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Abstract Elevated temperatures cause mass coral bleach-
ing, leading to reef degradation. The frequency of bleaching 
events is increasing, and severe bleaching events have been 
predicted to occur annually in the next few decades. How-
ever, the ability of corals to acclimate and adapt to these 
unprecedented stresses remains unknown. In this study, we 
investigated how three years of consecutive thermal stress 
affect the adult fragments of the coral Acropora tenuis. The 
fragments were exposed to temperature treatments of ~ 28 °C 
(control) and ~ 31 °C (heat stress) until they began to bleach. 
We measured the survival rate, maximum quantum yield of 
photosystem II (Fv/Fm) of the symbiotic algae, and algal 
density of the fragments. The survival rate of the frag-
ments under thermal stress decreased over the three-year 
period, reaching 20% by the end. Additionally, we observed 
a decrease in Fv/Fm and a reduction in algal density in the 
stressed fragments compared to those in the control frag-
ments during all three years of the thermal stress period. 
These findings collectively suggested that consecutive 
bleaching-level thermal stress increases the susceptibility 
of corals to heat.

Keywords Consecutive thermal stress · Bleaching · 
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Introduction

Sea surface temperatures are rapidly and significantly 
increasing as a consequence of climate change (Hoegh-
Guldberg and Bruno 2010; Hughes et al. 2017, 2018; IPCC 
2023), posing a significant threat to ecosystems worldwide, 
particularly coral reefs (Berkelmans and Oliver 1999; Veron 
et al. 2009; Frieler et al. 2012; Hughes et al. 2018). Coral 
reef ecosystems are experiencing an unprecedented decline 
as a result of the prolonged increase in sea temperatures 
(Hoegh-Guldberg et al. 2007; Eakin et al. 2009; Veron et al. 
2009; Hoegh-Guldberg 2011; Hughes et al. 2018). Evidence 
suggests that one-third of all reef-building coral species may 
become endangered (Carpenter et al. 2008), potentially 
leading to the collapse of coral reef ecosystems (Hoegh-
Guldberg et al. 2007; 2017; Pratchett et al. 2021; Obura 
et al. 2022). The ability of coral holobionts to acclimatize or 
adapt plays a crucial role in the recovery of reefs following 
such events (Weis 2010; Logan et al. 2014; Van Oppen et al. 
2015).

Dinoflagellates that form symbiotic associations 
with scleractinian corals can transfer up to 95% of their 
photosynthetic output to the coral hosts (Muscatine 1990). 
However, under unfavorable conditions such as high 
temperatures and solar irradiance, the symbiotic contribution 
is significantly reduced (Grottoli et al. 2004). Impairment 
of the symbionts’ photosynthetic function is one of the 
initial responses to environmental perturbations (Brown 
1997; Warner et al. 1999), which disrupts the symbiotic 
relationships between corals and their algal symbionts 
(Fagoonee et al. 1999). This phenomenon is commonly 
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known as “coral bleaching” (Fitt et  al. 2001; Muller-
Parker et al. 2015; Hughes et al. 2017, 2018). Thus, coral 
bleaching can result in mortality if the symbiotic function 
is not recovered or if the coral is deprived of its primary 
energy source for an extended period of time (Brown 1997). 
Mass coral bleaching and consequent mortality events such 
as unprecedented bleaching in terms of stress intensity, 
duration, and geographical extent occurred in the Caribbean 
in 2023 (Goreau and Hayes 2024) and have been predicted 
to occur across the Indo-Pacific in 2024, likely devastating 
a high percentage of corals (Hoegh-Guldberg et al. 2023) 
and causing extensive damage to hundreds of kilometers of 
reefs over the period of three months of the bleaching onset, 
putting them at risk of extinction. However, the response 
of corals to environmental disturbances may vary among 
populations, individual colonies, and physiological traits 
(Schulte et al. 2011; Forsman 2015; Parkinson et al. 2015). 
Consequently, such disturbances have significant negative 
consequences for the health and survival of coral reefs 
worldwide (Loya et al. 2001).

While acclimatization, which involves physiological 
changes at the individual level, is an important process 
(Baird et al. 2009; Liew et al. 2020; Ziegler et al. 2014; 
Hackerott et  al. 2021), it should be contrasted with 
adaptation, which includes genetic or evolutionary changes. 
Acclimatization can be considered a potential short-term 
strategy for corals to cope with changing environmental 
conditions (Coles and Brown 2003). Corals exhibit varying 
responses to bleaching stimuli depending on their resistance, 
resilience, and acclimatization levels. Acclimatization 
can contribute to improved heat tolerance (Palumbi et al. 
2014). In other words, corals faced with thermal stress and 
subsequent bleaching show higher tolerance and resistance 
to bleaching in later thermal events (Maynard et al. 2008; 
Pratchett et al. 2013; McClanahan 2017; Singh et al. 2023), 
indicating their acclimatization.

Understanding acclimatization is crucial for predicting 
coral bleaching thresholds. Recurrent bleaching is becoming 
an increasingly severe problem worldwide (Hughes et al. 
2018); however, our understanding of the effects of 
consecutive stress on individual coral colonies remains 
limited. By exposing the adults to consecutive years of 
thermal stress and studying their responses, we can gain 
insight into the resistance of coral species to extreme thermal 
conditions. It is essential to bridge this knowledge gap 
regarding the impact of climate change on the physiological 
conditions of adult corals, as annual severe bleaching of 
coral reefs is predicted to become widespread in the future 
(Bruno and Selig 2007; Hooidonk et al. 2013; Hughes et al. 
2018).

In this study, we evaluated the impact of consecutive 
thermal stress on adult colonies of the coral species Acropora 
tenuis, commonly found in the Pacific region (Veron 2000; 

Hirose and Hidaka 2006). This species is known to be highly 
susceptible to bleaching in relation to other coral species 
(Obura 2001; Carpenter et al. 2008; van Woesik et al. 2011). 
The aim of this study was to determine whether A. tenuis 
could rapidly acclimatize to consecutive thermal stress over 
a three-year period imposed by climate change. Our findings 
and observations have important implications for reef 
regeneration and recovery from climate-related mortality 
events.

Materials and methods

Experiment design

In August 2018, six healthy A. tenuis colonies (branch-
ing morphology) were carefully collected from a depth of 
five to six meters in the northern region of Sesoko Island, 
Okinawa, Japan (26°39′N, 127°52′E). The colonies were 
safely transported to the Sesoko Marine Station, Univer-
sity of the Ryukyus. In 2016 and 2017, coral reefs around 
Okinawa experienced thermal anomalies (< 5.5 degree 
heating weeks, DHWs), and moderate bleaching was 
reported in some sites (Singh et al. 2019). Therefore, the 
colonies of the target species were collected from a site 
with low thermal anomalies (< 4 DHWs), no bleaching 
experience in 2016, and no thermal stress anomaly in 2017 
(Singh et al. 2019). To prepare them for the experiment, 
each of the six healthy colonies was carefully divided into 
two fragments, one for the control condition and the other 
for the thermal stress condition, with a total of twelve frag-
ments. These fragments were then placed in flow-through 
tanks and placed under experimental light conditions for 
a period of ten days to allow for proper acclimation to 
their new surroundings and facilitate wound healing prior 
to the start of the experiment. Following a ten-day accli-
mation period, the fragments were stored at two differ-
ent temperatures: ~ 28 °C (control condition) and ~ 31 °C 
(thermal stress condition). Thermal stress was defined 
as a ~ 3 °C increase above the maximum monthly mean 
(MMM) temperature in the study site and ~ 2 °C increase 
above the coral bleaching threshold. The MMM value 
of the study site was 28.4 °C according to the National 
Oceanic and Atmospheric Administration (NOAA) Coral 
Reef Watch (CRW) 5-km satellite regional virtual station 
for the Northern Ryukyus Island (Liu et al. 2014, 2017). 
Three separate tanks were used for thermal stress treat-
ment, and a heater was used to gradually increase the 
temperature from the ambient temperature of ~ 28 °C to 
the target temperature of ~ 31 °C over a three-day period, 
with an increase rate of 0.5 °C every 6 h. Throughout the 
experiment, temperature was recorded every 10 min using 
a temperature logger (HOBO Pro V2; Onset Computer 
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Corporation, MA, USA). The fragments were maintained 
under 12 h of light (~ 200 μmol photons  m−2S−1) and 12 h 
of darkness using LED lights (AI Hydra HD LED, Aqua 
Illumination, USA). The other three tanks were maintained 
at the ambient temperature of ~ 28 °C, serving as the con-
trol group for comparison (Fig. 1).

The thermal stress experiment was conducted over 
three consecutive years (in August 2018, 2019, and 2020) 
and can be classified as a moderate-duration heat stress 
experiment as defined by Grottolli et al. (2021). After the 
completion of the thermal stress experiment each year, all 
A. tenuis fragments were carefully transplanted back to the 

reef on underwater stainless-steel rectangular tables (0.5 m 
above the ground) and maintained until the next thermal 
stress (Fig. 1).

Prior to each year’s thermal stress, all fragments that 
were kept in the reef were transferred back to the flow-
through tanks and subjected to experimental light condition 
for a period of ten days to allow for proper acclimation. 
During this period, the fragments that had previously been 
exposed to thermal stress were once again subjected to high 
temperatures of ~ 31 °C. In the first year, signs of bleaching 
were observed after 10 days of exposure to thermal stress. 
Similarly, in the second year, the experiment lasted for 

Fig. 1  Experimental design of 
the study examining the effects 
of consecutive thermal stress 
on Acropora tenuis fragments. 
The corals were exposed to both 
control conditions (~ 28 °C in 
the blue aquarium) and thermal 
stress conditions (~ 31 °C in the 
red aquarium) for three years. 
After the thermal stress period, 
they were maintained in the 
reef for one year until the next 
thermal stress event, and the 
acclimation before experiment 
lasted for ten days
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9 days, and bleaching became evident during this timeframe. 
In the third year, the thermal stress experiment lasted for 
13 days, and signs of bleaching were observed during this 
period. These varying durations were designed to capture 
the temporal dynamics of coral response to thermal stress. 
Over the two years of the experiment, the fragments did not 
face in situ thermal anomalies before and after transplant to 
the sea, and sea temperatures were lower than the threshold 
temperature for corals (Fig. 1).

Brightness (coral color measurements)

The coral’s response to heat stress was evaluated 
throughout the three-year experiment. During the thermal 
stress experiments conducted each year, all fragments in 
each treatment were photographed daily under identical 
illumination using a digital camera (Canon Powershot G10; 
Canon Inc., Tokyo, Japan) with constant white balance 
settings. A Coral Health Chart (www. coralwatch.org) was 
employed as the color scale to assess the degree of health, 
paling, or bleaching, which served as a reliable indicator 
of changes in symbiont density and chlorophyll a and c2 
contents. Photographs of the three parts of each fragment 
were analyzed using the histogram function with the RGB 
channel in Adobe Photoshop CC 2015.

The D hue, consisting of six distinct colored areas (D1, 
D2, D3, D4, D5, and D6), was utilized for the studied 
species. D1 (white) represented the bleached fragments, 
showing a value of 236, whereas D6 (brown) represented 
the unbleached state which color measurement per fragment, 
showing a value of 60. Further details regarding this 
parameter can be found in Siebeck et al. (2006).

Maximum quantum yield of photosystem II

Throughout the experiment, on a daily basis, the maxi-
mum quantum efficiency of photosystem II (Fv/Fm) of the 
symbiotic algae in each temperature treatment was meas-
ured at three specific locations: the upper third, middle, 
and lower third at a distance of 2−3 mm from the coral tis-
sue of each fragment. A diving pulse amplitude-modulated 
(PAM) underwater fluorometer (Walz, Effeltrich, Ger-
many) was utilized for these measurements. The fragments 
were measured one hour after sunset following a period of 
60 min in the dark-adapted state, which is a reliable indi-
cator of the maximum photochemical efficiency of PSII 
(Demmig and Björkman 1987). The measurements were 
repeated until signs of bleaching were detected, occurring 
at 10, 9, and 13 days in the first, second, and third year, 
respectively.

Symbiotic algal density and chlorophyll contents

Each year of the experiment, small branches were collected 
from each fragment before and after heat exposure to 
measure the density of symbiotic algae and chlorophyll 
contents following the protocol described by Nakamura 
et al. (2005). The collected fragments were then frozen at 
−80 °C until further analysis. To extract the coral tissue 
from each sample, an air-pik was used, and filtered seawater 
was added to a Ziploc bag, followed by homogenization. 
The resulting homogenate was washed three times by 
centrifugation (4500 × g for 20 min at 4 °C) and mixed using 
a vortex mixer (GeniaTM Vortex Mixer Model, Scientific 
Industries, Bohemia, NY, USA). The extract solutions 
were divided into two aliquots. The initial slurry was used 
to count the number of symbiotic algae cells through five 
replicates of hemocytometer counts under a light microscope 
(Olympus, Tokyo, Japan) at 400 × magnification following 
a standard procedure. The paraffin wax dipping technique 
was employed to estimate the surface area of each branch 
(Veal et al. 2010). The second aliquot was centrifuged at 
12,000  rpm for 15 min to extract chlorophyll a and c2. 
The resulting pellet was mixed with 1 mL of 90% acetone 
and quantified after 24  h in the dark at 4  °C until the 
measurement. The absorbances of the extract solutions were 
measured at different path lengths (630, 664, and 750 nm), as 
described by Jeffrey and Humphrey (1975), and standardized 
based on the surface area of the branch.

Survivorship of the fragments

Each year of the experiment, the fragments were transferred 
to the reef after the thermal stress experiment, and 
their health status was visually monitored monthly and 
photographed using an underwater digital camera.

Statistical analysis

Shapiro–Wilk and Levene’s tests (Quinn and Keough 2002) 
were used to investigate the normality and homogeneity 
assumptions of the variances prior to the statistical analysis, 
respectively. Linear mixed effect models (LMM) followed 
by Tukey’s honestly significant difference (HSD) post-hoc 
pairwise comparisons were used to assess the differences in 
photosynthetic efficiency and brightness between the treat-
ments in each year’s thermal stress experiment using the 
‘emmeans’ package in R (Lenth 2019). The temperature 
treatments and days were considered fixed effect factors, 
while the colony and tank were considered random effects. 
Akaike information criterion (AIC) was used to compare 
the alternative models (Tables S1), and the model with the 
lowest AIC value was selected for the statistical analysis. 
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Symbiotic algal density and chlorophyll content (a + c2) of 
the fragments in the treatments were determined before and 
after stress each year using the Wilcoxon signed-rank test. 
The Kaplan–Meier log-rank test was used to evaluate the dif-
ferences in the survival of fragments between the treatments 
over the three years of the experiment. The significance level 
for the statistical analysis was set at p < 0.05. All statistical 
analyses were conducted using the R software.

Results

Brightness (coral color)

Compared to the control, the fragments subjected to ther-
mal stress exhibited significantly higher average coral color 
scores after 10 days in the first year, 9 days in the second 
year, and 13 days in the third year (Table 1) (Fig.  2a). 
Among these fragments, the most significant variations 
in whiteness hue observed in 2019, 2020, and 2018 were 
166.09 ± 9.29 SE (mean ± standard error), 143.68 ± 11.62 
SE, and 142.69 ± 9.07 SE, respectively, at the end of each 
year’s thermal stress experiment (Fig. 2a, Tables 1, S2). 

Maximum quantum yield of photosystem II

The maximum quantum yield of photosystem II (Fv/Fm) 
differed significantly between the control and experimental 
groups during the study period. In the first year, over a 
10-day period, the thermal stress fragments showed a 
decrease in Fv/Fm (LMM, p = 0.04, n = 6 for each treatment, 
Fig.  2b, Tables  1, S2). In the second year, the control 
fragments consistently outperformed the thermal stress 
fragments throughout the 9 days of the experiment (LMM, 
p = 0.1, n = 6 for the control treatment and n = 5 for the 
stress treatment, Fig. 2b, Tables 1, S2). Lastly, in the third 
year, we observed a noticeable reduction in Fv/Fm starting 
from day four of exposure to elevated temperatures (LMM, 
p = 0.02; n = 5 for the control treatment and n = 3 for the 
stress treatment, Fig. 2b, Tables 1, S2).

Symbiotic algal density and chlorophyll content

We measured the symbiotic algal density and chlorophyll 
(a + c2) content in all coral fragments over the course of 
three years. Exposure to the elevated temperature of ~ 31 °C 
resulted in a significant change in symbiotic algal density 
throughout the experimental period (Wilcoxon signed-rank 
test, p < 0.05; Fig. 3a, Table S3). In contrast, the effect of 
thermal stress on chlorophyll (a + c2) concentration per cell 
was significantly greater than that of the control treatment 
(Wilcoxon signed-rank test, p < 0.05, Fig. 3b, Table S3) at 
the end of the experiment in all three years.

Effects of thermal stress on coral survival

After conducting the initial thermal stress experiment in 
2018, we found that 83.33% of the stressed fragments sur-
vived the subsequent year (2019). In 2020, the survival rate 
of stressed fragments decreased to 50%. Meanwhile, the con-
trol fragments exhibited a 100% survival rate in 2019, which 
decreased to 83.33% in the 2020 thermal stress experiments. 
The survivorship of fragments between the two treatments 
showed a significant difference over the course of three con-
secutive years of stress (Kaplan–Meier survival estimate, 
p < 0.001; Fig. 4).

Discussion

In this study, we investigated the effects of consecutive 
thermal stress on the adult colonies (fragments) of 
Acropora tenuis for the first time. Our findings revealed that 
consecutive moderate-duration thermal stress can increase 
the susceptibility of adult A. tenuis fragments to heat stress. 
Previous studies conducted in various reef locations across 
the Indo-Pacific Ocean have indicated that branching coral 
species were among the first to bleach and die (Brown 
and Suharsono 1990; Hoegh-Guldberg and Salvat 1995; 
Sutthacheep et  al. 2010). To date, the implications of 
three years of consecutive thermal stress on the predicted 
degradation of reefs have not been studied. The results of 
the present study clearly demonstrate that moderate-duration 

Table 1  The results of 
comparison for brightness 
and Fv/Fm of Acropora tenuis 
fragments between different 
treatments in three years of 
consecutive stress

Significant p value (p < 0.05) indicated in bold

Years Contrast n Estimate SE df t.ratio p value

Brightness 2018 Control-stress C = 6, S = 6  − 0.32 0.09 4  − 3.248 0.03
2019 Control-stress C = 6, S = 5  − 0.41 0.12 3.7  − 3.422 0.02
2020 Control-stress C = 5, S = 3  − 0.22 0.09 3.1  − 2.438 0.08

Fv/Fm 2018 Control-stress C = 6, S = 6 0.01 0.005 4 2.83 0.04
2019 Control-stress C = 6, S = 5 0.04 0.02 3.6 2.15 0.1
2020 Control-stress C = 5, S = 3 0.11 0.02 2.45 5.08 0.02
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consecutive direct thermal stress leads to a decline in the 
survival rate of coral fragments.

Coral species display varying degrees of susceptibility to 
heat stress (Brandt 2009; Gintert et al. 2018; Marzonie et al. 
2023; Tavakoli-Kolour et al. 2023). In the present study, 
fragments subjected to thermal stress treatment each year 
exhibited a decrease in photosynthetic efficiency and sym-
biotic algal density compared to those of the control frag-
ments, and bleaching was observed in the stress treatment 
fragments. Additionally, in each year following heat stress 
exposure, mortality was observed in some fragments (Fig. 4, 
5). The decline in photosynthetic efficiency and loss of algal 
symbionts represent the rapid responses to thermal stress 
exposure (Warner et al. 1999), which may increase the risk 
of mortality (Schoepf et al. 2015). However, the loss of algal 
symbionts due to heat stress is not necessarily the cause of 
coral mortality (Anthony et al. 2007). Instead, heat stress 

can reduce phototrophic carbon by destabilizing the carbon 
translocation process in algae (Anthony et al. 2007). Con-
sequently, corals may face mortality even when bleaching 
is not visibly apparent in coral colonies due to the collapse 
in the nutrient cycling of symbiotic algae (Rädecker et al. 
2021).

Thermal stress and consequent bleaching events can 
alter the ability of corals to survive other ecological 
disturbances, determining whether they emerge as “winners” 
or “losers” based on their susceptibility to increased heat 
stress (Loya et al. 2001; Grottoli et al. 2014). Corals can 
acclimate to heat stress over relatively short periods with 
rapid adjustments in their physiological responses (Palumbi 
et al. 2014). Interestingly, A. tenuis has been shown to use 
adaptation strategies in response to single bleaching events 
by producing heat-tolerant generations (Hazraty-Kari et al. 
2022). Nevertheless, the results of this study suggested that 

Fig. 2  Laboratory thermal 
stress experiment studying the 
fragments of Acropora tenuis: 
a Effect of thermal stress on the 
brightness of the fragments in 
the three-year experiment (in 
2018 and 2019: LMM, p < 0.05; 
in 2020: LMM, p = 0.08). The 
scale values of 60 and 236 are 
equivalent to 100% health and 
bleach status, respectively. 
b Fv/Fm: maximum quantum 
yield of photosystem II for all 
fragments (in 2018 and 2020: 
LMM, p < 0.05; in 2019: LMM, 
p = 0.1)
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the consequences of moderate-duration consecutive thermal 
stress negatively affected the survival of the adult fragments 
of A. tenuis, as previously observed in the juveniles of this 
species (Hazraty-Kari et  al. 2023a; Hazraty-Kari et  al. 
2023b). Consecutive thermal stress can render certain 
species more vulnerable to bleaching, ultimately leading to 
a long-term decline in coral reefs (Grottoli et al. 2014).

The observed delay in coral colony bleaching in 
subsequent heat stress events may be related to the coral’s 

acclimatization ability (Pandolfi et al. 2011; Logan et al. 
2014). Observations following natural bleaching incidents in 
the Pacific separated by several years suggested that certain 
branching species more susceptible to single bleaching 
events may have in some cases adapted (Guest et al. 2012; 
Maynard et al. 2008; Pratchett et al. 2013; Lachs et al. 2023). 
Despite the observed delay in coral bleaching in the third 
year compared to those in the first and second years, our 
findings indicated that the fragments did not acclimate to 
moderate-duration thermal stress after three years. Some 
coral species exhibit a significantly high acclimatization 
capacity, leading to a delay in consecutive bleaching events 
(Logan et al. 2014). The duration and intensity of heat stress 
events can result in distinct physiological and ecological 
reactions in corals (Fordyce et al. 2019; Evensen et al. 2023; 
Tavakoli-Kolour et al. 2023). Short-term and low-intensity 
heat pulses may induce acclimatory responses in subsequent 
heat stress events (Ainsworth et  al. 2016; Singh et  al. 
2023). However, such coral species are more vulnerable 
to consecutive intense thermal stress (i.e., one that triggers 
noticeable bleaching) and do not show an acclimatization 
response or beneficial stress memory. Nevertheless, 
additional research is required to determine the performance 
and acclimatization potential of other species in the face of 
consecutive thermal stress, which will have implications for 
the future of reef ecosystems.

Fig. 3  Effect of thermal stress 
on the physiological response 
of Acropora tenuis. a The 
response of the physiological 
parameters of symbiont cell 
densities of A. tenuis to thermal 
stress in the three-year experi-
ment (Wilcoxon signed-rank 
test, p < 0.05) after the thermal 
experiment. b Chlorophyll a 
and c2 (Chl a + c2) concentra-
tion measured in the three-year 
experiment after the thermal 
experiment (Wilcoxon signed-
rank test, p < 0.05). The box 
plot center shows the mean of 
the data

Fig. 4  Monthly survivorship of fragments of Acropora tenuis 
under thermal stress and control condition for three years in the reef 
(Kaplan–Meier survival estimate, p < 0.001)
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Conclusions and implications

Our findings unequivocally demonstrated that consecutive 
moderate-duration thermal stress negatively affects the adult 
individuals of the reef-building coral A. tenuis. This finding 
highlights the fact that three years of moderate-duration 
consecutive stress did not provide a beneficial stress memory 
in this species. However, shorter duration and small pulse 
of thermal stress may result in an acclimatory response 
in this species; therefore, further research is necessary 
to investigate the annual thermal stress experienced by 
various coral species over multiple years, with different 
thermal stress durations and severity. Such studies will aid 
in identifying which global reefs are at risk of long-term 
degradation on a worldwide scale. Additionally, studies 
should be carried out to determine the impact of thermal 
stress on coral physiology and resilience, as well as to 
determine the ability of different coral species to adapt to 
climate change. It is important to note that conducting such 
studies presents significant challenges.
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