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Abstract We evaluated the adsorption energy of a hydro-
gen molecule in nanocarbons consisting of graphene sheets.
The nanocarbon shapes were a pair of disks with separation
2d , a cylinder with radius d , and a truncated sphere with ra-
dius d . We obtained the adsorption energy in the form of a
10–4 Lennard–Jones function with respect to 1/d . The val-
ues of the potential depth (D) and equilibrium distance (de),
respectively, were 94 meV and 2.89 Å for the disk pair,
158 meV and 3.14 Å for the cylinder, and 203 meV and
3.37 Å for the sphere. When d = de, the adsorption energy
of the disk pair (cylinder) became deeper than −0.9D, and it
approached −D when the radius (length) increased to more
than twice its separation (radius). The adsorption energy of
the sphere was increased from −D to −0.5D when the ra-
dius of the opening increased from 0 to de. These results
suggest that porous carbon materials can increase the ad-
sorption energy by up to ∼200 meV if the carbon atoms are
arranged on a spherical-like surface with ∼7 Å separation.
This may lead to practical hydrogen storage for fuel cells.

1 Introduction

Hydrogen storage systems for fuel cells in vehicles are re-
quired to store more than 5.5 wt% hydrogen, as proposed by
the US Department of Energy (DOE) [1]. Many attempts
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have been made to achieve this target using physical or
chemical methods [2]. Among the physical methods, hydro-
gen adsorption in carbon materials such as activated carbon
and nanotubes has been extensively studied. These materials
have various porous structures with low densities and high
chemical stabilities. Early studies reported extremely high
hydrogen storage capacity beyond the DOE target; however,
it is now recognized that the hydrogen storage of carbon ma-
terials is less than 1 wt% at room temperature and 5 wt% at
77 K, even under high-pressure conditions [3–7].

Despite this limitation, Thomas [7] used experimental
data to predict that carbon materials with pore widths of less
than 7 Å can possibly have a storage density of over 5 wt%
at 77 K. This prediction is based on the expectation that a
reduction in the pore size increases the number of carbon
atoms neighboring the adsorbed molecule, which strength-
ens the binding force as well as expands the surface area. For
example, Cheng et al. [8] simulated hydrogen adsorption on
single-walled carbon nanotubes at room temperature, and
showed that the adsorption energy per hydrogen molecule
could be increased from ∼60 to ∼100 meV by shrinking
the diameter of the nanotube from ∼12 to ∼7 Å for the case
of 3 wt% loading. The obtained energy is larger than the
adsorption energies of typical activated carbon as measured
by Bénard and Chahine [9] over wide ranges of temperature
and pressure: 50–64 meV for the adsorption enthalpy and
47 meV for the adsorption energy. Bhatia and Myers [10]
estimated that the adsorption enthalpy necessary to maxi-
mize the hydrogen storage/release under a mild condition
was 150 meV, and Kuchta et al. [11] showed that a graphene
slit with an 8 to 11 Å width could achieve the DOE target
density if the adsorption energy was somehow increased to
this value. These results suggest that nanoporous carbon can
obtain larger hydrogen adsorption energy than typical car-
bon materials such as graphite and activated carbon; this is
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accomplished by a pore size reduced to ∼7 Å or less, and
the DOE target density may be achieved if the adsorption
energy reaches 150 meV.

Up to the present, many theoretical researches involved
with the optimal pore size of the carbon nanotubes and car-
bon slits have been done using various methods [12–21].
Fan et al. [12] calculated the hydrogen binding energy of
a single-walled carbon nanotube by a density functional
method including dispersion interaction and showed that the
binding energy inside the tube became larger than 200 meV
when the diameter was 6–7 Å. Mpourmpakis et al. [13] stud-
ied the effect of the curvature of a nanotube on the binding
energy using density functional theory and found that the
most efficient adsorption outside the tube was observed at
3.2 Å from the surface. Cabria et al. [14, 15] found that the
optimal pore size of the carbon slit to achieve the DOE tar-
get was 6–10 Å at 300 K and 10 MPa based on a thermody-
namical model and molecular dynamics simulation includ-
ing quantum effects. Wang and Johnson [16] carried out a
path-integral dynamics calculation and showed that the car-
bon slit with 9 Å separation gave a large storage density
close to the DOE target at 77 K and 5 MPa. Kowalczyk
et al. [17] performed a path-integral Monte Carlo simula-
tion and showed that the storage density in the slit exceeded
the DOE target when the width was 6–10 Å at 77 K and
1 MPa. Deng et al. [18] proposed a method to increase the
interlayer distance of the graphite by lithium doping and pre-
dicted by using Monte Carlo simulation that the DOE target
was achieved when the separation was 8–10 Å. These re-
searches reported large hydrogen storage beyond the exper-
imental observations [3–7] with a somewhat broad range of
the pore size; however, the lower limit of the pore size (6 Å)
was almost in accord with that estimated by Thomas [7].

Previously, one of the authors prepared hydrogen-termi-
nated graphenes (named ‘hydro-graphenes’) by the pyroly-
sis of some raw materials, and reported that the interlayer
distance between these graphenes was varied from ∼3.8 to
∼4.2 Å by changing the pyrolysis temperature [22]. We also
calculated the hydrogen binding energy of aromatic hy-
drocarbons by an ab initio molecular orbital method, and
showed that the energy increased from 50 to 170 meV by
adding lithium atoms and increased to 370 meV by adding
beryllium atoms [23].

From the viewpoint of realizing a practical hydrogen stor-
age system consisting of carbon nanopores, we need to know
how the nanopore shape and size influence the hydrogen
adsorption energy. For this purpose, a theoretical examina-
tion of hydrogen adsorption on well-characterized nanocar-
bons is a prerequisite. In this work, we evaluate the bind-
ing energy of a hydrogen molecule in nanocarbons having
different shapes and sizes; these were a pair of coplanar
disks, a hollow cylinder with open ends, and a hollow sphere

with a circular window consisting of graphene sheets. Us-
ing the Lennard–Jones potential function, we derive an an-
alytical expression for the binding energy as a function of
the position of the hydrogen molecule and the size of the
nanocarbon, and we determine the optimum shape and size
of the nanocarbon that provides the deepest binding energy.
The numerical values of the energies were calculated by
adopting the parameters determined by a scattering experi-
ment of a hydrogen molecule from the graphite surface [24].

2 Binding energy of a hydrogen molecule on a single
graphene sheet

We begin by calculating the binding energy of a hydrogen
molecule adsorbed on a single graphene sheet. We assume
that the energy can be expressed as the sum of the pair po-
tential between a hydrogen molecule and a carbon atom in
the sheet. Using the Lennard–Jones potential function (VLJ)
for this potential and assuming that the molecule is spheri-
cal, we can write the binding energy as

W =
∑

i

VLJ(ri), (1)

where ri denotes the distance between the hydrogen mole-
cule and the ith carbon atom in the sheet. We use the 12–6
potential function for VLJ,

VLJ(r) = 4εC−H2

[(
σC–H2

r

)12

−
(

σC–H2

r

)6]
. (2)

The main defect of this potential is the extremely steep
increase of the repulsive part with the decrease of r . To im-
prove this, the repulsive part may be replaced by an ex-
ponential function together with damping the attractive
part [25, 26]. However, the 12–6 potential has the advantage
of facilitating the calculation and its validity is not lost [25].
Actually, this function is used for evaluating the interac-
tion between the hydrogen molecule and the carbon surface
[16, 20, 24, 27, 28].

Assuming that the carbon atoms are continuously dis-
tributed in the sheet with a uniform density, the energy can
be determined by integrating VLJ over the sheet,

W = ρs

∫

σ

VLJ(r)dσ, (3)

where ρs and dσ denote the surface density of the carbon
atoms and the surface element of the sheet, respectively.
In the case of an infinite planar sheet, the energy is obtained
as [27]

Wsg(d) = Dsg

3

[
2

(
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d

)10
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(
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d

)4]
, (4)
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Fig. 1 Nanocarbons consisting of graphene sheets: (a) a pair of copla-
nar disks each with the same radius R, (b) a hollow cylinder with length
2L and open ends, (c) a hollow sphere truncated by a section with ra-
dius a. The distance from the origin to the surface is given by d for

each system. The hydrogen molecule moves along the axis perpendic-
ular or parallel to the surface. The position of the molecule is denoted
by x0 when it is on the x-axis

where d , dsg, and Dsg denote the distance of the molecule
from the sheet, the optimum distance, and the potential
depth, respectively:

dsg = σC–H2, (5)

Dsg = 6

5
πεC–H2ρsσ

2
C–H2

. (6)

In evaluating these quantities, the density of the graphene
sheet was set to that of the graphite layer: ρs = 0.382 atoms/
Å2. The Lennard–Jones parameters were taken from Mattera
et al. [24], who performed a scattering experiment of a hy-
drogen molecule from the (0001) graphite surface. They fit-
ted the experimental data to the 10–3 potential function de-
rived by summing up the attractive part of Eq. (4) over
the graphite layers so as to reproduce the energy eigenval-
ues obtained by the scattering experiment, and determined
that εC–H2 = 3.89 meV and σC–H2 = 2.89 Å. These val-
ues are close to those adopted in the Monte Carlo simula-
tion by Nguyen et al. [28] derived from the Berthelot rule:
εC–H2 = 2.76–3.66 meV and σC–H2 = 2.97–3.18 Å. The ob-
tained 10–3 potential function well reproduces the eigenval-
ues from the bottom to the higher states; then, we consider
that the potential function based on Eq. (3) is applicable to
a wide range of the hydrogen position with adopting Mat-
tera et al.’s parameters. Using these parameters, we obtained
dsg = 2.89 Å and Dsg = 46.8 meV, which are close to those
obtained by the MP2 calculation using small hydrocarbon
molecules [15, 23]. These parameters are very close to those
for hydrogen binding on a bulk graphite surface (2.87 Å and
51.7 meV [24]). This indicates that the surface layer of the
bulk graphite mainly contributes to the binding energy.

3 Binding energies of a hydrogen molecule adsorbed by
nanocarbons

3.1 Geometries of nanocarbons examined

Here we examine hydrogen binding by nanocarbons having
different shapes and sizes: a pair of coplanar disks, a hol-
low cylinder with open ends, and a truncated hollow sphere.
We assume that these systems have the same density as the
planar graphene sheet. Their structures are shown with co-
ordinate axes in Fig. 1. The distance from the origin to the
surface, given by d , represents half of the space between two
disks, the radius of the cylinder, or the radius of the sphere.
The radius of the disk, the length of the cylinder, and the ra-
dius of the section are denoted by R, 2L, and a, respectively.
The hydrogen molecule is placed on the axis perpendicular
or parallel to the surface. Its position is denoted by x0 when
it is on the x-axis.

3.2 A pair of infinite disks, a cylinder with infinite length,
and a closed sphere

First we examine hydrogen binding by a pair of disks with
infinite radius, a cylinder with infinite length, and a sphere
without truncation. The hydrogen molecule is placed on
the axis perpendicular to the surface (i.e. on the z-axis for
the pair of disks and on the x- or y-axis for the cylinder).
For each system, the binding energy of a hydrogen molecule
is obtained in a closed form as

W(ξ0, d) = D

3

[
A(ξ0/d)

(
de

d

)10

− B(ξ0/d)

(
de

d

)4]
, (7)

where ξ0 and D denote the position of the hydrogen
molecule and the potential depth, respectively. The distance
de is the optimum distance of the surface from the origin
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that gives the lowest minimum of Eq. (7) when ξ0 = 0.
The parameters de and D are characteristic for each sys-
tem. The coefficients A and B are functions of ξ0/d and
they take different forms depending on the system.

To investigate the behavior of this potential curve, we
treat the bound molecule as an oscillating particle near equi-
librium. We expand W(ξ0, d) to the fourth power of ξ0,

W4(ξ0, d) = W(0, d) + 1

2
W(2)(0, d)ξ2
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+ 1

24
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}
. (8)

This potential shows a single minimum at ξ0 = 0 as long as
W(2)(0, d) and W(4)(0, d) give positive values. In this situa-
tion, the energy bottom is given by W(0, d) and the deepest
minimum (−D) is obtained when d = de. As the distance
d becomes larger than de, the potential becomes shallow
and shows a double minima when W(2)(0, d) becomes neg-
ative while W(4)(0, d) remains positive. The potential curve
changes from a single well to a double minima at the crit-
ical distance where W(2)(0, d) becomes zero. The critical
distance is given by

dc =
(

a12

b6

)1/6

de. (9)

When d < dc, the zero-point-corrected binding energy
may be determined by the harmonic approximation if
W(2)(0, d) is larger than W(4)(0, d),

W0(d) = W(0, d) + nf
�ω(d)

2
, (10)

where nf denotes the vibrational degree of freedom; it is 1
for the pair of disks, 2 for the cylinder, and 3 for the sphere.
The quantity ω(d) denotes the harmonic vibrational fre-
quency at d . We are neglecting the motion of the graphene
sheet because the mass of the carbon sheet is much larger
than that of the hydrogen molecule; then, this is given by

ω(d) =
√

W(2)(0, d)

mH2

, (11)

where mH2 denotes the mass of a hydrogen molecule.
At d = dc, the harmonic approximation breaks down be-

cause W(2)(0, d) vanishes. The energy of the particle mov-
ing in a quartic potential function can be estimated by the

Table 1 Characteristic parameters of the hydrogen binding potential:
D, the potential depth; de, the optimum distance of the carbon surface
from the origin; dc, the critical distance at which the potential changes
from a single well to a double well. Dsg and dsg are the potential depth
and the optimum distance of a hydrogen molecule on a single graphene
sheet, respectively. Approximate values are shown in square brackets

D/Dsg de/dsg dc/de

Disk pair 2 1 (11/5)1/6

[1.14]

Cylinder 8π(3/352)1/3

[3.39]
1051/6/2
[1.09]

21/6111/3/51/2

[1.12]

Sphere 8(2/5)2/3

[4.34]
(5/2)1/6

[1.16]
(2/5)1/3111/6

[1.10]

WKB approximation [29]. We can write the energy at dc us-
ing the form of a particle in a box,

W0(dc) = W(0, dc) + nf
π2

�
2

2mH2L
2
a
, (12)

where La denotes the apparent potential width given by

La =
[
πΓ (5/4)

Γ (7/4)

]2/3[
�

2

3mH2W
(4)(0, dc)

]1/6

. (13)

Precise treatments of the double-well potential can be found
in Ref. [30].

Table 1 shows the magnitudes of D, de, and dc measured
respectively by Dsg, dsg, and de for each system. Since we
neglect the interaction between two disks, D and de of the
disk pair are equal to 2Dsg and dsg, respectively. We find
that the potential depth becomes deeper in the curved sys-
tem than it does in the planar one. A change in the graphene
sheet from a planar shape to a curved shape increases the
number of carbon atoms surrounding the adsorbed molecule
and enhances both the repulsive and attractive forces acting
on it. The repulsive force decreases more rapidly than the
attractive force with an increase in d , so a deeper potential
is obtained in the curved system than in the planar system
if there is a small increase in d . We obtain D = 3.39Dsg

with de = 1.09dsg for the cylinder and D = 4.34Dsg with
de = 1.16dsg for the sphere. The value of dc decreases from
1.14de to 1.10de as the system changes from the disk pair to
the sphere, since the attractive term in W(2)(0, d) is larger in
the curved system than in the planar system. At dc, the bot-
tom energy becomes −0.806D for the disk pair, −0.851D

for the cylinder, and −0.883D for the sphere.
Numerical values of D, de, and dc are shown in Table 2

and were used to evaluate the minimum of the hydrogen
binding potential given by Eq. (7). In Table 3, the values
of the energy bottom W(0, d) and the energy with zero-
point correction W0(d) are shown when d = de and d = dc.
The value of W(0, d) of the disk pair is −94 meV when
the disks are separated by 2de (=5.87 Å). This separation
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Table 2 The values of the potential depth (D), the optimum distance
(de), and the critical distance (dc)

D/meV de/Å dc/Å

Disk pair 93.6 2.89 3.29

Cylinder 158.5 3.14 3.52

Sphere 203.2 3.37 3.71

Table 3 The values of the hydrogen binding energies (in meV) at the
equilibrium distance (de) and the critical distance (dc) for the infinite
or closed nanocarbons. W(0, d) is the energy bottom and W0(d) is the
energy with zero-point correction

W(0, d) W0(d)

d = de d = dc d = de d = dc

Disk pair −93.6 −75.5 −78.4 −71.7

Cylinder −158.5 −134.9 −133.0 −129.0

Sphere −203.2 −179.5 −170.7 −172.2

is 1.7 times larger than the space between the graphite lay-
ers (3.35 Å). In actuality, these two disks attract each other
at this separation, so a chemical modification is required to
sustain this separation or the binding energy will be reduced
by the work needed to separate them from their optimum
distance. For the cylinder, the value of W(0, d) increases
from −159 to −135 meV and W0(d) increases from −133
to −129 meV when d increases from de (=3.14 Å) to dc

(=3.52 Å). The distance dc is close to the radius of the
smallest carbon nanotube (∼3.5 Å). Among the structures,
the sphere shows the deepest energies; its W(0, d) changes
from −203 meV to −180 meV and its W0(d) changes from
–171 to –172 meV when d increases from de (=3.37 Å)
to dc (=3.71 Å). The radius of C60 (3.56 Å) is located in
this range. For each system, the zero-point energy decreases
with an increase of d due to the broadening of the potential
width.

Figure 2 depicts the potential curve of the hydrogen bind-
ing given by Eq. (7) as d changes from 0.9de to 2.5de for

each system. The boundaries of the system are located at
ξ0/d = ±1. As mentioned above, a single minimum is found
at ξ0 = 0 when d is less than dc (∼1.1de) in each system.
This splits into two minima when d exceeds dc, and they
approach −Dsg as d goes to infinity. The potential width is
wider in the curved system than in the planar system; there-
fore, the zero-point energy of the former becomes smaller
than that of the latter. The minima outside the boundaries are
shallower than those inside. The outside minima of the disk
pair are close to −Dsg irrespective of the size of d , because
the molecule coming from the outside of the boundaries in-
teracts effectively only with one of the two disks. On the
other hand, the outside minima of the curved systems are
higher than −Dsg because the molecule bound on the out-
side of the curved surface is more distant from the carbon
atoms than the one outside the planar surface. The minima
become deeper with the increase of d and they approach
−Dsg when d goes to infinity.

3.3 A pair of finite disks, a cylinder with finite length, and
an open sphere

Next we examine hydrogen binding by a pair of disks having
the same radius R, by a cylinder with length 2L, and by a
truncated sphere having a section with radius a. The hydro-
gen molecule is placed on the axis parallel to the surface for
the disk pair and the cylinder, and on the axis perpendicular
to the opening for the sphere. The potential energy curve for
the hydrogen binding of each system is also obtained in a
closed form as

W(ξ0, d, η) = D

3

[
A(ξ0/d,η/d)

(
de

d

)10

− B(ξ0/d,η/d)

(
de

d

)4]
, (14)

where η stands for R, L, or a. The forms of D and de are
the same as those in Eq. (7).

For the disk pair and the cylinder, the energy bottom is
located at the origin when d is close to de; in other words,

Fig. 2 The potential energy curves of the hydrogen molecule adsorbed by the nanocarbons: (a) a pair of coplanar disks with infinite radii,
(b) a cylinder with infinite length, (c) a closed sphere
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Fig. 3 The potential energy
curves of the hydrogen molecule
adsorbed by finite nanocarbons:
(a) a pair of coplanar disks each
with the same radius R,
(b) a cylinder with length 2L

the potential remains a single well with respect to the axis
perpendicular to the surface. In this case, the energy bottoms
of these systems are given by

W(0, d,R) = D

3

[
2

(
1 − 1

(R2/d2 + 1)5

)(
de

d

)10

− 5

(
1 − 1

(R2/d2 + 1)2

)(
de

d

)4]
(15)

for the disk pair and

W(0, d,L) = D

3

[
4

π

(
tan−1(L/d) + L/d(L8/d8 + 490L6/105d6 + 896L4/105d4 + 790L2/105d2 + 965/315)

(L2/d2 + 1)5

)(
de

d

)10

− 10

π

(
tan−1(L/d) + L/d(L2/d2 + 5/3)

(L2/d2 + 1)2

)(
de

d

)4]
(16)

for the cylinder. Each formula rapidly converges to the first
term of Eq. (8) with an increase in R or L.

Figure 3 shows the potential curves for the finite disk
pair and cylinder given by Eq. (14), with η changing from
d to 3d when d = de, or with η = 3d when d = 0.9de.
The molecule enters the system through the boundaries lo-
cated at ξ0 = ±η. When d = de, each curve decreases mono-
tonically to its minimum. In the case of η = de, the bottom
of the curve is considerably shallower than it is for the infi-
nite system (−D): ∼−0.6D for the disk pair and ∼−0.9D

for the cylinder. The energy bottom approaches −D when η

exceeds 2de. For the disk pair, the energy bottom becomes
−0.934D when R = 2de and −0.983D when R = 3de;
for the cylinder, it becomes −0.989D when L = 2de and
−0.998D when L = 3de. For the case when d = 0.9de, the
curve shows a maximum in the vicinity of each side of the
boundaries, and its bottom is close to that of the infinite sys-
tem when d = 0.9de.

The hydrogen binding energy of the truncated sphere is
shown by expanding to the first power of z0,

W(z0, d, a) = D

3

{
cos2(θa/2)

[
2

(
de

d

)10

− 5

(
de

d

)4]

− 6 sin2(θa/2) cos2(θa/2)

×
[

4

(
de

d

)11

− 5

(
de

d

)5]
z0

de
+ · · ·

}
, (17)

where θa (0 < θa < π ) satisfies

sin θa = a

d
. (18)

The second term in Eq. (17) shifts the equilibrium posi-
tion of the molecule from the origin to a position on the
z-axis depending on the size of d . The position moves from
positive to negative when d passes (4/5)1/6de (∼0.963de).
The second term becomes very small when d ≈ de; then, the
energy bottom is approximately given by the first term of
Eq. (17),

W(0, de, a) ≈ − cos2(θa/2)D. (19)

This formula gives −0.933D at a = de/2, −0.75D at
a = 31/2de/2, and −0.5D at a = de.

Figure 4 shows the potential curves of the open spheres
for different opening radii (a = d/2, 21/2/2d , 31/2/2d ,
and d) and as the sphere radius changes from d = 0.9de

to 1.8de. The molecule enters the sphere from the posi-
tive z-axis through the center of the opening located at
z = d cos θa . For a = d/2, the curve shows a shallow mini-
mum in front of the opening, a maximum close to the open-
ing, and a deep minimum near the origin when d ranges
from 0.9 to 1.1de. When d = de, the values of the out-
side minimum, the maximum, and the deepest minimum
are −0.145D (at z0 = 1.55d), 36.2D (z0 = 0.838d), and
−0.934D (z0 = −0.011d), respectively. Further increases
in d lower the barrier and lift the bottom, thereby splitting
it into two asymmetrical minima. The lower minimum in-
creases from −0.839D to −0.437D as its position moves
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Fig. 4 The potential energy
curves of the hydrogen molecule
adsorbed by a sphere truncated
by a section with radius a:
(a) a = d/2, (b) a = 21/2d/2,
(c) a = 31/2d/2, (d) a = d

from the vicinity of the origin (z0 = −0.103d) to the inner
side of the sphere (z0 = −0.510d) when d increases from
1.1de to 1.8de.

The increase in a lowers the barrier and lifts the bottom.
When a = 21/2d/2, the values of the barrier and the bottom
are 0.373D (z0 = 0.677d) and −0.857D (z0 = −0.025d),
respectively, when d = de. The barrier diminishes and the
bottom flattens near −0.435D (z0 = −0.510d) when d in-
creases to 1.8de. When a = 31/2d/2, the barrier is not ob-
served in each curve. The bottom becomes shallower from
−0.758D (z0 = −0.038d) to −0.433D (z0 = −0.510d)
when d increases from de to 1.8de. When a = d , the bot-
tom increases from −0.514D (z0 = −0.052d) to −0.421D

(z0 = −0.511d) when d increases from de to 1.8de.

4 Summary

We examined hydrogen adsorption by nanocarbons consist-
ing of graphene sheets. These include a pair of disks with
radius R separated by 2d , a cylinder with radius d and
length 2L, and a sphere with radius d truncated by a section
with radius a. Using the 12–6 Lennard–Jones potential func-
tion for the pair interaction between a hydrogen molecule
and a carbon atom, we obtained the binding energy of the
molecule as a function of the molecule’s position and the
size of the system. The energy is in the form of a 10–4 func-
tion with respect to 1/d and is characterized by the potential

depth (D) and the optimum distance (de) as the specific pa-
rameters for each system.

For infinite or closed systems, the lowest binding ener-
gies (−D) were obtained when the molecule rests at the
center of the nanocarbon with d = de. These energies were
−94 meV (−78 meV with zero-point correction) for the
disk pair with separation 5.87 Å, −158 meV (−133 meV)
for the cylinder with diameter 6.28 Å, and −203 meV
(−171 meV) for the sphere with diameter 6.74 Å. The ener-
gies were 2–4.3 times deeper than that of a single graphene
sheet. The optimum separation between two disks was much
larger than that of the graphite layers (3.35 Å). The opti-
mum diameters of the cylinder and the sphere were slightly
smaller than those of the smallest nanotube (∼7 Å) and
C60 (7.12 Å). The bottom of the potential became shallow
as d increased and changed from a single well to a dou-
ble well at the critical distance (dc). At dc, the values of
the bottom energy were −76 meV (−72 meV with zero-
point correction) for the disk pair with separation 6.58 Å,
−135 meV (−129 meV) for the cylinder with diameter
7.04 Å, and −180 meV (−172 meV) for the sphere with
diameter 7.42 Å.

For the finite disk or cylinder, the energy bottom of each
system approached that of the infinite system when its diam-
eter (2R) or length (2L) increased to more than 2–3 times
above its separation or diameter (2d). The binding energy
of the finite disk pair with spacing 2de amounted to more
than −0.983D (−92 meV) when the diameters of both disks
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were larger than 6de (17.3 Å). The binding energy of the
finite cylinder with diameter 2de amounted to more than
−0.989D (−156 meV) when the length of the cylinder was
greater than 4de (12.6 Å).

For the truncated sphere, an enlargement of the opening
lifted the energy bottom; however, it reduced the energy bar-
rier for the incoming/outgoing molecule. For the sphere with
diameter 2de, the barrier and bottom were 0.373D (76 meV)
and −0.857D (−174 meV), respectively, when the diameter
of the opening was 1.41de (4.76 Å). The barrier diminished
and the bottom rose to −0.758D (−154 meV) when the di-
ameter increased to 1.73de (5.83 Å), and the bottom moved
to −0.514D (−104 meV) when the diameter reached 2de.

Finally, we conclude that the optimum spacing between
graphene sheets for hydrogen adsorption is about 6–7 Å, and
the adsorption energy can be increased to nearly 200 meV
(170 meV with the zero-point correction) if the carbon
atoms surrounding the molecule are arranged on a spherical
surface. The number of carbon atoms on a spherical surface
with density 0.382 atoms/Å2 is about 60 when the diameter
is 7 Å. These obtained results are in accordance with the ar-
gument that carbon materials with a pore size of less than
7 Å can possibly achieve the DOE target density [7], and
that the energy which allows hydrogen storage at mild con-
ditions is 150 meV [10]. Actual nanocarbons cannot take a
spherical shape but they may have polyhedral structures as
fullerenes do. The experimental method of making an open-
ing on C60 was previously established [31] and the hydrogen
encapsulation into C60 has been demonstrated [32]. On the
other hand, hydrogen adsorption between carbon polyhe-
drons is also necessary for increasing the storage density, so
the shape and size of the cavity surrounded by these poly-
hedrons should be investigated. This subject is related to the
space-filling problem by polyhedrons. Constructing a net-
work of carbon polyhedrons suitable for hydrogen storage
will be addressed in the future.
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