

optimized simulation approach to reproduce the experi-

mental setup. Subsequent, a comparison between the

experimental and simulated results, regarding to the lateral

and axial size as well as the position of the laser-generated

voids, is described. Finally, the results are summarized and

a short outlook to further work is given.

2 Experimental setup

Experiments were performed producing voids by ultrafast

laser radiation (wavelength k ¼ 1030 nm, pulse duration

(sech2) sH ¼ 180 fs, gaussian beam diameter before

objective dObj;1=e2 ¼ 3:3 mm, pulse energy Q ¼ 60–230 nJ)

within PMMA (refractive index n ¼ 1:415; surface at

z ¼ 0) at the optical distances dopt ¼ n � z0 by using an

infinity-corrected microscope objective (NA ¼ 0:65; focal

length f 0 ¼ 4 mm). z0 represent the experimentally defined

geometrical positions with 50, 80, 110, 140 and 170 lm

(Fig. 1). The threshold intensity was calculated to Ithr ¼
27TW=cm2

by determination of the beam diameter to

dD2 ¼ 1:66 lm using the method of squared diameter

D over log fluence H [12].

3 Conceptioning of optimized simulation
approaches

In order to perform an optimized simulation of the beam

propagation, with respect to the computation time and

accuracy, the most appropriate simulation approach

depending on the simulation task has to be identified.

Therefore, the experimental setup is divided into two sub-

zones, whereas the first zone (zone I) represents the beam

propagation beginning from the microscope objective to

the material surface and the second zone (zone II) repre-

sents the beam propagation within the material. As an

assumption, no interaction of the laser radiation with the

material occurs in zone I. Therefore, only the electric field

strength on the interface air—PMMA is of interest and a

boundary element method (BEM), like Kirchhoff’s

diffraction formula (KDF) or the spectrum of plane waves

(SPW) can be chosen [13, 14] (see ‘‘Appendix’’). Zone II

contains the focal region. The calculation of the focal

region within material can be achieved by using full dis-

cretization method, like the finite-difference time-domain

(FDTD) method [15–17] or a flexible choice of the target

plane A1 by using BEM (see ‘‘Appendix’’). The polariza-

tion is considered as fully linear polarized.

3.1 Zone I

The first zone models the beam propagation beginning

from the microscope objective up to the interface of air to

PMMA, and the result is the input of the calculations in

zone II. As no data of the corresponding lens system of the

microscope objective are known, the objective is approxi-

mated by a phase term u of an ideal lens according to

u ¼ �signðf 0Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 0 þ x2 þ y2
p

: ð1Þ

In general, KDF and SPW are both suitable for calculating

the beam propagation up to the surface of PMMA, but

SPW has a large benefit in computation time compared to

KDF using the same number of elements (Fig. 2). For SPW

(SPW 2D), the complete electric field strength distribution

on the plane A1 results automatically, whereas for KDF

(KDF 2D) the algorithm has to be repeated for every ele-

ment of plane A1. By taking advantage of symmetries (2Da

Fig. 1 Schematic

representation of focusing of

laser radiation into PMMA and

the effect of spherical aberration

(dashed line ideal focus in air

and solid line real focus within

material)
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and 1D versions of BEM) given by the spatial intensity

profile and geometry, and performing parallelization par-

ticularly by using multiple graphic processor units (GPU),

the computation time can be reduced significantly. The

same reduction can be achieved for SPW resulting clearly

to the least computation time by a factor of more than 103

compared to KDF. It should be noted, using GPU is only an

advantage, in regard to calculcation time, for a large

number of elements ([ 214 elements).

In contrast to the fast computation of the 1D versions of

the propagation methods compared to 2Da or 2D, 1D

simulations are restricted to non-diffractive and non-aber-

rative propagations of a beam with a spatial axially sym-

metric intensity distribution. Otherwise, if diffraction

effects or aberrations occur, changes in the intensity dis-

tribution correspond to wrong physical effects, like a sinc2

function in 1D calculations instead of an airy disk for

limiting apertures in 2D or 2Da calculations. Based on the

given numerical aperture NA and focal length f 0, the clear

aperture dA can be calculated to dA ¼ 6:84 mm, which is

approximately twice of the beam diameter. Therefore,

diffraction effects can be neglected and 1D methods can be

used to calculate beam propagation for the given setup of

beam diameter and microscope objective. Especially SPW

1D is the first choice based on Fig. 2. By using SPW res-

olution problems, called undersampling (see Fig. 4

squares), resulting from the same sampling of A0 and A1

occur in the chosen setup. To avoid it, a larger number of

elements, here 217 elements, or a gradually refinement of

the grid, as shown in Fig. 3, is necessary. By inserting

some extra or auxiliary planes Aapi between plane A0 and

A1, calculating the beam diameter on each plane Aapi , cut

off the planes at the beginning of nearly zero intensity, and

interpolating the intensity distribution within the new

boundaries, a higher resolution is achieved. This approach

is recommended for SPW 2D, as 217 elements in each

direction cannot be processed due to large memory

requirements. For SPW 1D, the approach of gradually

refinement is not necessary, as the number of elements is

only used in one direction, and the memory requirements,

depending on the total number of elements of all arrays, are

in most of the simulation tasks less than the limiting

memory capacity.

The intensity distribution is compared in the focal plane

instead of a geometrical position z0, since changes caused

by diffraction effects or aberrations can be clearly identi-

fied in the focal plane, because the intensity distribution in

the focal plane can easy be calculated analytically. Finally,

the calculated intensity distributions at the focal plane, for

the described BEM, are found in Fig. 4.

Based on the comparison with the analytical solution,

diffraction effects cannot be fully neglected. Therefore, the

calculated intensity distribution of all 1D methods slightly

differs from the correct results given by 2Da or 2D ver-

sions. Furthermore, only five elements are calculated by

SPW without gradually refinement within the displayed

range of x-coordinates demonstrating the necessity of

refining the grid. For this example, the benefit of the fast

calculation time of SPW is compensated by the limited

resolution and the necessary refinement, so KDF is finally

faster due to the big change in the size of the planes. The

higher resolution caused by the multi-plane approach leads

to much longer computation times, here more than 600

times longer (Table 1). Furthermore, the experimentally

obtained focal radius of dD2=2 ¼ 0:83 lm, by the method

of squared diameter over log fluence [12], can be repro-

duced by the simulations.

Fig. 2 Comparison of the calculation time depending on the number

of elements N per direction for different simulation methods, open

symbols computation using CPU (Intel Xeon E5-2690 0) is faster than

GPU (49 NVIDIA Tesla C2075) or too much elements were used for

GPU, closed symbols GPU is faster than CPU, line fits to guide the

eye

Fig. 3 Schematic representation of the used multi-plane approach

(refinement of the grid) for SPW
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All in all, KDF 2Da is the best choice for zone I, since

correct results are calculated and the calculation time is

shorter than for SPW 2D. On the other hand, KDF 1D and

SPW 1D produce very fast results which can be used as an

estimation or a approximate solution.

3.2 Zone II

The second zone contains the beam propagation within

PMMA and includes the interaction of the laser radiation

with the material, like linear absorption, which is auto-

matically calculated by FDTD, and defining the complex

refractive index ~n. Here, no nonlinear effects are consid-

ered. Further, the simulation of pulsed (pw) and continuous

(cw) radiation is investigated, instead of only cw radiation

for BEM. The input of zone II is given by the results of

zone I for the several positions z0 calculated with KDF

2Da. For FDTD, the whole area must be discretized with at

least 20 elements per wavelength in each direction leading

to a larger number of elements, and for reasons of stability,

the time step Dt is less than a femtosecond, depending on

the CFL number [15]

CFL ¼ maxðciÞ � Dt
minðDx;DzÞ ; ð2Þ

where ci represents the speed of light in the medium i, and

Dx and Dz the element sizes in direction x and z. As a

result, the computation time is very long compared to BEM

and it has to be clarified, if the use of FDTD is necessary or

similar results can be achieved by BEM, especially if no

nonlinear effects are included in the simulations. There-

fore, numerical calculations are performed to compare the

calculated intensity distribution within the focal region by

FDTD for pw and cw with the results of BEM (Fig. 5). The

Fig. 4 Comparison of the

calculated relative intensity

distributions Irel at the focal

plane for KDF 1D, KDF 2Da,

SPW 1D (217 elements), SPW

2D without (214 elements) and

with gradually refinement (five

auxiliary planes, beginning with

214 elements, 211 elements at the

end) as well as the analytical

solution and the experimentally

obtained focal radius dD2=2

Table 1 Comparison of the calculation time of the different simu-

lation methods normalized to the fastest method, gr gradually

refinement

KDF SPW

1D 2Da 1D 2D with gr 2D without gr

1 302 5 2 � 105 104

Fig. 5 a Snapshot of the calculated intensity distribution at different

time points simulated with FDTD pw, b calculated intensity

distributions for cw using different calculation methods, pulse energy

360 nJ, set geometrical position 110 lm
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simulations are performed for pw, since pw is used in the

experimental, and cw is performed for comparisons by

BEM. In the case of 1D BEM, the intensity Inorm is cal-

culated by the peak power

Ppk ¼
Q

1:135 � sH
;

Inormðx; zÞ ¼ Iðx; zÞ � Ppk

2 � p �
R

r � Iðx; zÞdr ; and

r ¼ xj j:

ð3Þ

Only relative values can be calculated by 1D methods due

to the missing information about the element size along the

perpendicular dimension.

The coupling of FDTD and KDF is applicable leading to

focusing of the radiation without detectable disorders of the

intensity or numerical artifacts (Fig. 5). Before the focal

point, at about 160 lm, the intensity distribution corre-

sponds nearly to an ideal gaussian intensity distribution.

After the focal point, z[ 160 lm, spherical aberration

occurs resulting in a disturbed intensity distribution.

Comparable results are obtained for cw laser radiation and

all axially symmetric methods result in a similar intensity

distribution, as well as all 1D (BEM) and 2D (FDTD)

reproduce the same result. The intensity distributions of all

axially symmetric methods contain larger spherical aber-

ration, since all dimension are included in the simulations.

Therefore, 1D calculations are again a good estimation, but

differ significantly from the correct result of the axially

symmetric (2Da) methods.

By comparing the results of pw radiation for the time

t ¼ 1200 fs with cw radiation, only small differences due

to a spatial elongation of the pulse with c � sH , c ¼ c0=n are

obtained. Therefore, a description by cw radiation can be

applied for the following calculations. The calculations by

using KDF 2Da are much faster compared to FDTD or

SPW 2D. Therefore, and as FDTD has no benefit regarding

accuracy, KDF 2Da is also the best choice for zone II.

4 Results and discussion

After determining the best qualified simulation methods, all

calculations are performed according to the experimental

setup in Sect. 2. Zone I and zone II are calculated by KDF

2Da, supported by SPW 1D as an estimation for the nec-

essary size of the planes. In order to save calculation time,

the simulations are only performed for all geometrical

positions z0 and the intensity is calculated according to

Eq. (3). The resulting positions I� Ithr, of the calculated

intensity distribution I, are plotted in Fig. 6 in comparison

with the experimental obtained distribution of the voids.

The simulated areas with higher intensity than Ithr

demonstrate a qualitative agreement to the experimental

results. The spherical aberration increases with increasing

material depth leading to lower intensities in the focal

region due to the distortion of the intensity profile.

Therefore, no voids can be obtained deep within the

material for low pulse energy irradiation. For the shortest

Fig. 6 Above simulated area with higher intensity than Ithr ¼
27 TW/cm2 (black). Below laser-induced voids by ultrashort laser

radiation within PMMA for different pulse energies at distinct z-

positions (optical microscopy)

Fig. 7 Comparison of simulated and measured lateral (above) and

axial (below) size of the voids in geometrical depth z0 ¼ 70lm
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and longest position z0 combined with small pulse energies,

the simulated areas deviate from the experimental data.

Furthermore, the experimentally obtained voids arise closer

to the surface compared to the simulations, which is

explained by the missing description of the nonlinear

interaction of the laser radiation with the material, here

especially self-focusing and channeling as well as modifi-

cations and the phase transition of the material. PMMA has

a large self-focusing coefficient [2], and self-focusing will

arise assuredly by the applied intensities.

The qualitative agreement of the results is also con-

firmed by the direct comparison of the determined lateral

and axial sizes of the voids measured by optical micro-

scopy (Fig. 7). Both present an increased size by increasing

the pulse energy. Large differences in the sizes between

simulation and experiment are given for low pulse energies

caused again from neglecting nonlinear effects.

Despite the difference between experiment and simula-

tion in regard to the positions of the voids and the deviation

at low pulse energies, a qualitative agreement is confirmed

for all set of geometrical positions and high pulse energies

(Fig. 8). The experimental detected and simulated axial

lengths increase with increasing pulse energy. Up to a pulse

energy of about 150 nJ, the axial length of the voids is

smaller for longer geometrical positions z0 than for shorter

positions, and vice versa for pulse energies above 150 nJ.

This dependency occurs in the experiment and in the

simulation equally. Therefore, the dependence of the axial

length on the pulse energy for different positions is

explainable by spherical aberration and can be estimated by

simple calculations of the beam propagation without taking

any nonlinear effects into account.

Furthermore, the calculated diameters of the voids

increase with increasing pulse energy (Fig. 8). Smaller

diameters are obtained for longer geometrical positions.

The sizes of the diameter are getting equal for high pulse

energy. No comparable measurements of the experimental

diameter of the voids, except for z0 ¼ 70 lm, were

performed.

5 Summary and outlook

Experimentally obtained axial and radial sizes of created

microvoids within PMMA using ultrashort pulsed laser

radiation were compared with the calculated intensity

distribution by linear beam propagation. The calculations

were performed without taking nonlinear optical effects or

laser radiation material interaction into account.

The calculation methods Kirchhoff’s diffraction formula

(KDF), the SPW and the finite-difference time-domain

(FDTD) method were characterized in order to calculate

the beam propagation given by the experimental setup. The

calculation of the beam propagation was divided into two

zones. Zone I models the beam propagation beginning from

the microscope objective up to the surface of PMMA, and

zone II includes the beam propagation within PMMA. For

both zones, KDF, using axial symmetry, is the best cal-

culation method in regard to accuracy and calculation time

for the given simulation tasks.

Using KDF for calculating the intensity distribution

within PMMA describes qualitatively the experiments. Due

to an increasing spherical aberration with increasing depth

within the material, the beam size gets larger and the

threshold intensity for the modification of the material is

not reached anymore. In contrast to simulation, the mea-

sured voids are generated before the simulated focal points,

which can be explained by the missing nonlinear effects,

like self-focusing [2]. Furthermore, differences between the

experimentally obtained and simulated diameters for small

pulse energies occur due to the non-included modeling of

nonlinear laser radiation material interaction. Further work

will consider this as well as simulations of the temperature

distribution due the heating of matter and the simulation of

the thermal stress induced by ultrashort pulsed laser

radiation.

Fig. 8 Calculated axial (middle) and lateral (below) size of the voids

for different set geometrical position in comparison with the

experimental detected axial sizes (above)
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Appendix: Simulation methods

Kirchhoff’s diffraction formula (KDF)

Kirchhoff’s diffraction formula represents a calculation

method in the field of scalar diffraction theory and is based

on the mathematical formulation of Huygens principle. The

electric field strength can be calculated by

E1ðx1; y1; z1Þ ¼
n0

i � k0

I

A0

E0ðx0; y0; z0Þ
r

� ei�n0�k0�r

� Nðx0; y0; z0ÞdA0:

ð4Þ

The used parameters are visualized in Fig. 9. A0 represents

the source plane for elementary waves with the incident

complex electrical field E0 and A1 represents the target

plane with the electric field strength E1. The elementary

waves are represented by the terms
E0ðx0;y0;z0Þ

r
� ei�n0�k0�r,

where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx0 � x1Þ2 þ ðy0 � y1Þ2 þ ðz0 � z1Þ2
q

ð5Þ

represents the distance between point P0ðx0; y0; z0Þ on the

plane A0 and point P1ðx1; y1; z1Þ on the plane A1 [13, 14].

The form and position of the two planes can be chosen

arbitrarily. k represents the wave vector of the incident

wave at point P0, with the wave number k0 ¼ 2�p
k0
, k0 the

wavelength of the radiation in vacuum, n0 the refractive

index between plane A0 and A1, n the normal vector at

point P0. N represents the slope factor and can be calcu-

lated by Nðx0; y0; z0Þ ¼ 1
2
ðcosðn; rÞ � ðcosðn; kÞÞ.

In most of the cases, the distance of A1 to A0 is large

enough to neglect any dependency on N, therefore N � 1.

The summation of all elementary waves is mathematically

realized by the integration over the plane A0.

Angular spectrum of plane waves (SPW)

In the case that the planesA0 andA1 are both perpendicular to

the propagation direction, and having the same sampling, the

SPW can be applied [13, 14]. The electric field strength E1 is

calculated by the Fourier transform F according to

E1 ¼ F�1 FðE0Þ � e
2�p�i�Dz�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2
0

k2
0

�ðm2xþm2yÞ

r

0

B

@

1

C

A

: ð6Þ

mx and my represent the spatial frequencies used for the

fourier transform and can be calculated by Dx � Dmx ¼ 1
Nx

and mx ¼ � Nx

2
Dmx. . .

Nx

2
Dmx. KDF and SPW represents a

BEM.

Finite-difference time-domain (FDTD)

The simplest form of FDTD includes only Faraday’s lawFig. 9 Schematic representation of the used planes and variables

Fig. 10 Schematic

representation of the used

elements on plane A0 and A1

Simulation of the spherical aberration by focused laser radiation in transparent materials Page 7 of 8 482

123



r� E ¼ �rm �H� l � oH
ot

; ð7Þ

and Ampère’s law [15–17]

r�H ¼ r � E� e � oE
ot

: ð8Þ

rm represents the magnetic conductivity, r the electric

conductivity, l the permeability, e the permittivity and H

the magnetic field strength. Equations (7) and (8) are dis-

cretized using finite differences. The derivations are solved

by a convolution of the data matrices of each field and a

convolution kernel as widely used in digital image pro-

cessing [18].

Symmetry and locations of planes used

by the simulation methods

The used simulations methods can be subdivided resulting

from to the considered symmetry. On each plane, there are

Nx elements in x�direction and Ny elements in y�direc-

tion, respectively. Plane A0 has the subindex i ¼ 0 and

plane A1 has the subindex i ¼ 1. The total number of ele-

ments per matrix Ntot on each plane is Ntoti ¼ Nxi � Nyi

(Fig. 10).

If no symmetry can be used for BEM, all elements of

plane A0 and A1 have to be considered. These methods are

marked with 2D. In the case of considering axially sym-

metric intensity distributions, only the calculation of the

intensity along a half coordinate axis, e. g. the x�axis

beginning from element 1 up to Nx1=2, on plane A1 is

necessary. In this case, the calculation methods are marked

with 2Da. Furthermore, for a spatial gaussian beam

intensity distribution, the source plane A0 can be a line too.

Therefore, the methods are called 1D methods. The total

number of elements, resulting from the considered sym-

metry, are summarized in Table 2.

For KDF, the location of the target plane A1 is very

flexible and the x–z plane or the y–z plane are often used as

A1. In contrast to KDF and SPW, for FDTD the whole area

has to be discretized. The discretization includes x�; y�;

and z�coordinates of the area. If only the x–z plane or the

y–z plane is considered, FDTD is marked with 2D, and

neglects the third dimension. By taking advantage of axial

symmetry, the differential operators in Eqs. (7) and (8) can

be formulated in cylindrical coordinates and all dimensions

are included. Therefore, the addition is 2Da.
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