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Abstract The registration of technical art conservation

images of Old Master paintings presents unique challenges.

Specifically, X-radiographs and reflective infrared

(1000–2500 nm) images reveal shifted, or new, composi-

tional elements not visible on the surface of artworks. Here,

we describe a new multimodal registration and mosaicking

algorithm that is capable of providing accurate alignment

of a variety of types of images, such as the registration of

multispectral reflective infrared images, X-radiographs,

hyperspectral image cubes, and X-ray fluorescence image

cubes to reference color images taken at high spatial

sampling (300–500 pixels per inch), even when content

differences are present, and a validation study has been

performed to quantify the algorithm’s accuracy. Key to the

algorithm’s success is the use of subsets of wavelet images

to select control points and a novel method for filtering

candidate control-point pairs. The algorithm has been used

to register more than 100 paintings at the National Gallery

of Art, D.C. and The Art Institute of Chicago. Many of the

resulting registered datasets have been published in online

catalogues, providing scholars additional information to

further their understanding of the paintings and the work-

ing methods of the artists who painted them.

1 Introduction

Conservators regularly collect X-radiographs and infrared

(IR) images (750–2500 nm) of paintings to look for

changes in the painting’s composition and for original

preparatory sketches [1, 2]. Such information provides in-

sight into the working method of the artist and to some of

the materials that were used. For example, a painting,

found to have a preparatory sketch that has been modified,

points to a composition that was being worked out during

the painting process, whereas the same analysis of a

‘‘production painting’’ often shows that a template, or

compositional study, was used to lay out the figures. De-

tailed comparison of the IR images with the corresponding

color image often reveals further changes made by the

artist, thus giving additional information.

In cases where the artist has made large changes in the

composition, these may be visible only by identifying

changes in contrast of the paints used, achieved by com-

paring the IR images and the X-radiographs to the color

image. In IR images, highly scattering, low-IR-absorbing

pigments are transparent, while umbers, some greens, and

organic black pigments remain opaque. In contrast, in

X-radiographs, high-density materials such as lead white (a

pigment often used for painting faces and hands) remain

opaque. An example of this can be seen by comparing the

color image with the X-radiograph and IR image of Jo-

hannes Vermeer’s Girl with the Red Hat (Fig. 1). The IR
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image (Fig. 1b) reveals an upside-down hat painted with an

IR-absorbing pigment, and the X-radiograph (Fig. 1c) re-

veals an upside-down face of a man (in addition to the girl)

painted, in part, with lead white. Accurate registration of

these images allows the construction of a composite

(Fig. 1d) that shows both the man’s hat and face of the

prior composition. Additionally, using the IR image and

the X-radiograph, we can examine the painting style of

subsurface paint. For this painting, it was determined that

the painting style of the reversed portrait is significantly

different from that of Vermeer and that it was likely the

work of a different artist [3].

2 Background

Automatic registration of images acquired using different

modalities (‘‘modalities’’), or multimodal image registra-

tion, of Old Master paintings presents several challenges.

First, these modalities often contain both similar and unique

information. While identification of the unique information

is the raison d’être for multimodal imaging, the lack of

equivalent information in the other modalities complicates

the registration process. Additionally, some objects that are

found in two modalities can shift with respect to one an-

other. For example, an artist might add or reposition a

person when moving from the sketch to the final painted

composition. More often, one observes small changes in the

positions of hands, fingers, eyes, and features of clothing

[4]. These small changes complicate the task of accurately

aligning images using image content, especially when

compared to other image registration applications. In re-

mote sensing of the Earth, for example, these effects do not

occur, and in medical imaging, the variation between

modalities is due mostly to differences in contrast between

objects, rather than to small alterations and shifts.

The second challenge comes from the way the images

are collected. In remote sensing, ephemeris data are co-

collected to allow orthorectification of the images, which

simplifies the alignment of different imaging modalities. In

medical imaging, fiducial markers are often placed in the

field of view as common references visible in each mod-

ality. Unfortunately, in art conservation, the technical im-

ages often are collected by different groups without the

required metadata or a sufficient number of fiducial

markers to allow geometrical model-based image regis-

tration. Moreover, the imaging sensors used differ greatly

in their collection modes and associated geometrical dis-

tortions. For example, the color images, which have the

highest spatial sampling, often are collected with a large-

format color array (approximately 20–50 megapixels) and

consist of one or a few frames stitched together. While

such cameras are of high quality, with lenses having near

zero distortion, they produce images that are rectilinear and

thus are affected by a scale factor that varies slightly as a

function of the distance to the optical axis. For example, a

camera (focal length of 100 mm, 8000 horizontal pixels,

6-lm pixel pitch) 83.8 cm from a painting will produce a

maximum shift of 24 pixels at the edges of the image,

relative to a regular grid, at 565 pixels per inch. X-radio-

graphs and IR images are not affected to the same degree

by this varying scale term. The X-radiographs used are

often created by scanning X-ray films, which have been

illuminated by an X-ray source. And the IR images

typically are composited by mosaicking hundreds of small

image frames, with small fields-of-view, captured using IR

cameras with arrays typically 0.25 megapixels in size.

Currently such IR and X-radiographs are registered and/

or mosaicked using overlap regions between frames either

manually, using tools like Photoshop, or semi-auto-

matically using Photoshop Photomerge, Vasari [5], or

custom software [6]. A more advanced approach has been

Fig. 1 a Color image of Johannes Vermeer’s Girl with the Red Hat

(1665/1666). Andrew W. Mellon Collection, 1937.1.53, National

Gallery of Art (NGA), Washington, D.C., b infrared reflectance (2100

2400 nm), c X-radiograph, and d summation of the rotated X-radio-

graph and the intensity-inverted and rotated infrared reflectance

image [3]
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taken to produce well-mosaicked X-radiographs using an

algorithm running on a large cluster of networked com-

puters1 [7]. The use of the overlap regions alone, however,

does not guarantee that the resulting mosaic will be able to

be registered accurately to the color image using a simple

affine transform.

Hardware-specific solutions to remove the mosaicking

requirement for IR images have been explored, such as a

sensor that uses a single scanning detector or small-area or

line arrays that scan the image plane of a large-format lens.

These single-pixel raster-scanning systems are slow, taking

a few hours to scan a square-meter area [8]. Multi-spectral

versions of these raster-scanning systems were also pro-

duced that were capable of capturing tens of channels with

scan times of seven to fourteen hours per square meter of

coverage [9]. Those systems provide moderate resolution

(100 pixels per inch) but are not portable.

Truly portable sensors place the raster-scanning detector

elements(s) in the focal plane of a lens having a large field

of view (FOV). Such systems provide 16-megapixel im-

ages (4k-by-4k) by scanning, using either a small-area ar-

ray [10] or a line array [11]. Those systems have

limitations given their low collection efficiency (area

covered per unit time), which diminish their utility when

used with spectral band filters. Lastly, many conservators

use a step/stare collection method in which a painting is

moved by a 2-D movable easel in front of a small IR area

array with interference filters designed to optimize the

contrast of the preparatory drawing in the 750–2500 nm

spectral range with sampling of 300–500 pixels per inch

[1, 2].

Given the different collection-related distortions inher-

ent to the various modalities and the limited utility of

hardware-specific solutions, we sought to design a robust

algorithm to register and mosaic the various types of image

datasets that are used commonly in conservation science.

Here we will discuss a point-based approach for the reg-

istration and mosaicking of IR images and X-radiographs

to color images. The algorithm, moreover, is capable of

registering other imaging modalities, including those ob-

tained from raster-scanning X-ray fluorescence (XRF)

systems [12] and line-scanning cameras, such as hyper-

spectral reflectance cameras [13–16]. The resulting algo-

rithm was implemented in MATLAB and has been com-

piled to run on various operating systems. It can run on

multi-core desktop computers that are commercially

available and found in the photography departments of

most museums. Additionally, the user interface of the

compiled software was intended to be suitable for use di-

rectly by conservators.

3 Methods

Point-based registration algorithms generally consist of

four major steps: (1) candidate control-point identification,

(2) candidate control-point matching, (3) calculation of a

spatial transformation function, and (4) image resampling

and transformation [17, 18]. Below we describe the means

by which we automatically identify and match control-

point pairs to address the challenges of registering mis-

matched image content that arises between the different

imaging modalities, as well as account for and correct the

various distortions contributed by the imaging modalities.

3.1 Identify an initial set of control-point pairs

Control points are the corresponding points in two images

that will be used to define the transformation function be-

tween the images. Selecting a good set of control points is

the first step to registering two images, particularly when

they are acquired using different modalities. By carefully

selecting which control points are initially identified, we

can limit the matching step, as described below, to only

regions (surrounding the control points) that are likely to

match between the two modalities. In the case of a paint-

ing, the regions likely to match are the painting’s texture

features, such as cracks, brushstrokes, bubbles, and blisters,

so we select regions that contain objects the same size as

those features.

Before control-point identification, we first manually

rescale and rotate the images (to within 5–10 %) so that

they are at the same approximate size and orientation. We

then use the modulus maxima of the wavelet transform to

identify regions that contain objects that are the same ap-

proximate size as the painting’s texture features. The

modulus of the wavelet transform is computed by filtering

images using low- and high-pass, direction-sensitive filters

of various sizes (scales). As shown in Fig. 2, an image with

vertical features emphasized, LxHyðnÞ, at scale n is created

by low-pass filtering (LP) an image with a horizontally-

Fig. 2 Steps for computing the modulus of the wavelet transform (LP

low-pass filter, HP high-pass filter)1 Personal communication with R. Erdmann, 2013.
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oriented filter and then high-pass filtering (HP) the result

with a vertically-oriented filter. The opposite filter order is

used to create an image with horizontal features empha-

sized, HxLyðnÞ. The widths of the filters are equal to 2n. By
changing the scale n, we can emphasize features of dif-

ferent sizes. The results then are merged by computing the

pixel-by-pixel magnitude of the two images [4, 19]. This

produces the modulus, M(n), of the original image. The

images, LxHyð3Þ; HxLyð3Þ, and M(3), in Fig. 2, show the

results for scale n = 3. To prevent spatial clumping, thus

risking a poorly matched group from biasing the result

toward an incorrect solution, we use the local maxima from

the modulus of the wavelet transform as the initial set of

points. A square neighborhood is defined around each

maximum, and all maxima within it, except for the largest,

are removed. Fig. 3 shows a detail of an IR image frame

(Fig. 3a) and the corresponding modulus image at a single

scale (Fig. 3b). The initial set of control-point regions that

has been identified for the IR image is superimposed, in

red, on the modulus image.

After identifying control-point regions in a template

image (IR images or X-radiographs, in the examples de-

scribed below), we find corresponding regions in a refer-

ence image (typically the color image) using a variant of

phase correlation. This is performed by first computing the

phase image2 for each image and then finding the max-

imum of the normalized cross-correlation between them [4,

20]. Initially, this step is performed on downsampled (using

bicubic interpolation) copies of the full IR image frame and

full color image. The result is an estimate of the alignment

of the IR image frame and the color image. Using the

estimated alignment, the algorithm identifies small search

regions in the reference phase image for each of the cor-

responding control-point regions in the template phase

image. The search regions and the control-point regions are

then upsampled by a scale factor of three using bicubic

interpolation (to minimize artifacts), to achieve subpixel

control-point pairings. They are then matched by comput-

ing the maximum of the normalized cross-correlation be-

tween the full-resolution phase images of each control-

point region in the template image and the corresponding

(sub)regions in the reference phase image. The resulting

cross-correlation matrix for one of those computations is

shown in Fig. 4. In addition to this matching step, the

candidate maximum correlation peak is tested to distin-

guish it from the noise floor by comparing it to the standard

deviation (r) of the cross-correlation window after the peak

correlation value has been removed. A candidate is ac-

cepted if it is (a) greater than or equal to 4r, and (b) unique

(no other value in that (sub-) region is within r of it). The

result is a set of matched control-point pairs3, as shown in

Fig. 5a. Those matches, however, are not perfect, which

leads to a further filtering requirement, as described in

Sect. 3.2. The red points and lines in Fig. 5a define the

control-point pairs that are determined to be accurate in the

next step, while the blue points and lines show the pairs

that will be removed.

3.2 Filtering the initial set of control-point pairs

The sets of control-point regions from each image (refer-

ence and template) may represent pairs, i.e., the same point

in space. The sets may also contain non-homologous pairs

and inaccurate matches. This can be seen in Fig. 5a, where

the good pairs (red lines) have the same approximate ori-

entation, while some bad pairs (blue lines) have different

orientations. Another way to visualize this is the horizontal

pixel disparity plot4 in Fig. 5b. The blue and red points

represent the difference between the corresponding

horizontal pixel coordinates of a pair of ‘‘matching’’ con-

trol points identified in the previous step. The set of points

is plotted in the coordinate space of the first image. If the

sets of regions were accurately matched, one would expect

the disparity points to be near the best-fit function (shown

in black). Even in the situation where the template image is

shifted, rotated, and/or magnified relative to the reference

image, it would be expected that the disparity will vary

slowly across space. Therefore, when a set of points con-

forms to a consistent disparity relationship, there is reason

Fig. 3 a Detail IR image and b modulus image with control-point

regions (red) identified (scale n = 3)

2 A phase image is produced by computing the 2-D Fourier transform

of an image then computing the inverse Fourier transform of the result

using only the phase information (i.e., using unit magnitude) [20].

3 While the matching is performed using phase images, Fig. 5a uses

the color image and IR image to show more clearly the control points

over their corresponding regions.
4 The vertical pixel disparity is also computed, and analyzed, in the

same manner as the horizontal pixel disparity.
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to expect that the corresponding pairs are valid. Similarly,

when there are outliers from that disparity relationship, it

can be assumed that those outliers represent false pairs. To

choose the best set of control-point pairs, pairs are removed

based on the distances of their disparity points from their

respective best-fit functions. Examination of the 3-D plot

shows most points lie in a tilted plane that can be found by

performing a least-squares fit of bilinear functions. Points

that lie above and below this plane are identified as ‘‘bad

pairs’’. The largest distance is identified, and that pair is

removed from the sets. The best-fit functions are re-com-

puted, and the process is repeated until the largest distance

is smaller than a threshold value. A threshold of 1/3 pixel

was used in most of the examples discussed below. The

threshold has been increased, however, to as large as 4/3

pixels to successfully register some of the more challeng-

ing X-radiographs5. In Fig. 5b, the blue points show con-

trol points that have been removed, and the red points show

control points that are within the threshold distance to the

best-fit function. The black points are the final best-fit

function. In this orientation, it is clear that the red pairs

have a consistent disparity relationship. If a substantial

number of these pairs exist after the threshold has been

met, there is reason to be confident that they can be used to

produce an accurate transformation. For the examples de-

scribed below, at least 64 pairs were required to produce

sufficient accuracy. By selecting the control-point regions

more carefully, as described above, the method reduces the

likelihood of obtaining an inaccurate transformation.

3.3 Generate the registered and mosaicked image

The pairs that remain after the filtering step are used to

define a spatial transform that will bring the template im-

age into alignment with the reference image. When trans-

forming IR image frames and X-radiographs, a bilinear

transformation is used, as described in [4, 21]. Once an

independent transformation has been applied to each tem-

plate image, a mosaic is formed. When forming the mosaic,

the pixels in the overlap region are added to the mosaic

based on their distances from the centers of their respective

blocks. Since the distortion for any given block is most

often greater toward the edge, we attempt to preserve the

centers of the blocks and discard the edges when there is

redundant information available. This is done by comput-

ing the distance for every pixel in the mosaic to the center

of its respective block. When a new block is registered, the

distances in the new block are computed and then com-

pared to distances already in the mosaic. If a distance is

smaller, then the corresponding pixel replaces the one al-

ready in the mosaic.

By capturing many small IR image frames (small rela-

tive to the color image), registering them to the color ref-

erence image, and forming a mosaic, we transform the

resulting IR mosaic to approximately fit the distortion in

the reference image. This type of fitting is a piecewise

Fig. 4 Normalized cross-correlation of local regions of the phase image of the red channel of the color image and a corresponding phase image

of an IR image (SD = 0.03)

5 X-radiographs are scanned at 500 pixels per inch, and thus the

increase in disparity corresponds to a decrease in pixel size relative to

the IR datasets.
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approach. While a bilinear transformation cannot perfectly

fit the distortion in the reference image, the independent

transformation performed on each IR image frame (each

piece) will better fit the local distortion. For example, as

discussed above, a color camera capturing images at 565

pixels per inch can produce a shift of as much as 24 pixels

at the edge of the image. But, by computing an independent

bilinear transformation for each 512-by-640 pixel IR image

frame, we constrain the maximum shift in the local region

of the color image, relative to the spatial coordinates of the

transformed IR image frame, to 0.72 pixels6.

4 Results—validation study

A painting was created to allow quantification of the ac-

curacy of the registration and mosaicking algorithm. The

painting contains an underdrawing, a painted surface layer,

and cobalt blue lines that are used as fiducial markers. The

algorithm then was used to generate an infrared (IR) mo-

saic that is in register with a reference color image (1280-

by-1035 pixels, approximately 80 pixels per inch, 16 bits

per pixel). The spatial distances between the fiducial

markers in the image and those in the mosaic then are used

as a metric for the error of the registration.

A hyperspectral camera [16], operating from the visible

to near-infrared (VNIR), was used to collect a set of diffuse

reflectance spectral image cubes of this painting. The set

was captured using a high-precision (20 lm) computer-

controlled easel to slowly move the painting in front of the

camera. The easel produced a trigger that caused the

camera to capture an image approximately every 300 lm,

thus producing 300-by-300 lm pixels. The set initially

consisted of two image cubes (512-by-1536 pixels) but was

divided into six spatially overlapping cubes (512-by-640

pixels by 260 bands, 358–988 nm) prior to registration.

Prior to registration, the distortion of the first cube in the

set was estimated. To do this, the central points of the

intersections of blue lines for the color reference image

(see Fig. 7a) and the 910-nm image was automatically

extracted. This was done by filtering the reference image

and portions of the cubes. The filter was constructed by

intersecting vertical and horizontal Gaussian functions (SD

= 2.5 pixels). For the reference image, the filtered red and

green images were subtracted from the filtered blue image.

For the VNIR sets, the filtered 499-nm image was sub-

tracted from the filtered 399-nm image. The subtractions

were performed to enhance the contrast of the blue lines

relative to the background.

After filtering and computing the differences, the algo-

rithm scaled up the resulting matrices by a factor of nine to

increase the precision of the resulting intersection coordi-

nates, using bicubic interpolation, and the local maxima

were identified. Finally, a pixel region approximately 1.5

times the grid spacing (2169-by-2169 pixels) was shifted

through each matrix, discarding all but the largest maxima

in that region. In Fig. 6a, the vertices of the reference color

image are shown as blue circles, and the vertices of the two

original hyperspectral cubes are shown as red crosses.

Fig. 6b shows the differences, in pixels, between the cor-

responding vertices for one easel-scanned cube.

The dataset was registered and mosaicked using the

algorithm described above. The 910-nm image from each

of the cubes was registered to the color reference image,

shown in Fig. 7a, and mosaics were formed, each 1280-by-

Fig. 6 a Extracted vertices of reference (blue circles) and easel-

scanned cube (red crosses) grids, b distances, in pixels, between the

reference and easel-scanned vertices

6 IR image frames are generally registered at a spatial sampling near

280 pixels per inch, so the maximum shift in that case would be closer

to 0.36 pixels.

Fig. 5 a Matching control-point pairs between the color image (top)

and infrared image (bottom) and b horizontal disparity map. Blue

points and lines shows control points and pairs that have been

removed, although they have good correlation peaks. Red points and

lines show control points that are used in the transformation. The

black points show the best-fit function. The points are fit to a bilinear

function
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1035 pixels. The mosaic for the easel-scanned dataset is

shown in Fig. 7b. The same technique as above was used to

identify the vertices for the color reference image and IR

mosaic and to compute the differences. The 48 vertices are

shown in Fig. 7c. The vertices for the reference image are

displayed as blue circles, and the vertices for the easel-

scanned VNIR dataset are shown as red crosses. Fig. 7d

shows the difference, in pixels, between the two sets of

vertices. The mean error of the 48 fiducials for the easel-

scanned dataset was 0.47 pixels (standard deviation of 0.27

pixels). To put this error measurement into context, the

widths of the blue lines vary from 5 to 10 pixels throughout

the images. While computationally intensive, the process

has reasonable run times. For example, registering/mo-

saicking of 150 IR images (each 512-by-640 pixels) to a

color image of a panel painting took approximately two

hours on an 8-core desktop computer and produced a final

IR mosaic of 4700-by-6000 pixels.

5 Application example—multispectral infrared
images/X-radiographs

The algorithm was designed to allow for the registration of

individual image frames, acquired from a near-infrared

(NIR) imaging array and X-radiographs, to a reference

color image [4, 22]. In the first example, IR image frames

taken of Jan van Eyck’s The Annunciation (Fig. 8a) were

registered. This painting was painted on a wood panel

support (transferred to a coarsely woven canvas in the

nineteenth century) and consists of an underdrawing, to

plan the composition, over which an image was built up

with layers of paint and transparent glazes [23]. The IR

dataset consists of 220 partially overlapping IR image

frames, taken in the 1100–1400-nm spectral range using an

InSb area array [23]. The set was registered and mosaicked

with a color image of similar resolution.

Comparison of the color image and the registered IR

mosaic shows several regions where there are differences

between the underdrawing and the final composition. One

such region is in the figure of the Virgin. A detail from the

registration results of that figure is shown in Fig. 8, where

Fig. 8b is the detail color image and Fig. 8c is the corre-

sponding region of the registered IR mosaic. The regis-

tration results clearly show compositional changes in the

neckline of the Virgin’s dress and a change in her hair.

What is not clear without alternately viewing the overlaid

color and IR images is that the Virgin’s eyes, ear, and

fingers have been repositioned. Online Resources 1–3 show

animations of the overlay of the color and IR images of the

Virgin’s face, dress, and hand. As the animations alternate

between color and IR, the objects that have changed

Fig. 7 a Color reference image,

b mosaic of easel-scanned

910-nm image, c extracted

vertices of reference (blue

circles) and mosaic (red

crosses) grids, d distances, in

pixels, between the reference

and mosaic vertices
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between the underdrawing and final composition appear to

be moving. Note, however, that in the animations other

objects, such as cracks, remain stationary.

In the next example, four partially overlapping X-ra-

diographs of Judith Leyster’s Self-Portrait (Fig. 9a) were

scanned at 500 pixels per inch. The scanned X-ray images

then were divided into a series of small subimages to

minimize the effect from the difference of the imaging

geometries between them and the color image (this permits

a bilinear transformation to be used in the registration), and

the subimages were registered with a color image. These

X-ray films contain a repetitive pattern due to the painting

being executed on relatively coarse canvas, as shown in

Fig. 9c. This pattern adds an additional challenge in the

registration process, because it dominates the X-ray images

but is not visible in the final composition. One method to

minimize the contribution of the weave would be to filter

the image. In this algorithm, however, by filtering the

control-point pairs instead, it is generally not necessary to

take this step. What remain after our filtering step are the

control-point pairs, related to texture and cracks, that are

visible in both the color and X-ray images. In this image,

the remaining control-point pairs are sufficient to produce

well-registered images. Online Resource 4 shows an

animation of the overlay of color and X-ray detail images

(Fig. 9b–c). As the animation alternates between color and

Fig. 8 Jan van Eyck’s The Annunciation (1434/1436): a color image, b detail from color image, and c registered infrared (1100–1400 nm) image

(see Online Resources 1–3). Andrew W. Mellon Collection, 1937.1.39, National Gallery of Art, Washington, D.C.

Fig. 9 Judith Leyster’s Self-Portrait (1630): a color image, b detail from color image, and c registered X-radiograph (see Online Resource 4).

Gift of Mr. and Mrs. Robert Woods Bliss, 1949.6.1, National Gallery of Art, Washington, D.C. [24]
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X-ray the large degree of difference between the images is

apparent, while the success of the registration can be seen

in the close alignment of the cracks.

6 Conclusions

We have described an automatic registration and mo-

saicking algorithm that is capable of registering images

acquired using various imaging modalities that are used in

the cultural heritage field. The algorithm is capable of

performing registration while accommodating various

forms of optical distortion. To date, the algorithm has been

used to register and produce mosaicked IR images and

X-radiographs of more than 100 paintings and works on

paper. This includes many datasets from the National

Gallery of Art’s (Washington, D.C.) online catalogue for

its collection of seventeenth century Dutch Paintings [25]

and the Art Institute of Chicago’s digital collections:

Monet Paintings and Drawings [26] and Renoir Paintings

[27].
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