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Abstract Carbon nanotubes (CNTs) are nanomaterials

with extremely favorable mass sensor properties. In this

paper, we propose that CNTs under clamped boundary

condition and an axial tensile load are considered as CNT-

based resonators. Moreover, the resonant frequencies and

frequency shifts of the CNTs with attached nanomass are

investigated based on vibration analysis, which used the

nonlocal Euler–Bernoulli beam model. Using the present

methods, we analyze and discuss the effects of the aspect

ratio, the concentrated mass and the axial force on the

resonant frequency of the CNTs. The results indicate that

the CNT beam under the axial tensile loads could provide

higher sensitivity as nanomechanical mass sensor.

1 Introduction

Since carbon nanotubes (CNTs) have possessed excellent

mechanical and physical properties, they have vast

prospective application as structural elements in nanoscale

devices, such as nanobiological devices and nanoelec-

tromechanical systems (NEMS) [1, 2]. Currently, CNT

beams are being used as nanoscale materials and play

important roles in designing sensor structures and

improving the function of sensors in the nanoscale devices.

Some researchers have explored the potential of using

CNT-based resonators as nanomass detection sensor [3–6].

The principle of mass detection using CNT-based res-

onators is based on the fact that the resonant frequency of

CNTs is sensitive to the changes in the nanomass attached

to the CNTs, which causes the frequency shifts of CNT

resonators. The idea of using individual CNTs as high-

sensitivity mass sensor was first proposed by Poncharal

et al. [4]. Since controlled experiments at nanoscale are

difficult, computer simulation can be used to predict the

frequency changes and to design reasonable structures of

CNT-based resonators. The molecular dynamics simulation

is very time-consuming and remains formidable for large-

scale systems; therefore, the continuum mechanics or the

molecular mechanics methods have been widely used to

study the computation of large systems. [7–11]. Patel and

Joshi [12, 13] reported the dynamic analysis of double-

walled carbon nanotubes (DWCNTs) using atomistic finite

element method (FEM). They suggested that defective

DWCNTs could further be explored for mass sensing.

Based on FEM analysis and continuum mechanics, Govind

and Bansal investigated the potentials of cantilevered sin-

gle-walled boron nitride nanotubes (SWBNNTs) and H

model beam of SWBNNTs as nanomechanical resonators

[14]. Li et al. [15] studied the free vibration and mass

detection capability of CNT-based sensors using the

molecular mechanics approach. The obtained results indi-

cated that the nonlocal effect decreased the resonance

frequency except for the fundamental frequency of

nanocantilever sensor.

The more theoretical approaches of analyzing CNT-

based resonators have been based on the Euler–Bernoulli

beam model. In our previous work [16], the resonant
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frequencies and frequency shifts of the CNTs with attached

mass were investigated by the Euler–Bernoulli beam the-

ory. The local elastic theory does not consider about the

long-range forces between atoms. However, the theory of

nonlocal continuum mechanics considers that the stress

field at a given reference point is a function of the strain

distribution over a certain representative volume of the

material centered at that point. In this way, the internal

length scale enters into the constitutive equations simply as

a material parameter. The nonlocal elasticity theory could

potentially play a useful role in analysis related to nanos-

cale materials. Considering the small length scale effect of

nanostructures, in the present study, we will analyze the

resonant frequency of CNTs with clamped boundary con-

dition under axial tensile loads using the nonlocal Euler–

Bernoulli beam model.

2 Theoretical approaches

2.1 Nonlocal elasticity theory

We considered a CNT clamped at both ends and subjected

to an axial tensile load. The schematic diagram of the

clamped CNT beam carrying an attached concentrated

mass mc along its length position x = a is shown in Fig. 1.

In the study, the nonlocal Euler–Bernoulli beam model

is applied to investigate a free vibration of CNT. The

governing equation of motion for a beam subjected to an

axial tensile load N is given by

EI
o4w� x; tð Þ

ox4
� N

o2w� x; tð Þ
ox2

þ qA
o2w� x; tð Þ

ot2

þ eað Þ2
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ox4
� qA
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ox2ot2

� �
¼ 0

ð1Þ

where x and t are the axial coordinate and time, respec-

tively. w*(x, t) is the flexural deflection, e0a is the nonlocal

parameter relative to carbon material, and a is the internal

characteristic length of the C–C bond which was found to

be 0.142 nm. E is the elastic modulus, I is the moment of

inertia of the cross-sectional area A, and q is the mass

density of the CNT.

As shown in Fig. 1, when a concentrated mass is

attached to an arbitrary position (x = a) of nanotube

length, the CNT beam can be considered as two parts

which are 0 B x B a and a B x B L. That is, the CNT is

treated as two separate beams connected to each other

through the attached mass. According to Eq. (1), the gov-

erning differential equations for each beam are given by
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where wj, j = 1, 2, are the flexural deflections of the left

and the right with respect to the location of the concen-

trated mass.

We assume that the harmonic vibration of CNT res-

onator has the circular frequency of x, and the vibration

amplitudes of Yj, j = 1, 2. Thus, the solutions of the flex-

ural deflection may be expressed as

wj x; tð Þ ¼ Yj xð Þ eixt; j ¼ 1; 2 ð4Þ

Substituting Eq. (4) into the differential Eqs. (2) and (3),

we have

1 þ e0að Þ2 N

EI

� �
Y

4ð Þ
j � N

EI
þ e0að Þ2qAx

2

EI

� �
Y 00
j � qAx2

EI
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Moreover, we can obtain the general solutions of Eq. (5)

given by

Yj xð Þ ¼ Cj1 cosh gxþ Cj2 sinh gxþ Cj3 cos nx

þ Cj4 sin nx; j ¼ 1; 2
ð6Þ

where
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2
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; /2 ¼ qAx2
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In Eq. (6), the constants Cjk, j = 1, 2, k = 1 - 4, can be

obtained from the corresponding boundary conditions

given by
Fig. 1 Schematic diagram of clamped CNT beam model with

attached mass under tensile load
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where mc is the attached mass to be detected.

Substituting Eq. (6) into the boundary conditions of

Eqs. (9–11), the resonant frequencies of the CNT res-

onators with an attached concentrated mass can be deter-

mined by considering the nontrivial solutions.

2.2 Rayleigh’s energy method

In this analysis, we used a method of energy principle to

investigate the vibration frequencies of CNTs used as

nanoresonators. Considering the effect of nonlocal

parameter on the vibrational behavior of CNT, the kinetic

energy of the CNT carrying a concentrated mass can be

expressed as

T ¼ qAx2

2
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where x is the circular frequency of vibration. Y(x) is the

deflection shape of CNT with the first mode of vibra-

tion.According to our previous study [16], the deflection

shape in Eq. (12) yielded
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Substituting the deflection function in Eq. (13) into

Eq. (12), we can obtain the equivalent mass of the com-

bined system given as
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where l is the effect coefficient on the nonlocal parameter.

Thus, the resonant frequency expression of the CNTs car-

rying concentrated mass yields

f ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ð18Þ
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2
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3 Analytical results and discussion

In this simulation, the influences of the nonlocal parameter,

the aspect ratio and the axial force on the resonant fre-

quency of the CNT beam attached with nanomass are

investigated in detail. We considered the CNT to be a

diameter of 1.0 nm, and carrying concentrated mass on its

center. The effective thickness of the CNTs was taken to be

0.34 nm. The elastic modulus and the density of the CNTs

are 1.0 TPa and 2.3 g/cm3, respectively [17]. In the pre-

vious study, the result shows that the resonant frequencies

of CNTs are affected by its vibration mode. The variations

of vibration frequency in CNT resonator with the attached

mass are little sensitive to the attached mass for the

vibration modes larger than 1. In this paper, we focus on

the investigation of the resonant frequency of CNT with

attached nanomass for the first mode of vibration.

Figure 2 shows the effect of the nonlocal coefficient on

the resonant frequency of the CNTs with the aspect ratio of

20 under attached different nanomasses. The axial tensile

load applied to the CNTs is 20 nN, corresponding to the

tensile stress of about 19 GPa. Because CNTs have the

tensile strength up to 63 GP [18], the axial force over

20 nN can be also loaded to the CNT. For the choice of the

nonlocal parameter e0a used in this simulation, we take that

e0a/L is 0.2 [19, 20]. It is found that the effect of the
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nonlocal coefficient on the resonant frequency is significant

to the attached mass \10-2 zg. The reason that the small

nanomass makes the CNTs more flexible as the nonlocal

model can be viewed as atoms linked by elastic springs

[21]. Figure 3 shows the variation of the resonant fre-

quency of the clamped CNT with the attached mass. Here,

the frequency variation is defined as the difference between

the frequency of the CNTs with and without attached mass,

that is Dx = D(x) - D(x ? mc). The result shows that

frequency shift of CNTs increases and tends to a plateau

value with increasing attached mass. The influence of the

nonlocal parameter on the frequency shift is larger in the

attached mass larger than 1.0 zg. The mass sensitivity of

CNT resonator usually depends on the variation of the

frequency or the frequency shift with attached mass. It is

seen from Figs. 2 and 3 that the nanomass in the order of

0.001–1.0 zg has higher sensitivity to the CNT resonator

since the frequency or the frequency shift has large changes

with the attached nanomass. The vibration characteristics

of CNTs are affected by the mass attached to the CNTs.

For very small mass, the variation of the frequency is

insignificant because the vibration response depends

mainly on the natural frequency of CNTs. On the other

hand, the response of vibration frequency would hardly

depend on the vibration characteristics of CNT beam

because the larger mass is attached to the CNTs.

The relationship between the resonant frequency of

CNTs and the aspect ratio is shown in Fig. 4. The effects of

the nonlocal coefficient on the resonant frequency of CNTs

are small for different CNT lengths. Figure 5 shows the

effect of the axial force on the resonant frequency of CNT

with attached concentrated mass. This result suggests that
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Fig. 2 Effect of the nonlocal coefficient on the resonant frequency of

the CNTs under attached different nanomasses (L/D = 20,

N = 20 nN)
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Fig. 3 Resonant frequency shifts of CNT beam under different

concentrated masses (L/D = 20, N = 20 nN)
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Fig. 4 Effect of the nonlocal coefficient on the resonant frequency of

the CNTs under different aspect ratios (mc = 0.1 zg, N = 20 nN)
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Fig. 5 Effect of the axial force on the resonant frequency of CNT

with attached concentrated mass (L/D = 20, e0a = 0)
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higher mass sensitivity can be obtained by increasing ten-

sile force acting on CNTs. For example, the vibration

frequency of CNT resonator will increase up to 52 % for

the attached mass larger than 0.1 zg and the axial force of

20 nN. This can be explained that the natural frequency of

CNTs increases when the CNT beam is subjected to a

tensile axial force, resulting in higher mass sensitivity.

Moreover, we adopt another theoretical approach that is

Raleigh’s energy method to confirm the feasibility of the

proposed continuum beam model. Figure 6 shows the

comparison of the resonant frequency between the nonlocal

Euler–Bernoulli beam model and the Raleigh’s energy

method as a function of the attached mass for different

aspect ratios. It can be seen that the two results are very

consistent with each other in increasing attached mass. The

maximum error between the two simulation methods exists

small mass of nanoparticles, which is\2.5 %.

4 Conclusion

We explored the potential of CNTs as a nanomechanical

mass sensor when an axial tensile load is applied on the

CNTs. Based on the nonlocal Euler–Bernoulli beam model,

the influences of the nonlocal parameter, the aspect ratio

and the axial force on the resonant frequencies and fre-

quency shifts are investigated in detail. The effect of the

nonlocal coefficient on the resonant frequency is significant

to the attached mass\10-2 zg. The results indicate that the

nanomass in the order of 0.001–1.0 zg has higher sensi-

tivity to the CNT resonator. The nanomechanical mass

sensor is expected to have higher sensitivity when an axial

tensile load is applied on the CNTs.
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