
Nonlinear and nonlocal effects on dispersion properties of coupled
surface plasmon polaritons in linear/wire-medium/nonlinear
dielectric structures

Weifeng Zhang1 • Guanghui Wang1

Received: 8 December 2014 / Accepted: 31 March 2015 / Published online: 12 April 2015

� Springer-Verlag Berlin Heidelberg 2015

Abstract We analytically investigate the nonlinear and

nonlocal effects on dispersion properties of coupled sur-

face plasmon polariton (SPP) modes at the interfaces of

the linear/wire-medium/nonlinear dielectric with a Kerr

nonlinearity. By employing a ‘‘first integral’’ method, we

obtain the dispersion relation of coupled nonlinear SPP

modes in the nonlinear waveguide system. Numerical

results show that there exist two branches of SPP modes

in the asymmetric multilayer structure, and both the

nonlinearity and the nonlocality have a great impact on

dispersion properties. We demonstrate that the focusing

and defocusing nonlinearity can lead the SPP frequency to

shift downward and upward, respectively, and there is no

cutoff frequency for the nonlinear SPP mode when spatial

nonlocality is taken into account, evidently different from

those in the absence of spatial nonlocality. In addition, the

nonlocality of optical response can also induce the SPP

frequency to have a blueshift, but the nonlocal effect

would be weakened with the nonlinearity enhanced.

These interesting nonlinear SPP properties in metamate-

rial waveguides have potential applications in optoelec-

tronic devices.

1 Introduction

Surface plasmon polaritons (SPPs) are electromagnetic

exciting modes propagating or located at the interface be-

tween any two materials where the real part of the di-

electric function changes sign across the interface such as

at the metal-dielectric interface, whose electromagnetic

fields decay exponentially with distance from the surface in

its perpendicular direction. In 1941, U. Fano firstly ex-

plained the implicit properties of surface waves in Ref. [1],

which emphasized the existence of polarized quasi-sta-

tionary waves, which represent an energy current rolling

along the surface of a metal [1]. Because SPPs can con-

centrate the electromagnetic energy into subnanometer

volumes giving rise to a strong local energy density, it is

possible that excitation of SPPs can overcome the

diffraction limit and offer a promising approach to control

and manipulate light propagation and dispersion properties

at subnanometer scales.

In the early years, a significant amount of experimental

and theoretical studies have concerned SPPs at metallic

surfaces, but few people pay attention to wire medium at

optical frequency because nanostructures are difficult to be

realized. With the development of nanotechnology, the size

of materials can become smaller and smaller, which makes

the production of metallic nanostructures such as wire

medium become possible. The wire medium is a kind of

artificial metamaterials composed of periodic arrays of thin

metallic nanorods embedded into a dielectric matrix [2–4].

In the last few years, SPP modes in metallic nanostructures

with novel geometries (such as rods, tapered tips, and

shells) have been attracting extensive attention due to their

novel optical properties [5–10].

Recently, ample attention has been devoted to deriving

dispersion equations of SPP modes in left-handed
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electromagnetic media [11–13], nonlinear dielectric/metal

interface [14, 15], and linear-metal-nonlinear dielectric

waveguide [16]. However, the properties of SPPs at the

nonlinear dielectric/wire-medium interface have not been

investigated so far. Here, we have a great interest in non-

linear SPP modes at the interfaces of the multilayer structure

constructed by the linear/wire-medium/nonlinear dielectric

with a Kerr nonlinearity. In this paper, our motivation is to

clarify the dispersion properties of nonlinear SPP modes

existing at the interfaces of the waveguide system and

demonstrate the influence of both the Kerr nonlinearity and

the nonlocality on the dispersion properties of nonlinear SPP

modes. It is expected that the effects of the nonlinearity and

nonlocality on nonlinear SPP modes would interact with

each other in the metamaterial waveguide system [17–19].

This paper is structured as follows. In Sect. 2, we derive

the dispersion relation for nonlinear SPP modes in the

asymmetric multilayer structure constructed by the linear/

wire-medium/nonlinear dielectric with a Kerr nonlinearity

in the case of considering the nonlocality of optical re-

sponse in wire-medium metamaterials. In Sect. 3, we dis-

cuss mainly the dispersion curves, the characteristics of

cutoff frequency, and the shift of the SPP frequency in both

local and nonlocal cases. In addition, we demonstrate fur-

ther the interaction between the nonlinearity and nonlo-

cality and their influence on dispersion properties of SPP

modes in the metamaterial waveguide system in detail.

And a brief summary is given in Sect. 4.

2 Dispersion properties of nonlinear SPP modes

We consider a plasmonic waveguide with the integral ge-

ometry as shown in Fig. 1. In this waveguide structure, a

nonlinear dielectric layer and a linear dielectric layer oc-

cupy the space of x[ 0 (region 1) and x\� d (region 3),

respectively. Here, we consider the nonlinear dielectric of a

kerr nonlinearity, and its D–E relation is of the form

D ¼ eEþ ajEj2E ¼ enlðEÞE, where e is the linear part of

the dielectric function enlðEÞ; a is a nonlinear coefficient of

the kerr material, characterizing nonlinear type and size.

When a[ 0, the kerr material is of focusing nonlinearity,

while it is of defocusing nonlinearity when a\0. If a ¼ 0,

the material becomes linear. In the middle of this structure

is the wire-medium metamaterial, which is formed by a

regular lattice of ideally conducting nanorods embedded

into a host medium. Compared with the wavelength of in-

cident light, the size of lattice is so small that the wire

medium can be approximately seen as a homogeneous

medium. It is well known that the wire medium could be

modeled as a uniaxial dielectric with the following per-

mittivity dyadic [20, 21]:

e ¼ ezzêzêz þ ehðêxêx þ êyêyÞ; ð1Þ

with

ezzðx; kzÞ ¼ eh 1 �
k2
p

ehk2
0 � bk2

z

 !
; ð2Þ

where k0 ¼ x=c; kp ¼ xp=c; eh is the relative permittivity

of the host medium, xp is an equivalent plasma frequency,

and c is the speed of light in vacuum. Here kz is the z-

component of the wave vector k in the wire medium, and b
is a spatial dispersion parameter, b ¼ 1 or 0, corresponding

to consider the nonlocality (b ¼ 1, nonlocal case) [20, 21]

or omit the nonlocality (b ¼ 0, local case) [22] of optical

response in the wire-medium metamaterial, respectively.

In order to investigate nonlinear SPP modes, we con-

sider the wave fields have a simple form as

Eðr; tÞ ¼ 1

2
ExðxÞex þ iEzðxÞez½ �eiðkzz�xtÞ þ c:c:; ð3Þ

Hðr; tÞ ¼ 1

2
HyðxÞeyeiðkzz�xtÞ þ c:c:; ð4Þ

where kz is the z-component of the wave vector, which is

also called propagation constant in the waveguide system.

Here only the transverse magnetic (TM) mode is consid-

ered, whose magnetic field is polarized along y-direction

and propagates along z-direction, as shown in Fig. 1. Ac-

cording to the Maxwell’s equations r�H ¼ oD=ot and

r� E ¼ �l0oH=ot, we can obtain the field equations in

the following form:

o

ox
Ez ¼ kzEx � l0xHy; ð5Þ

Hy ¼
xexxe0

kz
Ex; ð6Þ

Ez ¼
1

kzezz

o

ox
ðexxExÞ: ð7Þ

Fig. 1 a The system consists of wire medium separating two semi-

infinite dielectric regions, one of which is linear and the other of Kerr

nonlinearity. The coordinate origin of cartesian coordinate system xyz

is placed at the nonlinear dielectric/wire-medium interface, and the

TM-polarized modes propagating along the z-direction. b The

geometry of wire medium: a lattice of parallel ideally conducting

nanorods directed along the z-direction
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Here, exx and ezz are the components of tensor dielectric

constant. Particularly, we have the relation exx ¼ ezz ¼ enl,
and el in the nonlinear and linear dielectrics, respectively.

In wire-medium region (region 2), the general form of

the E-field can be assumed as

Ex2ðxÞ ¼ E�
x2ð0Þeqmx þ Eþ

x2ð0Þe�qmx; ð8Þ

where the amplitudes are those at the value of x specified

inside the parentheses. Substituting Eq. (8) into Eqs. (6)

and (7), we can obtain the expression of Hy2ðxÞ and Ez2ðxÞ
in the wire medium. Here qm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
z ezz=eh � ezzx2=c2

p
,

which follows from Eqs. (5). According to the character of

evanescent waves, we set Ex3 ¼ Ex3ð�dÞeqlðxþdÞ in linear

region (region 3). Similarly, we have Ez3ðxÞ ¼
ðql=kzÞEx3ð�dÞeqlðxþdÞ and Hy3ðxÞ ¼ ðxele0=kzÞEx3ð�dÞ
eqlðxþdÞ, where ql ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
z � elx2=c2

p
, and el is the relative

permittivity of the linear dielectric. Due to the anisotropy

of the wire medium, we can notice that there is a different

expression for qm, compared with ql.

In the nonlinear region (region 1), we treat the fields by

employing the method of ‘‘first integral,’’ which was first

shown by Mihalache et al. [23]. Eqs. (5) and (7) have a

first integral that can be written as

dEz1ðxÞ
dx

� �2

¼ k2
z �

ex2

c2

� �
E2
x1ðxÞ �

ex2

c2
E2
z1ðxÞ �

1

2
a
x2

c2

� E2
x1ðxÞ þ E2

z1ðxÞ
� �2

; ð9Þ

where Ex1ðxÞ and Ez1ðxÞ are the components of electric

field in nonlinear region (region 1). Applying
dEz1ðxÞ

dx
to

x ¼ 0þ, we obtain

dEz1ðxÞ
dx

� �2

z¼0þ
¼ kz �

enlx2

kzc2

� �2

E2
x1ðxÞ: ð10Þ

Substituting Eq. (10) into Eq. (9), we can get the relation

between Ex1ð0Þ and Ez1ð0Þ as

2
e2
nlx

2

k2
z c

2
� 2enl

� �
E2
x1ð0Þ þ enl þ eð ÞE2

0 ¼ 0; ð11Þ

here, we have set E2
0 ¼ E2

x1ð0Þ þ E2
z1ð0Þ. With the conti-

nuity of Ez and Hy at the interfaces of x ¼ 0 and x ¼ �d,

we can obtain

Ex1ð0Þ ¼
1

2qmenl
ðqlezz þ qmelÞeqmd � ðqlezz � qmelÞe�qmd
� �

� Ex3ð�dÞ; ð12Þ

Ez1ð0Þ ¼
1

2kzezz
ðqlezz þ qmelÞeqmd þ ðqlezz � qmelÞe�qmd
� �

� Ex3ð�dÞ: ð13Þ

Finally, substituting Eqs. (12) and (13) in Eq. (11), the

dispersion relation for the nonlinear SPP modes can be

derived as follows

2
e2
nlx

2

k2
z c

2
� 2enl

� �
þ enl þ eð Þ 1 þ P2q2

me
2
nl

Q2k2
z e

2
zz

� �
¼ 0; ð14Þ

where P ¼ qlezz þ qmeltanhðqmdÞ, and Q ¼ qmelþ
qlezztanhðqmdÞ. It is worth noting that by taking

P ¼ Qðqmd ! 1Þ, the coupled nonlinear SPP modes at

the interfaces of the linear/wire-medium/nonlinear dielec-

tric structure will degenerate into two independent surface

waves at the wire-medium/linear dielectric and wire-

medium/nonlinear dielectric interface, respectively.

3 Results and discussions

In this paper, the relative dielectric constant of the host

matrix for the wire medium is assumed as eh ¼ 4:4, the

linear dielectric is assumed as a vacuum without loss of

generality, and we fix the linear part of the dielectric

constant of the Kerr medium at e ¼ 2:4. According to the

dispersion relation Eq. (14), we have plotted the dispersion

curves of the waveguide system in the case of not con-

sidering the nonlinearity for two different cases of gap

width d with the nonlocal effect (b ¼ 1) in Fig. 2. There

are two branches for a given gap width d; the upper branch

and lower branch denote the characters of the SPP mode at

the linear dielectric/wire-medium interface and the non-

linear dielectric/wire-medium interface in the waveguide

system, respectively. It must be noted that both ql and qm

Fig. 2 Dispersion curves of SPP modes in the case of not considering

the nonlinearity for two different gap widths d ¼ 0:1 kp and d ¼ kp,

with the nonlocal effect (b ¼ 1)
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should be real in order to guarantee the existence of SPP

modes, in other words, two inequalities should be fulfilled

simultaneously: k2
z � elðx2=c2Þ[ 0 and ðezz=ehÞk2

z � ezz
ðx2=c2Þ[ 0. Solving the two inequalities, we can find that

the region, in which SPP modes can exist, is surrounded by

the three dashed lines, denoted by (i), (ii), and (iii). Dashed

line (i) denotes x=xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1 þ bðkz=kpÞ2�=eh

q
, where the

spatial dispersion parameter b ¼ 0 and b ¼ 1 correspond to

the optical effects of locality and nonlocality, respectively.

Dashed line (ii) is x=xp ¼ ðkz=kpÞ=
ffiffiffiffi
el

p
, and dashed line

(iii) represents x=xp ¼ ðkz=kpÞ=
ffiffiffiffi
eh

p
. In addition, we have

plotted the light line (x=xp ¼ ðkz=kpÞ=
ffiffi
e

p
, black solid line)

in region 1 in Fig. 2. Seen from Fig. 2, the mode, whose

dispersion curve lies to the left of the light line, is radiative

(leaky). However, the mode, whose dispersion curve lies to

the right of the light line, is nonradiative. For example, the

point A (left of the light line, radiative mode) cannot

guarantee the inequality k2
z � eðx2=c2Þ[ 0, which leads to

the case that the electromagnetic field in region 1 corre-

sponds to a plane wave radiating away from the wire-

medium boundary. Due to very less dependence of the

upper branch of dispersion curves on the nonlinear pa-

rameter aE2
0, we only discuss the influence of the coupled

effect of the Kerr nonlinearity and nonlocality on lower

branch in the following analysis.

In order to clarify the character of waveguide system,

we have numerically plotted the dispersion curves of SPP

modes for two different widths of wire medium in mid-

layer: d ¼ 0:1 kp (in Fig. 3a, c) and d ¼ kp (in Fig. 3b, d)

in both local (b ¼ 0) and nonlocal (b ¼ 1) cases, where

kp ¼ 2pc=xp. In Fig. 3a–d, we have shown three lines: (1)

red line (ajE0j2 ¼ 0), the dielectric in region 1 is linear; (2)

green line (ajE0j2 ¼ 1), the dielectric in region 1 is of fo-

cusing nonlinearity; (3) blue line (ajE0j2 ¼ �1), the di-

electric in region 1 is of defocusing nonlinearity. It must be

emphasized that both nonlinearity and nonlocality of op-

tical response have an evident influence on the dispersion

curves of the nonlinear SPP modes (lower branch) in the

metamaterial waveguide system. In the case of local re-

sponse (b ¼ 0), we can find that there exists a cutoff fre-

quency xc for each dispersion curve of SPP modes in three

cases of different nonlinearity. This indicates that the SPP

modes cannot exist and propagate at the interface of the

wire-medium waveguide when the SPP frequency

xsp [xc in the local case. In Fig. 3a, we can see that the

cutoff frequency decreases obviously with the nonlinear

parameter ajE0j2 increasing. Different from Fig. 3a, the

dispersion curves in Fig. 3b approach to the same cutoff

frequency (xc ¼ 0:465xp) for different values of nonlinear

parameter when d ¼ kp. In order to illustrate clearly the

point, we have plotted the dependence of the cutoff fre-

quency xp on the mid-layer width d for three different

values of nonlinear parameter aE2
0 in Fig. 4. Seen from

Fig. 4, we can find the cutoff frequency xp increases

monotonically with the change of the width d. In small

width d region (0:1 kp\d\1:5 kp), the effect of Kerr

nonlinearity has an large impact on the cutoff frequency

xp. In large width d region (d[ 1:5 kp), the curves for

different values of nonlinear parameter aE2
0 almost overlap

together, meaning that the effect of Kerr nonlinearity on

SPP modes become weaker and weaker with the width

d increasing.

Compared with the dispersion curves of linear-metal-

nonlinear dielectric structure [15], we easily find that there

exist significant difference in present dispersion curves.

The reason is that when SPP frequency x\xp, qm ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
z � ezzðx2=c2Þ

p
is a real number without any additional

conditions in metal, which induces a consequence that

there is no cutoff frequency xc in the linear-metal-non-

linear dielectric structure for the case of local response. For

more accurate treatment, the nonlocality of optical re-

sponse for TM modes in the wire medium should be taken

into account. Comparison with the local case (b ¼ 0), the

dispersion curves in the nonlocal case (b ¼ 1) have evident

different properties: (1) the dispersion curves tends

asymptotically to the dashed line (i) with the wave vector

kz increasing in Fig. 3c, d, and the larger the width d is, the

more evident the asymptotic behavior will be. (2) there

exist no any cutoff frequencies for nonlocal SPP modes.

From Fig. 3, we can also see that the SPP frequency in

the presence of a kerr nonlinearity deviates from that in the

absence of nonlinearity. To better clarify these properties,

we illustrate the deviations

D� � xsp jaE2¼�1 �xsp jaE2¼0 ð15Þ

as a function of normalized wave vector kz=kp for three

different widths d in Fig. 5: d ¼ 0:1 kp [(a) and (b)]; d ¼ kp
[(c) and (d)]; d ¼ 3:0 kp [(e) and (f)] in the two cases of

local (b ¼ 0) and nonlocal (b ¼ 1) responses, where the

red and black lines correspond to Dþ and D�, respectively.

Slight deviations in the dispersion relation from the linear

case (a ¼ 0) are exhibited, the positive (negative) Kerr

coefficient results in SPP frequency xsp slightly smaller

(larger) than the linear case in the present choice of values

for aE2
0. Compared with the case of local response (b ¼ 0,

see Fig. 5a, c, e), the range of kz, in which the deviations

D� are evident, suggesting the nonlinearity has a great

influence, is broaden considerably to 2:0 kp in the nonlocal

case (b ¼ 1) as shown in Fig. 5b, d, f. It must be mentioned

that we only show the relative narrow range of kz=kp due to

the existence of cutoff frequency for SPP modes in the case
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of local response, as shown in Fig. 5a, c, e. In addition,

comparison with a thin width d (see Fig. 5b, d ¼ 0:1 kp),
the absolute values of deviations D� for thick wire medium

are larger (see Fig. 5d, d ¼ kp). However, the tendency of

curves is almost same with the width d increasing further

(see Fig. 5d, f). When the width d ¼ 3 kp in Fig. 5f, there is

almost no significant difference for the deviations D�
compared with Fig. 5d. These observed tendency indicates

the nonlinearity and nonlocality interact with each other,

which is stronger and stronger with the mid-layer width d

increasing, then trends toward stabilization when the width

d[ kp.
In Fig. 6a, b, we further illustrate the effects of Kerr

nonlinearity and nonlocality on the SPP modes by plotting

the nonlinear parameter jajE2
0 dependence of normalized

kz=kp for two different values of SPP frequency xsp: (a)

xsp ¼ 0:2xp; (b) xsp ¼ 0:4xp with the width d fixed at kp,
respectively, where the red and blue lines correspond to the

local (b ¼ 0) and nonlocal (b ¼ 1) cases. From Fig. 6a, b,

we can see that the variation rules of curves for both local

(b ¼ 0) and nonlocal (b ¼ 1) cases have a similar behav-

ior. Concretely speaking, in the case of focusing Kerr co-

efficient a[ 0 (dashed line), kz increases linearly with

nonlinear parameter jajE2
0 enhanced, and in the case of

defocusing Kerr coefficient a\0 (solid line), the value of

kz first decreases and then increases with nonlinear pa-

rameter jajE2
0 increasing. However, it is worthy noting that

when SPP frequency xsp ¼ 0:4xp (Fig. 6b), kz varies

significantly when the nonlocality of optical response in the

(a)

(c) (d)

(b)
Fig. 3 Dispersion curves of

SPP modes for the two values of

wire-medium width d in three

different cases of defocusing

nonlinearity ajEj2 ¼ �1 (blue

line), linearity ajEj2 ¼ 0 (red

line), and focusing nonlinearity

ajEj2 ¼ 1 (green line). a the

width d ¼ 0:1 kp;b ¼ 0 (local

case), b the width d ¼ kp; b ¼ 0

(local case), c the width d ¼
0:1 kp;b ¼ 1 (nonlocal case), d
the width d ¼ kp; b ¼ 1

(nonlocal case)

Fig. 4 The dependence of the normalized cutoff frequency xc=xp on

the mid-layer width d for three different values of nonlinear parameter

aE2
0: defocusing nonlinearity aE2

0 ¼ �1 (blue line), linearity aE2
0 ¼ 0

(red line), and focusing nonlinearity aE2
0 ¼ 1 (green line)
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(a) (b)

(c) (d)

(e) (f)

Fig. 5 Deviations of nonlinear SPP frequency xsp from the linear case, Dþ and D� [defined by Eq. (15)], as a function of kz=kp for a width

d ¼ 0:1 kp;b ¼ 0; b width d ¼ 0:1 kp, b ¼ 1; c width d ¼ kp;b ¼ 0; d width d ¼ kp;b ¼ 1; e width d ¼ 3 kp; b ¼ 0; f width d ¼ 3 kp;b ¼ 1

(a) (b)

(c) (d)

Fig. 6 The normalized kz=kp as

a function of the nonlinear

parameter jajE2
0 for two

different SPP frequencies: a
xsp ¼ 0:2xp; b xsp ¼ 0:4xp.

SPP frequency xsp versus the

nonlinear parameter jajE2
0 for

two different values of kz: c
kz ¼ 0:4 kp; d kz ¼ 0:8 kp, with

mid-layer width d ¼ kp. Red

and blue lines denote the local

(b ¼ 0) and nonlocal (b ¼ 1)

cases, respectively. Dashed and

solid lines correspond to the

focusing (a[ 0) and defocusing

(a\0) nonlinearity,

respectively
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wire medium is taken into account, which indicates that the

nonlocality has a great influence on the SPP modes in some

SPP frequency range.

As a supplement, we also plot the nonlinear parameter

jajE2
0 dependence of SPP frequency xsp for two given

values of kz in Fig. 6c (kz ¼ 0:4 kp) and Fig. 6d

(kz ¼ 0:8 kp). For a[ 0, the SPP frequency xsp decreases

monotonically with respect to the change of jajE2
0. For

a\0, the SPP frequency xsp first increases to a certain

maximum value and then deceases with jajE2
0 increasing.

Comparison with the case of local response (b ¼ 0), the

nonlocality of optical response in the wire-medium layer

can lead the SPP frequency to shift upward (blue shift),

which is very evident in certain ranges of kz, such as kz ¼
0:8 kp (see Fig. 6d). In addition, the effects of the nonlo-

cality on the SPP frequency will be weakened with non-

linear parameter jajE2
0 enhanced.

At last, we compare these characters of the coupled

waveguide system with the findings of Ref. [5]: (1) There

exist two branches of SPP modes in the waveguide system

constructed by the linear/wire-medium/nonlinear dielec-

tric; however, there exists only one dispersion curve at the

single metal–Kerr medium interface. (2) Although there

exists some difference in the range of the deviations D�,

the changing tendency of D� with kz is nearly similar to

that of Ref. [5]. (3) With the nonlinear parameter jajE2
0

increasing, the changes of the SPP frequency xsp (see

Fig. 6c, d) of our waveguide system are more evident than

that in single metal–Kerr medium interface mentioned in

Ref. [5]. These interesting properties may be instructive for

precise experiments and have potential applications in

metamaterial waveguide devices.

4 Summary

In this paper, we investigate mainly the dispersion prop-

erties of coupled nonlinear SPP modes at the interfaces of

the multilayer structure constructed by the linear/wire-

medium/nonlinear dielectric with a Kerr nonlinearity. We

derive the dispersion relations for nonlinear SPP modes by

employing a first integral approach at the interface between

a kerr nonlinear dielectric and a wire medium with strong

nonlocality of optical response. We show that there exist

two branches of SPP modes in the asymmetric multilayer

structure, and the optical responses of the Kerr nonlinearity

and nonlocality interact with each other in the metamaterial

waveguide system, which have a significant influence on

the dispersion properties and the cutoff frequency. The

focusing nonlinearity can lead the SPP frequency to shift

downward, whereas it is contrary in the case of defocusing

nonlinearity. The nonlocality of optical response can lead

the SPP frequency to have a blueshift. The nonlocal effect,

however, would be weakened with the nonlinear effect

increasing. In addition, the range of kz, on which the

nonlinearity has a major influence, can be broaden con-

siderably when the nonlocality is taken into account. These

properties may be instructive for precise experiments in

future and practical application in artificial metamaterial

optoelectronic devices at nanometer scales.
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