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ABSTRACT We present a first-principles study of the effects of
many-electron interactions on the optical properties of single-
walled carbon nanotubes. Motivated by recent experiments, we
have carried out ab initio calculations on the single-walled car-
bon nanotubes (3, 3), (5, 0) and (8, 0). The calculations are
based on a many-body Green’s function approach in which both
the quasiparticle (single-particle) excitation spectrum and the
optical (electron–hole excitation) spectrum are determined. We
show that the optical spectrum of both the semiconducting and
metallic nanotubes studied exhibits important excitonic effects
due to their quasi-one-dimensional nature. Binding energies for
excitonic states range from zero for the metallic (5, 0) tube to
nearly 1 eV for the semiconducting (8, 0) tube. Moreover, the
metallic (3, 3) tube possesses exciton states bound by nearly
100 meV. Our calculated spectra explain quantitatively the ob-
served features found in the measured spectra.

PACS 78.67.Ch; 71.35.Cc; 73.22.-f

1 Introduction

Recent advances in the measurement of the opti-
cal properties of individual single-walled carbon nanotubes
(SWCNTs) [1–3] have generated a great deal of interest
and provided a wealth of information, but they also have
raised questions and highlighted real puzzles in our funda-
mental understanding of nanotubes. In particular, standard
single-particle, interband theories are unable to explain many
of the relevant optical measurements. Many-electron inter-
actions have been shown [4] to be of importance in quasi-
one-dimensional systems such as nanotubes and can drasti-
cally modify the predictions of interband theories. But, the
actual effects of these interactions on the optical proper-
ties of real nanotubes have not been elucidated to date. We
present here state-of-the-art, first-principles calculations of
the optical properties of carbon nanotubes with inclusion of
the relevant many-electron effects. We show the crucial role
played by many-electron interactions in modifying the op-
tical properties of both metallic and semiconducting nano-
tubes. Once many-electron interactions are included, our find-
ings explain quantitatively existing experimental data. These

� E-mail: sglouie@uclink.berkeley.edu

many-electron effects give rise to new phenomena and can
provide a basis for possible applications [5].

2 Theoretical method

In this study, we compute the optical absorption
spectra of the small-diameter SWCNTs (3, 3), (5, 0) and (8, 0).
The calculations use a recently developed approach in which
electron–hole excitations and optical spectra of real materials
are calculated from first principles [6]. The calculations have
three stages.

First, we treat the electronic ground state with ab initio
pseudopotential density-functional theory (DFT), in which
the Kohn–Sham electronic states are given by

[
−∇2

2
+ Vion + VHartree + V LDA

xc

]
ψnk = ELDA

nk ψnk. (1)

For the exchange-correlation potential Vxc, we employ the
local density approximation (LDA) [7]. The eigenfunctions
ψnk are used in the next stage as very good approximations for
the quasiparticle wavefunctions [8].

Second, we obtain the quasiparticle (single-particle exci-
tation) energies Enk by solving the Dyson equation [8]

[
−∇2

2
+ Vion + VHartree +Σ(Enk)

]
ψnk = Enkψnk. (2)

Here, the self-energy Σ is calculated within the GW approxi-
mation [8, 9]

Σ = iGW, (3)

where G is the one-particle Green’s function and W the
screened Coulomb interaction calculated using the dielectric
screening matrix ε within the random-phase approximation
(RPA).

Third, we calculate the coupled electron–hole excitation
energies ΩS and the optical spectrum by solving the Bethe–
Salpeter equation [6, 10]

(Eck − Evk) AS
vck +

∑
k′v′c′

〈vck|K eh|v′c′k′〉AS
v′c′k′ = ΩS AS

vck,

(4)
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where AS
vck is the exciton amplitude in k-space, K eh is the

electron–hole interaction kernel and |ck〉 and |vk〉 are the
quasielectron and quasihole states, respectively. K eh has
two terms: an attractive direct term involving the screened
Coulomb interaction and a repulsive exchange term involving
the bare Coulomb interaction [6]. Both terms are calculated
from first principles in the present approach.

2.1 Technical details

The DFT wavefunctions and eigenvalues are ob-
tained by solving the Kohn–Sham equations in a plane-
wave basis with an energy cutoff of 60 Ry. We use ab initio
pseudopotentials generated within the scheme of Troullier
and Martins [11] combined with the Kleinman–Bylander
form [12] to produce a separable potential (we used the p
channel as the local part of the pseudopotential and a cutoff
radius in real space rc = 1.4 a.u.). To mimic the property of
individual SWCNTs, we carry out calculations with an array
of well-separated nanotubes in a supercell arrangement. The
supercell geometry is hexagonal, with the smallest intertube
distance being 9.7 Å. The structure of the tubes is determined
by relaxing the atomic positions with the intertube distance
fixed until the forces on the atoms are all less than 0.01 eV/Å.
The diameters of the relaxed tubes are 4.17 Å for the (3, 3)
tube, 4.03 Å for the (5, 0) tube and 6.31 Å for the (8, 0) tube.
The lattice vector along the tube axis (ẑ) has lengths 2.43 Å for
the armchair tube (3, 3) and 4.21 Å for the zigzag tubes (5, 0)
and (8, 0). For the calculations of nanotubes inside channels of
zeolites (see below), we use the intertube geometry as dictated
by the zeolite crystal structure. A simple tight-binding model
would predict the (5, 0) tube to be a semiconductor; however,
as we discuss later, this tube is a metal as a consequence of
strong curvature effects [13].

The GW and Bethe–Salpeter calculations were converged
with respect to the number of bands, the energy cutoffs in
Σ and K eh and the number of k-points used to sample the
first Brillouin zone. For the GW calculations, we used up
to 64 k-points and conduction bands within an energy range
of 42 eV above the Fermi level. Crystalline local field ef-
fects were included up to an energy cutoff of 12 Ry. In the
Bethe–Salpeter calculations, we used up to 400 k-points and
10 valence and 10 conduction bands, and crystalline local field
effects were included up to an energy cutoff of 7 Ry.

2.2 Truncation of the Coulomb potential in
a cylindrical geometry

In supercell calculations for semiconducting tubes,
due to the long-range nature of the screened Coulomb in-
teraction, non-physical interaction between periodic image
charges can lead to deviations from the physics of an iso-
lated system. (We find negligible tube–tube interactions or
image effects for metallic tubes, where screening is com-
plete.) Therefore, we truncate the Coulomb interaction in
a cylindrical geometry for the semiconducting tubes:

v̂c(r) = 1

r
θ(�−�c)θ(|z|− zc), (5)

where � = √
x2 + y2 is the radial coordinate perpendicular to

the tube axis (ẑ). We choose the cutoff �c equal to half the

FIGURE 1 Head element of the inverse dielectric matrix ε−1
00 (0, 0, qz) for

the semiconducting tube (8, 0)

intertube distance dt (making sure that dt is large enough).
As for the cutoff zc along ẑ, it has to be larger than the size
of the excitons (typically ∼ a few tens of Å) in the Bethe–
Salpeter calculations and smaller than the effective supercell
size along the tube direction (dictated by the number of dis-
cretized k-points used to sample the Brillouin zone along
ẑ). In momentum space, the expression for the truncated
Coulomb potential reads:

v̂c(q) = 4π

�c∫
0

ds sJ0(qxys)

zc∫
0

dt
cos(qzt)√

s2 + t2
, (6)

where qxy =
√

q2
x +q2

y.
With sufficiently large cutoffs, the use of truncation rids

us of the non-physical interaction between periodic image
charges and has a further advantage: there is no need to sam-
ple the Brillouin zone in directions perpendicular to ẑ. Thus,
throughout our calculations, we use a 1 ×1 ×n Monkhorst–
Pack mesh for the k-point sampling. There is however a price
to be paid: n is generally larger in the truncated case than in the
untruncated case. This is exemplified in Fig. 1 which shows
the head element ε−1

00 of the static inverse dielectric matrix for
the semiconducting tube (8, 0). In the truncated case, ε−1

00 as
a function of qz has a sharper profile near qz = 0.

Figure 2 shows the head element ε−1
00 of the static inverse

dielectric matrix as a function of qz for the metallic tube (3, 3).
From its behavior at qz → 0 we can extract a Thomas–Fermi
screening length of ∼ 3.2 Å. Similarly we found a screening
length of ∼ 2.8 Å for the metallic tube (5, 0). Since in metallic
tubes the Coulomb potential is effectively cut off by the di-
electric matrix, there is no need to further truncate it using the
procedure above.

3 Results and comparison with experiment
3.1 Quasiparticle (single-particle) excitations

Due to the relatively short screening length in the
metallic tubes and to the fact that carbon nanotubes locally
resemble a graphite sheet, we expect for the metallic tubes
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FIGURE 2 Head element of the inverse dielectric matrix ε−1
00 (0, 0, qz) for

the metallic tube (3, 3)

that the GW quasiparticle corrections to the LDA Kohn–Sham
energies be similar to those in graphite, namely a ∼ 15%
stretching of the LDA eigenvalues away from the Fermi level
(EF) [14]. Figure 3 shows that, for the metallic tubes (3, 3) and
(5, 0), this is indeed the case.

The situation is however very different for the small-
diameter semiconductor carbon nanotubes. For the semicon-
ducting (8, 0) tube, the calculated LDA minimum band gap

FIGURE 3 Difference between the quasiparticle energy (calculated with
the GW approximation) and the LDA Kohn–Sham eigenvalue plotted as
a function of the energy of the states for the metallic tubes (3, 3) and (5, 0)

FIGURE 4 Difference between the quasiparticle energy (calculated with
the GW approximation) and the LDA Kohn–Sham eigenvalue plotted as
a function of the energy of the states for the semiconducting tube (8, 0)

is direct and only 0.60 eV at the Γ -point. Figure 4 shows
that quasiparticle corrections dramatically open this gap to
1.75 eV: a ‘scissor shift’ of ≈ 1.15 eV is needed to obtain
an accurate quasiparticle excitation spectrum near Γ . This
correction is significantly larger than in bulk semiconductors
with similar LDA gaps: we attribute this to the absence of
metallic screening and the 1D nature of the SWCNTs which
enhances the Coulomb effects (as shown also in model calcu-
lations [4]).

By applying the GW corrections to the LDA eigenvalues,
we obtain the quasiparticle band structures, shown in Fig. 5,
for the three nanotubes studied. The arrows indicate optically
allowed low-energy transitions which contribute to the forma-
tion of prominent peaks in the absorption spectra, as we will
see below.

3.2 Polarization effect

Before discussing the calculated optical spectra,
we shall mention the importance of the ‘depolarization ef-
fect’ [15] in nanotubes for electric fields E perpendicular to ẑ.
Due to the presence of bound surface charge, the polarizabil-
ity for fields perpendicular to ẑ is considerably smaller than
that for fields parallel to ẑ. The physical reason for this dif-
ference is illustrated in Fig. 6 by considering the nanotube as
a classical polarizable cylinder with polarizability χ (where
P = χEtot) and computing the polarization induced in the
tube as a function of an external electric field. In the trans-
verse E-field geometry, a dramatic reduction in the absorption
spectrum results from a reduction of the polarization by the
denominator 1 +2πχ. Thus strong optical response in nano-
tubes is observed only for light polarized along ẑ, and we
consider only this polarization below.

3.3 Optical spectra: metallic tubes

We first concentrate on the metallic (3, 3) tube. Fig-
ure 7 shows the quasiparticle density of states (DOS) for the
(3, 3) tube, featuring a number of prominent one-dimensional
(1D) van Hove singularities (vHs) near EF. Unlike predic-
tions from simple tight-binding models [16], these vHs are
asymmetric about EF due to strong curvature effects. The
arrow in the figure indicates optically allowed low-energy
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FIGURE 5 Quasiparticle GW band structures for the (3, 3), (5, 0) and (8, 0)
tubes

transitions. For (n, n) metallic tubes, the bands forming the
first vHs below EF and the second vHs above EF meet at
the Fermi level, but optical transitions between these bands
are symmetry-forbidden. The imaginary part of the dielec-
tric function of the (3, 3) tube is shown in Fig. 8, calcu-
lated with and without electron–hole interaction. In the spec-
trum of the non-interacting case, a symmetry gap is clearly
seen, i.e. no allowed transitions for photon energies below
the peak at ω = 3.25 eV. Such a gap is possible for a one-
dimensional system where all k-states have well-defined sym-

FIGURE 6 Illustration of depolarization effect. Polarizability for applied
electric field parallel (upper) and perpendicular (lower) to the tube axis

FIGURE 7 Quasiparticle density of states of the (3, 3) SWCNT

metry. Upon inclusion of the electron–hole interaction (by
solving the Bethe–Salpeter equation), a single bound exciton
appears in the spectrum. Though metals do not traditionally
possess bound excitons, its presence here is simply a result of
the symmetry gap. The fact that we see only one bound ex-
citon is a result of the metallic screening. In particular, the
effective electron–hole interaction along ẑ resembles a δ(z)
function. In 1D, the Hamiltonian

H = − 1

2m∗
d2

dz2
−|V0|δ(z) (7)

produces a single bound eigenstate. We find the binding en-
ergy of the A′ exciton in Fig. 8 to be 86 meV.

Figure 9 shows the electron–hole probability distribution
|Φ(re, rh)|2 for the A′ bound exciton of the (3, 3) tube ob-
tained by fixing the position of the hole rh (the green star in the
figure) on a carbon π orbital. |Φ(re, rh)|2 describes how the
quasielectron and quasihole in the photoexcited state are cor-
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FIGURE 8 Calculated absorption spectra of the (3, 3) SWCNT. Spectra are
broadened with a Gaussian factor of 0.0125 eV

FIGURE 9 A′ exciton of (3, 3) SWCNT in Fig. 8. The isosurfaces give
the probability distribution |Φ|2 for finding the electron given that the hole
(green star) is fixed on top of a carbon atom

related in real space. Figure 10 shows a more quantitative view
of the extent of the bound A′ exciton: |Φ|2 is plotted along
ẑ after integrating out the electron coordinates in the perpen-
dicular plane. We see that the bound exciton A′ has an extent
of ∼ 50 Å along ẑ. In Fig. 11 we plot the weight

∑
v,c |AS

vckz
|2

of the different electron–hole pair configurations in the bound
exciton A′ as a function of their momentum kz. We see that the
exciton is well localized in momentum space as well.

From the interband joint density of states (which is equal
to the density of electron–hole states) shown in Fig. 12 and the
position of the exciton A′ in the absorption spectrum shown in
Fig. 8, we can see that, given the metallic nature of the tube,
the A′ exciton is embedded in an electron–hole excitation con-
tinuum (which is optically forbidden) through which it can
decay via various perturbations (e.g. the electron–phonon in-
teraction).

Next we consider the metallic (5, 0) tube. Figure 13 shows
the quasiparticle DOS for the (5, 0) tube. According to the
band-folding scheme [16, 17], this tube should be semicon-
ducting. However, curvature effects lead to strong σ −π hy-
bridization, forcing a band to cross EF from above and causing
another band to cross EF from below. The latter band gives
rise to the first vHs above EF (labeled X in the figure) with
its tail extending below EF. Arrows in the figure indicate op-
tically allowed transitions that give rise to the two peaks,
labeled A and B, in the optical spectrum in Fig. 14. When
neglecting electron–hole interactions, peak B has a lower in-
tensity than A because the transitions contributing to B do not
originate from the vHs X itself but from its tail. Here, how-
ever, electron–hole interactions do not create bound excitons:
while the (5, 0) screening length is similar to that of the (3, 3)
tube, the symmetry of the bands in the (5, 0) tube diminishes
the attractive interaction term between the excited electron
and hole of peaks A and B. Thus the electron–hole interac-

FIGURE 10 Wavefunction of the A′ exciton of the (3, 3) SWCNT. |Φ|2 from
Fig. 9 is plotted after integrating out coordinates perpendicular to the tube
axis

FIGURE 11 Weight of various electron–hole pair configurations contribut-
ing to the A′ exciton of the (3, 3) SWCNT as a function of kz

FIGURE 12 Joint quasiparticle density of states for the (3, 3) SWCNT

tion is governed by the repulsive exchange term. This effect,
again, is peculiar to nanotubes: in traditional semiconductors,
the attractive direct term dominates over the exchange term.
Moreover, while the strength of the exchange term is similar
for peaks A and B, this is not true for the interband energy
term: from the non-interacting absorption spectrum and the
DOS, we can deduce that the interband energy term for peak
A is larger than for peak B. As a consequence, when electron–
hole interactions are included, the exchange term has a larger
effect on peak B and greatly suppresses it.
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FIGURE 13 Quasiparticle density of states of the (5, 0) SWCNT

FIGURE 14 Calculated absorption spectra of the (5, 0) SWCNT

For the metallic tubes (3, 3) and (5, 0) there are rele-
vant experiments for us to directly compare our results to.
In the work of Li et al. [1], small-diameter SWCNTs were
grown inside zeolite channels of AlPO4. The absorption spec-
tra of these samples were measured, and three prominent
peaks were found (see Table 1). The diameter of the tubes
was determined to be 4 Å, and there are three possible chi-
ralities compatible with this diameter: (3, 3), (5, 0) and (4, 2).
However, experimentally it was not possible to decide which
tube contributes to which prominent peak. To better repro-
duce the experimental conditions, we carried out calculations
for the (3, 3) and (5, 0) tubes in the presence of a dielec-
tric background of AlPO4. The dielectric background is ac-
counted for by adding a model dielectric function [18] for
AlPO4 to the dielectric matrix of the metallic SWCNTs con-
sidered. Because the electron–hole attraction involves very
small momenta transfer in the screened Coulomb interaction
(see Fig. 11) and since for very small momentum the dielectric
matrix of metallic tubes is much larger than the background

Nanotube Theory Experiment∗

(5, 0) 1.33 eV 1.37 eV
(3, 3) 3.17 eV 3.1 eV
(4, 2) – 2.1 eV

∗ [1]

TABLE 1 Peak positions and optical transitions in 4 Å SWCNTs

dielectric constant of AlPO4, the influence of the background
AlPO4 on the optical spectra of these tubes is actually neg-
ligible. Table 1 shows that our results for the metallic tubes
(3, 3) and (5, 0) are in very good quantitative agreement with
experiment and provide a definitive identification for two of
the observed peaks. We conclude that the remaining peak at
2.1 eV is due to the (4, 2) tube (other calculations [19, 20] per-
formed at the RPA level – without including electron–hole
interactions – as well as a recent TDLDA (time-dependent
local density approximation) calculation [21] lead to the same
conclusion [22]). Moreover, the many-electron suppression of
peak B in the (5, 0) spectrum explains the absence of any ob-
served feature in the experimental spectra at ≈ 2.8 eV.

3.4 Optical spectra: semiconducting tubes

Figure 15 shows the quasiparticle DOS of the (8, 0)
SWCNT. The arrows indicate optically allowed transitions
which form three distinct low-energy peaks (labeled A, B, C)
in the non-interacting absorption spectrum in Fig. 16. When
electron–hole interactions are included, we find far more dra-
matic excitonic effects than in the metallic cases: each peak in
the non-interacting case gives rise to a series of visible exci-
ton lines with large binding energies. The binding energies are
0.99 eV, 0.86 eV and 1.00 eV for the lowest-energy excitons
A′

1, B′
1 and C′

1 respectively. These binding energies are more

FIGURE 15 Quasiparticle density of states of the (8, 0) SWCNT

FIGURE 16 Calculated absorption spectra of the (8, 0) SWCNT. Spectra are
broadened with a Gaussian factor of 0.0125 eV
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FIGURE 17 Similar plot as in Fig. 9 for the A′
1 exciton of the (8, 0) SWCNT

than 10 times larger than those in bulk semiconductors with
similar gaps, and the excitonic effects qualitatively change the
profile of the spectrum. Again, these effects stem from the
long-range nature of the screened Coulomb interaction and
the 1D nature of the SWCNTs: e.g. the binding energy of a 1D
hydrogenic system is infinite due to the long-range Coulomb
interaction [23]. We also note that the electron–hole inter-
action reverses the relative intensity of the first and second
prominent optical peaks.

Our calculation predicts that there are two varieties of
strong excitons in the (8, 0) tube: bound excitons with energies
below the non-interacting optical gap (the A′ and B′ series)
and resonant excitons with energies above the non-interacting
optical gap (the C′ series). Figure 17 shows the real-space,
electron–hole pair probability distribution for the A′

1 bound
exciton of the (8, 0) tube (again, the hole position is fixed
on top of a π orbital; due to the inequivalency of adjacent
carbon atoms, the electron distribution is not completely sym-
metric about this particular hole position). Figure 18 shows
the degree of localization along ẑ of the bound A′

1, A′
2, B′

1
and the resonant C′

1 exciton. The extent of the ‘ground-state’
excitons A′

1, B′
1 and C′

1 is ∼ 25 Å, while for the ‘excited-

FIGURE 18 Similar plot as in Fig. 10 for
the A′

1, A′
2, B′

1 and C′
1 excitons of the

(8, 0) SWCNT

FIGURE 19 Fano profile for the resonant exciton C′
1 of the (8, 0) SWCNT.

The dots are the calculated oscillator strength and the solid curve is a fit to
a Fano profile

state’ visible excitons (such as A′
2), the extent is larger. The

delocalized part of the resonant exciton C′
1 has an envelope

function with period 2π/|kz|, where kz is the momentum of
the uncorrelated electron–hole pairs forming the delocalized
part.

The oscillator strength for the C′
1 exciton can be fitted

nicely by a Fano profile [24], see Fig. 19. From its width we
extract a resonant lifetime τres ≈ 50 fs.

Our results for the (8, 0) tube agree well with the ex-
perimental results of Bachilo et al. [3, 25]. In their work,
spectrofluorimetric measurements on various semiconducting
SWCNTs with diameters ranging from 0.62 to 1.31 nm and
chiral angle from 3 to 28 degrees were performed. From their
analysis, they were able to assign optical transitions to spe-
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Transition Theory Experiment∗

ν11 1.55 eV 1.60 eV
ν22 1.80 eV 1.88 eV
ν22/ν11 1.16 1.17

∗ Obtained from experimental fits of [3, 25]

TABLE 2 Lowest two optical transition energies of the (8, 0) SWCNT

cific (n, m) nanotubes. Though the (8, 0) tube was not present
in their SWNT samples, they provided fits for the first and
second optical transition energies (ν11 and ν22) for tubes of
similar size, and presented expressions for transition energies
as a function of tube diameter and chiral angle. These fits were
shown to work well for a wide range of (n, m) values [3, 25].
For the (8, 0) tube, their fits yield a ratio ν22/ν11 = 1.17.
The traditional π-electron tight-binding model in the non-
interacting framework predicts a ratio of 2, and the deviation
of the experimental ratio from 2 has been puzzling [26–28].
However, as shown in Table 2, our results for the main peaks
in the spectrum of the (8, 0) tube (peaks A′

1 and B′
1) produce

a ratio which is in excellent agreement with that predicted
from the fit to experiment. The deviation of ν22/ν11 from 2
is a consequence of both ‘effective’ one-electron (i.e. quasi-
particle band structure) and many-electron (here, electron–
hole interaction) effects: one needs to include both effects for
a proper quantitative understanding.

4 Conclusion

In conclusion, we have studied the optical absorp-
tion spectra of metallic and semiconducting small-diameter
SWCNTs. Quasiparticle effects were included by computing
self-energy corrections to density-functional theory Kohn–
Sham band energies within the GW approximation. Excitonic
effects on the optical spectra were computed with the Bethe–
Salpeter equation. The calculated optical spectra are in ex-
cellent agreement with available experimental data. We show
that electron–hole interactions (which can be either attractive
or repulsive) play a crucial role, especially in the case of semi-
conducting tubes, in explaining experimental results. Large
excitonic features for both semiconducting and metallic tubes
are seen to be due to the quasi-1D nature of SWCNTs, and
the manner in which they affect the spectra depends on the
rotational symmetries of the tubes.
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