
DOI: 10.1007/s00339-004-2807-7

Appl. Phys. A 79, 1445–1447 (2004)

Materials Science & Processing
Applied Physics A

i. satoh�

t. kobayashi
k. katayama
t. okada
t. itoh

Magneto-photoluminescence of novel
magnetic semiconductor Zn1−xCrxO
grown by PLD method
Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka,
Osaka 560-8531, Japan

Received: 29 September 2003/Accepted: 19 March 2004
Published online: 26 July 2004 • © Springer-Verlag 2004

ABSTRACT The magneto-photoluminescence (PL) of novel
magnetic semiconductor Zn1−xCrxO (ZCO) grown by the
pulsed laser deposition (PLD) method was investigated. An ArF
excimer laser and Cr2O3-mixed ZnO ceramic bulk targets were
used for the PLD experiments. The PL peaks at room tempera-
ture are very sharp and there is no deep-level emission. The
bound exciton peak at 4.2 K was very sharp and increased about
three times with increasing applied magnetic field up to 1 T, and
the peak wavelength was slightly blue-shifted. It is admirable
that the magneto-PL peak was considerably modulated even at
low magnetic field. From the peak shift energy of the magneto-
PL, ∆E, effective Cr concentration xeff was roughly estimated
to be 0.001 on the basis of the electron (n)-type bound magnetic
polaron (BMP) model.

PACS 78.55.Et; 78.20.Ls; 75.30.Hx

1 Introduction

Oxides have many excellent properties such as fer-
roelectricity, high permittivity, superconductivity, magnetism
(including half metals) and photoelectricity. Owing to these
superior properties, they have solely been used in many appli-
cation fields. In oxide electronics, it has been expected to com-
bine these excellent properties in the monolithic configuration
and to make feasible the hyper-intelligent devices [1, 2]. So
far, we have been studying semiconducting oxide materials
that show ferromagnetic behaviors. ZnO based diluted mag-
netic semiconductors (DMS) have been investigated more and
more actively, and become a matter of interest for many re-
searchers with the keyword, “spintronics” [3–10]. To realize
opto-spintronic devices, it is strongly requested that the semi-
conducting materials should have the magnetism with high
Curie temperature (TC) as well as the excellent optical (lu-
minescence) properties. It is also necessary and of interest to
create transparent magnetic semiconductors that can show op-
tical emission.

We have reported the magnetic and optical properties of
Zn1−xCrxO (ZCO) DMS thin films grown by pulsed laser
deposition (PLD) method [11]. In the PL measurement at
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room temperature, the ZCO thin films showed brilliant lumi-
nescence from the bound-exciton level. The photolumines-
cence (PL) peak wavelength was 387 nm, which is slightly
longer than that of ZnO (382 nm). In this study, we report
the magneto-PL properties of ZCO DMS thin films, compar-
ing with simulation for the bound magnetic polaron (BMP)
model.

2 Experimental

An ArF excimer laser (λ = 193 nm, pulse width
10 ns, laser fluence 1–3 J/cm2 shot, repetition rate 10 Hz)
(Lamda Physik, COMPex 100) and Cr2O3-mixed ZnO
(Zn/Cr = 0.70/0.30) ceramic bulk targets were used for the
PLD experiments. Most of the thin films were prepared on
ZnO(0001) substrates and a few prepared on Al2O3(0001)
substrates in 5 ×10−3 Torr pure O2 gas ambient at substrate
temperature of 350 ◦C. The film thicknesses of all samples
are 400 nm. The crystallinity and the orientation of the grown
films were examined by the X-ray diffraction (XRD) (Cu Kα)
method (Rigaku, RINT). Magnetic measurements were per-
formed using a superconducting quantum interference device
(SQUID) magnetometer (Quantum Design, MPMS-XL5U).
To investigate the optical properties, we measured photo-
luminescence (PL) spectra and transmittance spectra in the
UV-Vis range (only the samples on Al2O3(0001) substrates)
at room temperature. PL measurements were carried out using
a He-Cd laser (λ = 325 nm) as the excitation light source.
The opto-spintronic properties of ZCO were characterized by
magneto-PL measurement. Magneto-PL measurements were
carried out using a cryostat with superconducting magnet at
4.2 K (Oxford Instruments, Spectromag 4000-8).

3 Results and discussion

The room temperature PL spectra for the ZCO thin
films grown at deposition temperatures (Td) of 450 ◦C and
350 ◦C are shown in Fig. 1. At a glance, the PL peaks are
very sharp and there is no deep-level emission. The spectrum
of the ZnO substrate is also shown as a reference in Fig. 1.
As is well known, the 382 nm peak is assigned to the ZnO
bound-exciton emission. Based on the comparison with this
reference spectrum, it is understandable that all ZCO sam-
ples can also radiate the bound-exciton emission and that the
peak wavelength is around 387 nm. The observed red-shift
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FIGURE 1 PL spectra of ZCO thin films at room temperature. ZnO data
is magnified ×0.04. The PL peaks are very sharp and there is no deep-level
emission

of the emission peak (from 382 to 387 nm) might be due to
spin-correlated exciton formation and/or crystal deformation
through Cr doping.

Temperature dependence of PL spectra of ZCO thin film
are shown in Fig. 2. The zero phonon line of the bound exci-
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FIGURE 2 Temperature dependence of PL spectra of ZCO thin film. 4.2 K
data is magnified ×10 at wavelength longer than 380 nm

ton (I) and the phonon side band of the bound exciton (I-LO,
I-2LO) were observed at 4.2 K. As temperature was increased,
luminescence intensity of bound exciton line was decreased.
The free exciton (Ex) and its phonon side band (Ex-LO,
Ex-2LO) are dominant at temperatures above 90 K. From
these results, the crystal deformation might occur through Cr
doping.

Figure 3 shows magneto-PL of ZCO thin film at 4.2 K. The
bound exciton peak is very sharp and increases about three
times with an increasing magnetic field up to 1 T, and the
peak wavelength was slightly blue-shifted. The bound exciton
luminescence is caused by the transition from the state of exci-
ton bound to a certain neutral center to the ground state of the
neutral center.

To know more (in details) about this phenomenon, we
estimated the shift energy ∆E from which the effective Cr
concentration xeff can be deduced. We calculated the shift en-
ergy for the electron (n)-type bound magnetic polaron (BMP)
model expressed by following Eqns. [12]:

∆E = 4πN0aexeffkBTγ

∞∫
0

rdr ln[F( f(r))]

+
2πN0a2

e xeffkBTγ 2

∞∫
0

dr ln[F( f(r))]

1 +4πN0aexeffkBTγ

∞∫
0

rdr ln[F( f(r))]
, (1)

where

F (x) = 1

5

(
e2x + ex +1 + e−x + e−2x) , (2)
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FIGURE 3 Magneto-PL spectra of ZCO thin film at 4.2 K. The bound exci-
ton peak increases about three times with increasing magnetic field up to 1 T,
and the peak wavelength was slightly blue-shifted
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FIGURE 4 Zeeman shift energy vs. effective Cr concentration (solid lines
are calculated data as functions of electron Bohr radius and dashed line is
experimental data of magneto-PL measurement)

and

f (r) = J

2kB (T + TAF)

(
e−2r/ae

πa3
eγ

3

)
. (3)

In (1), N0 denotes the density of cation site, ae denotes the
electron Bohr radius. From these equations, the calculated re-
sults of the relationships between the shift energy ∆E and
the effective Cr concentration xeff are illustrated in Fig. 4.
Since the main contribution to the BMP comes from Cr2+ ions
within about one Bohr radius, which is about 14 Å for ZnO. In
comparison with the experimental data (Fig. 4), from the peak
blue-shift energy of the magneto-PL, ∆E = 0.6429 meV, the
effective Cr concentration xeff is roughly estimated to be 0.001
on the basis of the electron (n)-type BMP model for the most
probable parameters such that J = 1 eV, T + TAF = 5 K.

Although the exchange interaction of the electron spin
with the localized Cr magnetic spin is smaller than that of the

1 In this work: Fig. 3, ×25 should be corrected as ×0.04.

hole spin, the exchange energy of the bound exciton may be
smaller than that of the neutral donor center just after deexci-
tation, resulting in the blue-shift of the PL peak for the bound
exciton. It is admirable that the PL peak is considerably mod-
ulated even at low magnetic field.

4 Conclusions

We have investigated magneto-photoluminescence
of Zn1−xCrxO diluted magnetic semiconductor thin films
grown by pulsed laser deposition method. The bound exciton
peak is very sharp and increases about three times with an in-
creasing magnetic field up to 1 T, and the peak wavelength
was slightly blue-shifted. We calculated the shift energy and
the effective Cr concentration for the electron (n)-type bound
magnetic polaron model. It is admirable that the PL peak is
considerably modulated even at low magnetic field.
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