
Radial buckling of multi-walled carbon nanotubes
under hydrostatic pressure

Jin-Xing Shi • Toshiaki Natsuki • Qing-Qing Ni

Received: 18 April 2014 / Accepted: 12 June 2014 / Published online: 21 June 2014

� Springer-Verlag Berlin Heidelberg 2014

Abstract Radial buckling stresses of carbon nanotubes

(CNTs) need to be studied in high-pressure resonance

Raman scattering spectrum. In this work, the closed-form

expression of the critical buckling stress of multi-walled

carbon nanotubes (MWCNTs) under hydrostatic pressure is

derived that can be conveniently employed. Using the

derived formulae, the critical buckling stresses of single-

walled carbon nanotubes and double-walled carbon nano-

tubes with different diameters are calculated. The results

are in good agreement with other reported literatures. In

addition, the critical buckling stresses of each layer of a

quintuple-walled CNT in different buckling modes are

predicted, showing that the buckling instability can occur

not only in the outermost rolled layer, but also in other

rolled layer of MWCNTs by considering different diame-

ters and buckling modes.

1 Introduction

The physics of carbon nanotubes (CNTs) has rapidly

evolved into a research field soon after the landmark lit-

eratures reported by Iijima on multi-walled carbon

nanotubes (MWCNTs) in 1991 [1] and single-walled car-

bon nanotubes (SWCNTs) 2 years later [2]. Since then,

theoretical and experimental studies in different fields have

focused on both the fundamental physical properties and

the potential applications of CNTs [3]. Raman spectros-

copy (RS) is a valuable tool to study CNTs under high

pressure for the investigation of application on their

mechanical and structural stability [4]. Resonance RS

allows the selective probing of different CNTs, and several

hydrostatic pressure Raman investigations on CNTs were

carried out [5–8]. Venkateswaran et al. [5] reported the

effects of hydrostatic pressure on the first-order Raman

scattering spectrum of SWCNT bundles excited with

2.41 eV. They found that the radial mode intensity disap-

pears beyond 1.5 GPa, and the tangential mode intensity

also drops considerably above the pressure. Therefore, in

high-pressure resonance Raman scattering, the radial

buckling instability of CNTs needs to be investigated.

Investigations of buckling instability property of CNTs

have focused on both experimental [9–15] and theoretical

methods [16–24]. Tang et al. [9] reported a measurement of

mechanical deformation of SWCNTs under hydrostatic

high pressure using a diamond anvil cell and in situ X-ray

diffraction, and obtained that SWCNTs show linear elas-

ticity under hydrostatic pressure up to 1.5 GPa at room

temperature. Within a transmission electron microscope,

Tsai et al. [15] investigated buckling deformation of an

individual MWCNT through in situ nanoindentation. The

in situ observations revealed a significant shell-to-Euler

phase transformation in the buckling response of the

nanotube. However, it is still difficult to perform experi-

ment on testing individual CNTs, especially for the radial

compression buckling under hydrostatic pressure. Thus,

theoretical methods, such as molecular dynamics (MD)

simulation and continuum mechanics, have been widely
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utilized in studying the mechanical properties of CNTs.

Based on MD simulation, Wang et al. [16] studied the local

buckling instability of a SWCNT subjected to point load-

ing, in which a mechanical model is developed and verified

to predict the onset of the local instability.

On the other hand, although CNTs can have diameters

only several times larger than the length of a bond between

carbon atoms, continuum models have been found to

describe their mechanical behavior very well under many

circumstances [24]. Ansari et al. [25] developed a nonlocal

Flügge shell model incorporating interatomic potentials to

study the buckling instability of an axially loaded SWCNT.

The proposed model is independent of the widely scattered

values of Young’s modulus and effective thickness of

nanotubes, which is a distinguishing feature. Hydrostatic

pressure can yield a distinct class of buckling, reflecting the

high flexibility of graphene sheets in the normal direction

in the radial compression buckling instability of CNTs

[26]. Natsuki et al. [18] presented a continuum shell model

to study the elastic buckling of SWCNTs and DWCNTs

subject to hydrostatic pressure. Based on this model, the

critical buckling stress of a SWCNT with a diameter of

1.3 nm is calculated about 1.6 GPa by a nontrivial solution.

The present work aims to derive the formulae of the

critical buckling stress of MWCNTs under hydrostatic

pressure that can be used conveniently for predicting the

radial buckling stress of MWCNTs. In Sect. 2, based on an

elastic continuum model, the formulae of the critical

buckling stress of MWCNTs under hydrostatic pressure are

derived from a mathematic method. In Sect. 3, using the

derived formulae, the radial buckling stresses of SWCNTs

and MWCNTs under hydrostatic pressure are calculated.

The influences of diameter of CNTs, buckling mode and

the layer number of MWCNTs to the critical buckling

stresses are discussed in detail. Moreover, for a given

example of quintuple-walled CNTs, on which layer the

critical buckling can occur is also discussed in detail by

considering different diameters and buckling modes. At

last, conclusions are shown in Sect. 4.

2 Theoretical approach

CNTs are usually modeled by cylindrical shells [24]. In

analyzing the buckling of cylindrical shells under hydro-

static pressure, the circumferential compressive stress is of

great importance. For CNTs with large aspect ratio, the

critical value of the external pressure only slightly affects

the boundary conditions prescribed on the shell edges of

CNTs. This means that a distortion of the circular cross

section will be identical throughout the length of the shell.

Hence, the buckling analysis of CNTs with large aspect

ratio can be replaced by analyzing the stability of a ring of

unit length with the same radius and thickness. The critical

buckling value of the circumferential compressive pressure

Pcr is given by [27]

Pcr ¼
ðn2 � 1ÞEI

r3
ð1Þ

where n is the number of half-waves in the circumferential

direction, E and I are Young’ modulus and the moment of

inertial, and r is the radius of the ring.

Figure 1a shows an analytical model of the cross section

of a MWCNT with N rolled layers under hydrostatic

pressure phy. ri (i = 1, N) is the radius of the ith rolled layer

of MWCNTs. Then, the circumferential compressive force

Pi (i = 1, N) on each rolled layer of the MWCNT can be

written as

P1 ¼ p12

..

.

Pi ¼ pi i�1ð Þ þ pi iþ1ð Þ i ¼ 2; . . .;N � 1ð Þ

..

.

PN ¼ pN N�1ð Þ þ phy

ð2Þ

where pij = - pji = cij(Dwi - Dwj) (i, j = 1, N) are the

vdW interaction forces on the ith rolled layer shown in

Fig. 1b, where Dwi (i = 1, N) is the transverse deflection

of the ith rolled layer, and cij is the vdW interaction

coefficient between the ith and the jth rolled layer that

can be estimated from the Lennard-Jones potential, given

as [28]

cij ¼
perjr6

3a4
1001r6H13

ij �
1120

3
H7

ij

� �
ð3Þ

where

Hm
ij ¼ ðri þ rjÞ�m

Zp
2

0

dh

1� Kij cos2 h
� �m

2

ðm ¼ 7; 13Þ ð4Þ

and

Kij ¼
4rirj

ðri þ rjÞ2
ð5Þ

where a = 0.142 nm is the carbon–carbon bond length,

and r and e are the vdW radius and the well depth of the

Lennard-Jones potential, respectively. The vdW parameters

in the Lennard-Jones potential are r = 0.34 nm and

e = 2.967 meV as reported by Saito et al. [29].

The deflection Dw corresponds to a hoop stress pro-

duced from internal pressure P. In the present work, Dw is

considered to be the inward deflection of nanotube wall

prior to buckling. Thus, the corresponding net transverse

pressure P prior to buckling is expressed as [30, 31]
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P ¼ �Et
Dw

r2
ð6Þ

where t is the thickness of rolled layer.

Considering the vdW interaction coefficient given in

Eq. (3), substitution of Eq. (6) into Eq. (2) yields

P1 ¼ p12 ¼ c12ðDw1 � Dw2Þ ¼ �Et
Dw1

r2
1

..

.

Pi ¼ piði�1Þ þ piðiþ1Þ ¼ ciði�1ÞðDwi � Dwðiþ1ÞÞ

þ ciðiþ1ÞðDwi � Dwðiþ1ÞÞ ¼ �Et
Dwi

r2
i

ði ¼ 2; . . .;N � 1Þ

..

.

PN ¼ pNðN�1Þ þ phy ¼ cNðN�1ÞðDwN � DwN�1Þ

þ phy ¼ �Et
DwN

r2
N

ð7Þ

Eq. (7) can be rewritten as

where

X1 ¼
c12r2

1

c12r2
1 þ Et

..

.

Xi ¼
ci iþ1ð Þr

2
i

ci i�1ð Þ þ ci iþ1ð Þ � ci i�1ð ÞXi�1

� �
r2

i þ Et

ði ¼ 2; � � � ;N � 1Þ

..

.

XN ¼
cN N�1ð Þr

2
N

cN N�1ð Þr
2
N þ Et

ð9Þ

and

a ¼ r2
N

cN N�1ð Þr
2
N þ Et

¼ XN

cN N�1ð Þ
ð10Þ

Here, a mathematic method is proposed to derive the

formulae of the critical buckling of MWCNTs under cir-

cumferential compressive pressure. From Eq. (8), we

obtain

Fig. 1 Schematic model of

MWCNTs. a Cross section of a

MWCNT consisted of N rolled

layers under hydrostatic

pressure phy and b the vdW

interaction forces on the ith

rolled layer

1 �X1

1 �X2

..
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�Xi

..

.
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Dw1

Dw2

..

.

Dwi

..

.
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DwN

8>>>>>>>>>>>>>><
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¼

0

0

..

.

0

..

.

0
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ði ¼ 3; � � � ;N � 2Þ ð8Þ
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DwN ¼
�aphy

1� XN�1XN

DwN�1 ¼
�aXN�1phy

1� XN�1XN

¼ XN�1DwN

..

.

Dwi ¼ XiDwiþ1 ði ¼ 3; � � � ;N � 2Þ

..

.

Dw2 ¼ X2Dw3

ð11Þ

and

Dw1 ¼ X1Dw2 ¼ DwN P
N�1

k¼1
Xk ¼

�aphy

1� XN�1XN

P
N�1

k¼1
Xk ð12Þ

Substituting Eq. (12) into Eq. (11), all of Dwi (i = 1,

N) can be expressed by Xi (i = 1, N) shown in Eq. (9).

Then, from a link between the internal pressure P and the

critical buckling pressure Pcr by substituting these Dwi

(i = 1, N) into Eq. (1) and using Eq. (7), the formulae of

the critical buckling stress of each rolled layer of

MWCNTs under hydrostatic pressure can be finally derived

and shown as

pcr;N ¼
ðn2 � 1ÞI

rNat
ð1� XN�1XNÞ

..

.

pcr;i ¼
ðn2 � 1ÞI

riat
ð1� XN�1XNÞ P

N�1

k¼i

1

Xk

ði ¼ 1; � � � ;N � 1Þ

ð13Þ

3 Analytical results and discussion

According to the theoretical approach, the formulae of the

critical buckling stress of MWCNTs were carried out based

on the cylindrical shell model. In this research, to study the

buckling properties of MWCNTs under hydrostatic pres-

sure, each rolled layer is modeled as an individual cylin-

drical shell of unit length. The effective thickness of each

layer of MWCNTs is 0.066 nm. The space between

nanotube walls is 0.34 nm. CNTs have the effective stiff-

ness of Et = 360 J/m and Poisson’s ratio of 0.27 [18].

The minimum value of critical buckling stress is usually

reached when n = 2. Using Eq. (13), the relationship

between the critical buckling stress and diameter of

SWCNTs in buckling mode n = 2 is shown in Fig. 2. As

the diameter of SWCNTs increases, the critical buckling

press decreases nonlinearly. The reason is that with the

increasing diameter, the elastic modulus of SWCNTs

decreases rapidly. Thus, the critical buckling stress is

highly sensitive to small-diameter SWCNTs and decreases

with an increase of the diameter. Furthermore, a compari-

son of the critical buckling stresses on SWCNTs under

hydrostatic pressure is also shown in Fig. 2. The critical

buckling stresses for buckling mode n = 2 based on

Eq. (13) are in good agreement with those obtained from

Ref. [18]. For example, the critical buckling stress of

SWCNT with a diameter 1.3 nm is calculated as 1.32 GPa

in the present work, which is in agreement with about

1.6 GPa reported in Ref. [18] and 1.5 GPa reported in Ref.

[5].

For MWCNTs, the vdW interaction forces between the

nanotubes are considered in Eq. (7). To judge the robust-

ness of the proposed formulae for MWCNTs containing

vdW interaction forces, a comparison of the critical radial

buckling stress of DWCNTs in buckling mode n = 2

Fig. 2 Relationship between the critical buckling stress and diameter

of SWCNTs

Fig. 3 Relationship between the critical buckling stress and diameter

of DWCNTs
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derived from Eq. (13) and Ref. [18] is shown in Fig. 3.

They are also in a good agreement with each other. The

critical buckling stress decreases with increasing diameter

of DWCNTs, which is the same as SWCNTs shown in

Fig. 2. Comparing with Figs. 2 and 3, DWCNTs can

endure higher critical radial buckling stress than SWCNTs

in the same diameter. The reason is that the stiffness of

DWCNTs can be enhanced by the inner nanotube through

the vdW interaction forces.

In the case of MWCNTs with rolled layer number

N C 3, based on Eq. (13), critical radial buckling stress of

the outermost nanotube of MWCNTs with the same

diameter 17 nm in buckling mode n = 2 is shown in

Fig. 4 as a function of rolled layer number N. The results

show that a MWCNT with larger rolled layer number has

higher buckling stability, because of the enhancement of

the inner nanotubes through the vdW interaction forces. If

N varies from 1 to 5, the critical buckling stress on CNTs

increases from 0.59 to 3.3 MPa, so that it is increased by

5.6 times.

In actual, because different buckling modes can occur in

each rolled layer of MWCNTs, the buckling instability can

happen in different rolled layers in MWCNTs by consid-

ering the diameter of MWCNTs. For this reason, a quin-

tuple-walled CNT consisting of five rolled layers with a

diameter of 17 nm is chosen to discuss this issue. Figure 5

shows the critical buckling stress in different buckling

modes on each nanotube of a quintuple-walled CNT.

Buckling stresses of each layer increase as buckling mode

increases. For instance, the critical radial buckling stress on

the third layer of a quintuple-walled CNT increases from

7.5 to 15.3 MPa when buckling mode n is from 2 to 4.

However, as shown in Fig. 5, the critical buckling stress

of the fifth wall in mode n = 3 is higher than the critical

buckling stresses of the first, second, third and fourth walls

in mode n = 2. In this case, the buckling instability can

happen on one of the inner walls (the first, second, third

and fourth walls) in buckling mode n = 2, instead of on the

outmost wall (the fifth wall) in higher mode (n = 3). To

illustrate this issue in detail, the critical buckling stress of a

quintuple-walled CNT as a function of nanotube diameter

is shown in Fig. 6 as an example. The dotted, dashed and

solid lines represent the buckling stresses of the third,

fourth and fifth nanotubes in buckling mode n = 4, n = 5

and n = 6, respectively. It is clearly seen that all of the

Fig. 4 Variation of the critical buckling stress on the outermost

nanotube of MWCNTs with different rolled layers N
Fig. 5 The critical buckling stress in different buckling modes on the

ith rolled layer of quintuple-walled CNTs

Fig. 6 The critical buckling stress of quintuple-walled CNTs as a

function of diameter of MWCNTs
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three lines decrease significantly with an increase in the

diameter of the quintuple-walled CNT. Furthermore, the

dashed line and the solid line intersect in a key point, which

is (11.14 nm, 0.095 GPa). Before the key point, the solid

line is the lowest curve, whereas the dotted line is the

lowest curve when the diameter of quintuple-walled CNTs

is larger than 11.14 nm. Thus, in the given example, the

buckling instability should occur on the fifth nanotube in

n = 6 when the diameter of quintuple-walled CNTs is

smaller than 11.14 nm and occur on the third nanotube in

n = 4 when the diameter is larger than the key point.

4 Conclusions

In this work, the buckling analysis on MWCNTs consid-

ering the vdW interaction forces between the nanotubes

was carried out based on a theoretical approach. We

derived the closed-form expression that can directly apply

on calculating the critical buckling stress on MWCNT.

Using the buckling formulae of CNTs, we calculated the

critical buckling stresses of SWCNTs, DWCNTs and

quintuple-walled CNTs under hydrostatic pressure. The

results obtained from SWCNTs and DWCNTs are in good

agreement with other published results, which can judge

the robustness of the proposed formulae. The critical

buckling stress decreases significantly as the diameter of

CNTs increases, especially in the case of small diameters.

The critical buckling stress of each layer of MWCNTs is

significantly affected by buckling mode and increases as

buckling mode increases. Moreover, an example to analyze

the critical buckling stresses of the third, fourth and fifth

walls of a quintuple-walled CNT in different buckling

mode n = 4, n = 5 and n = 6 was given. The results

showed that the buckling instability on MWCNTs can

occur not only in the outermost rolled layer, but also in

other rolled layer of MWCNTs according to diameter and

buckling mode.
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