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a known coral pathogen and contribute to the body of knowl-
edge regarding the success of octocorals on Caribbean reefs.
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Introduction

Diseases have been shown to play a major role in the decline 
of coral reef ecosystems around the world (Webster 2007; 
Francini-Filho et al. 2008; Rogers and Miller 2013; Montano 
et al. 2015; Estrada-Saldívar et al. 2020). The prevalence 
of these diseases has increased in recent years, leading to 
the devastation of some foundational reef species (e.g., the 
reef-building elkhorn and staghorn corals, Acropora pal-
mata and A. cervicornis, respectively; Aronson and Precht 
2001; Sutherland et al. 2011). Although our understanding 
of putative etiological agents, disease vectors, and transmis-
sion mechanisms remains limited, members of the Vibrion-
aceae, a ubiquitous marine bacterial family, have been impli-
cated in several coral diseases (reviewed by Munn 2015). In 
particular, exposure to some strains of Vibrio coralliilyticus 
resulted in the onset of disease symptoms in several scler-
actinian coral species, suggesting that this bacterium may 
be a pathogen of notable concern (Ben-Haim et al. 2003; 
Sussman et al. 2008; Ushijima et al. 2014a, 2016). However, 
other strains of V. coralliilyticus have been isolated from 
both healthy and diseased corals worldwide, suggesting that 
the presence of this species does not always result in disease 
(Arboleda and Reichardt 2009; Arotsker et al. 2009; Kven-
nefors et al. 2010). Although V. coralliilyticus can be present 
at low density in the bacterial consortium of healthy corals, 
its abundance and virulence increase when temperatures are 
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raised (Kimes et al. 2012; Garren et al. 2014, 2016; van de 
Water et al. 2018). As a result, it is considered one of the 
most important coral pathogens under the current global cli-
mate change scenario.

Although a wide array of coral diseases has been reported 
across the globe, the Caribbean Sea is considered a disease 
hot spot due to the rapid emergence of novel diseases that 
have wide geographical and host ranges and the frequency of 
epizootic events (Bruckner 2016). One of the most devastat-
ing coral diseases to date emerged in 2014 in Broward and 
Miami-Dade counties of Florida and rapidly spread through 
the entire Florida Reef Tract and eventually to Caribbean 
reefs (Precht et al. 2016; NOAA Stony Coral Tissue Loss 
Disease Case Definition 2018; Alvarez-Filip et al. 2019; 
Estrada-Saldívar et al. 2020; Muller et al 2020; Brandt et al. 
2021; Heres et al. 2021). Recent efforts to characterize the 
microbial communities associated with this novel disease, 
referred to as stony coral tissue loss disease (SCTLD; NOAA 
Stony Coral Tissue Loss Disease Case Definition, 2018), 
identified several potentially pathogenic and/or opportunistic 
prokaryotic taxa including various V. coralliilyticus strains 
that may contribute to disease initiation, cause secondary 
infections, and/or exacerbate tissue loss in infected corals 
(Meyer et al. 2019; Ushijima et al. 2020). Although V. coral-
liilyticus strains have been implicated in diseases affecting a 
wide range of scleractinian corals, resulting in altered coral 
populations and abundances on the reefs of the Caribbean 
Sea (Hayes et al. 2022; Álvarez-Filip et al. 2022), Caribbean 
octocorals do not appear to be affected by these diseases, 
including SCTLD, and their populations are thriving (Tsou-
nis and Edmunds 2017).

Overall, despite a previous report of V. coralliilyticus in 
six A. americana colonies (previously classified as Pseudop-
terogorgia americana) (Vizcaino et al. 2010) and the isola-
tion of this bacteria from diseased tissues of the temperate 
octocoral Paramuricea clavata in the Mediterranean (Bally 
and Garrabou 2007), no investigations into why Caribbean 
octocorals appear to not be susceptible to V. coralliilyticus 
have been conducted to date, and little is known about its 
role in octocoral disease.

Octocorals are known to produce a plethora of natural 
products (e.g., Look et al. 1984; Standing et al. 1984; Ban-
durraga and Fenical 1985; Harvell et al. 1988), including a 
wide variety of terpenes that have been extensively studied 
for pharmacological properties (i.e., antibacterial, antifun-
gal, anticancer, and antiviral) of interest for human health 
and for their potential to augment the blue economy (e.g., 
Fenical et al. 1991; Jensen et al. 1996; Berrue and Kerr 
2009; Rocha et al. 2011; Blunt et al. 2016; Raimundo et al. 
2018). Despite these efforts, the bioactivity of octocoral-
derived chemical compounds against marine pathogens 
remains largely unknown. To address this knowledge gap 
and potentially explain why octocorals may not be impacted 

by some coral diseases, this study investigated whether com-
mon Caribbean octocoral species could produce bioactive 
natural products that inhibit the growth of V. coralliilyticus 
strains.

Material and methods

Field collection

Five to ten small samples (3–4 cm) from multiple branches 
of four visually healthy colonies from each of the four 
common octocoral species studied (Antillogorgia ameri-
cana, Eunicea flexuosa, Gorgonia ventalina, and Plexaura 
homomalla) were collected while SCUBA diving in May 
2022 from American Shoal reef, Florida Keys, Florida, 
USA (24.55293° N–81.51861° W), at a depth of ~ 5 m 
using sea snips which were changed between coral species 
to avoid contamination. Corals were visually identified in 
the field before their taxonomy was confirmed in the labo-
ratory through stereomicroscopic observations of anatomic 
and phenotypic features. The five to ten samples collected 
from each individual octocoral were placed into a separate 
prelabeled, resealable plastic bag (16 bags total) and trans-
ported on ice to the Mote Marine Laboratory’s Elizabeth 
Moore International Center for Coral Reef Research and 
Restoration (Summerland Key, FL) and stored overnight at 
− 20 °C. Frozen samples were transported on dry ice to the 
Smithsonian Marine Station (Fort Pierce, FL) and stored 
at − 20 °C until processing. Samples were collected under 
Florida Keys National Marine Sanctuary Research Permit 
FKNMS-2019–078 and Florida Fish and Wildlife Conserva-
tion Commission Division of Marine Fisheries Management 
Special Activity Licenses SAL-21-2138-SRP.

Chemical extraction of octocorals samples for natural 
products

The four bags containing samples for each of the targeted 
octocoral species were thawed, combined, excess seawater 
removed, and weighed. To obtain the widest breadth of com-
pounds, the pooled samples for each species were extracted 
three times with organic solvents at room temperature. The 
first two extractions used a mixture of ethyl acetate and 
methanol (EtOAc–MeOH, 1:1). The extractions were first 
sonicated for 5 min using an Edmund Scientific sonicator 
(Barrington, NJ, USA) and allowed to soak for about 5 h. 
A third extraction was carried out similarly but used 30% 
aqueous ethanol (EtOH). The ethanol was removed from 
the polar extract under vacuum at 35 °C by rotary evapora-
tor (Buchi R300 rotavapor, New Castle, DE, USA), and the 
remaining water was then partitioned in a separatory funnel 
with n-butanol (n-BuOH-H2O, 2:1) and allowed to stand 
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overnight for complete separation (Fig. 1A). This n-BuOH 
extract was eventually combined with the n-BuOH parti-
tion derived from the EtOAc–MeOH extract (see below). 
The  H2O extract was discarded as it contained mostly salts 
(Fig. 1A, B). The nonpolar EtOAc–MeOH extract was first 
partitioned in a separatory funnel using EtOAc-H2O, 1:1 
(Fig. 1B). After separating the EtOAc partitioned fraction, 
the water-soluble fraction was re-partitioned with n-butanol 
(n-BuOH-H2O, 1:6). The resulting n-BuOH partition frac-
tion was combined with the n-BuOH extract obtained from 
the polar extract (Fig. 1A, B). The extracts and partitions 
were filtered through grade 1  Whatman® filter papers to 
remove suspended particles before the solvents were evapo-
rated under vacuum at 35 °C using a Buchi rotavapor. The 
dried material was resuspended in MeOH and transferred 
to pre-weighed 20 ml scintillation vials. A Savant Speed-
Vac Vacuum Concentrator (SPD121P; Thermo Scientific) 
at 35 °C was used to remove the MeOH. The dried EtOAc, 
n-BuOH, and water partitions were weighed and stored at 
-20 °C until use.

Antimicrobial assays

All three partitions (EtOAc, n-BuOH, and  H2O) of the 
organic extracts obtained for the four octocoral species 
were tested for antimicrobial activity using a modified disk 
diffusion method (Bauer 1966; Monti et al. 2022) against 
five strains of V. coralliilyticus (Cn26H-1; Cn52H-1; OfT6-
17; OfT6-21; and OfT7-21) isolated from both apparently 
healthy and SCTLD-affected scleractinian corals in the 
Florida Keys and Broward County (FL) and from SCTLD 
transmission experiments (Ushijima et al. 2020). Three 
additional V. coralliilyticus strains (ATCC BAA-450T; and 
OCN-008 and OCN-014, both generously provided by Dr. 
Blake Ushijima, University of North Carolina Wilmington, 
NC, USA) known to elicit disease symptoms in sclerac-
tinian corals from the Indian and Pacific oceans were also 
tested (Ben-Haim et al. 2003; Ushijima 2014a, 2014b) as 
was Pseudoalteromonas sp. McH1-7, a putative probiotic 
strain active against SCTLD (Ushijima et al. 2023). Octo-
coral partitions resuspended in methanol at a standard 

Fig. 1  Workflow for the identification and characterization of 
compound(s) obtained from A. americana active against V. coral-
liilyticus strains Cn52H-1 and OfT6-21. Extract/Partitions/Fractions 

highlighted in orange were selected for further analyses based on 
their antimicrobial activity. Solvents employed: MeOH = Methanol; 
EtOAc = Ethyl acetate; n-BuOH = n-Butanol; and hex = Hexanes
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concentration of 31.25 mg  l–1 were tested in triplicate using 
sterile paper disks (7 mm diameter) (Fisher, Whatman, cat. 
no. 1001–125) impregnated with 4.0 μL (125 μg) of material 
following Deutsch et al. (2022). The V. coralliilyticus strains 
and Pseudoalteromonas sp. McH1-7 were grown overnight 
in seawater broth (SWB: 4 g tryptone, 2 g yeast extract, 
1000 ml 0.22 μm filtered seawater) at 28 °C and 220 rpm and 
diluted with sterile SWB until an  OD600 between 0.5 and 0.6 
was obtained. Seawater agar plates (150 × 150 mm; SWA: 
4 g tryptone, 2 g yeast extract, 15 g agar, 1000 ml 0.22 μm 
filtered seawater) were seeded with the test organisms by 
spreading 200 μl of culture with sterile glass beads and dried 
for approximately 10 min before adding the test disks. An 
 OD600 between 0.5 and 0.6 yielded a confluent yet thin lawn 
for each of the test organisms. The partition impregnated 
disks were dried before being placed onto the seeded plates 
along with disks impregnated with 100% MeOH (solvent 
control) or nalidixic acid (positive control) at 15.62 mg  l–1 
(62.50 μg) (after Deutsch et al. 2022). SWA plates were 
incubated for 24 h at 28 °C before bioactivity, if any, of the 
octocoral partitions against the V. coralliilyticus and Pseu-
doalteromonas strains was determined by measuring the 
zones of inhibition [ZOI (mm) = diameter of the inhibition 
zone—diameter of the paper disk] with a digital caliper to 
the nearest 0.01 mm (as in Monti et al. 2022).

Chemical analysis of Antillogorgia americana 
for bioactive compounds

Because species within the genus Antillogorgia are some of 
the most widespread and abundant octocorals in the Carib-
bean (Jordán-Dahlgren 2002; Lenz et al. 2015; Lasker and 
Porto-Hannes 2021), the EtOAc and n-BuOH extracts from 
A. americana were further analyzed against V. coralliilyti-
cus strains to determine the active compound(s). The dried 
EtOAc partition was dissolved in the smallest possible vol-
ume of EtOAc–MeOH (1:1) and mixed with 4.0 g of col-
umn chromatography silica gel. The solvent was evaporated 
before the residue was placed on a packed silica gel column 
(20.0 g) and fractionated using five solvent mixtures applied 
to the column based on polarity (hexanes, most nonpolar, 
[150.0 ml]; EtOAc-hexanes, 3:7, [45.0 ml:105.0 ml]; EtOAc 
[150.0 ml]; MeOH-EtOAc, 1:9, [15.0 ml:135.0 ml]; MeOH, 
most polar, [50.0 ml]; Fig. 1C). The n-BuOH fraction was 
solubilized in MeOH, mixed with 1.0 g of chromatography 
C-18, and the dried C-18 powder was placed onto a packed 
C-18 reversed-phase chromatography column (5.4 g). This 
n-BuOH partition was subjected to column chromatogra-
phy using a five-step gradient solvent system  (H2O, most 
polar, [20.0 ml];  H2O-MeOH, 7.5:2.5, [30.0 ml: 10.0 ml]; 
 H2O-MeOH, 2:8, [6.0 ml: 24 ml], MeOH, [30.0 ml]; and 
EtOAc, most nonpolar, [30.0 ml]). The initial water fraction 

was used to remove salts from the n-BuOH partition and was 
not retained (Fig. 1C).

All fractions were subjected to bioassay-guided screen-
ing using disk diffusion assays to identify the most bioac-
tive fractions. Two strains of V. coralliilyticus, Cn52H-1 and 
OfT6-21, were selected as target pathogens in accordance 
with Deutsch et al. (2022). Strain Cn52H-1 was found to 
possess the largest number of unique metabolites from a 
known pathogenic genus (Deutsch et al. 2022), making it an 
ideal candidate for bioactivity assays. Disk diffusion assays 
were performed as above, and fractions were tested at pro-
portional concentrations calculated as Fraction ‘i’ concentra-
tion (ml/mg) = [Fraction ‘i’ dry weight / (Sum of n fraction 
dry weights)] * sum of n fraction concentrations.

Bioactive fractions were chosen for further investigation 
based on significant differences in size and clarity of the 
inhibition zones produced on the lawns of pathogens com-
pared to the solvent control (see ‘Statistical analyses’). The 
selected bioactive fractions were subjected to an additional 
round of fractionation using either normal phase column 
chromatography (solvent system: EtOAc-hexanes, 3:7, 
[15.0 ml:35.0 ml]; EtOAc-hexanes, 7:3, [35.0 ml:15.0 ml]; 
EtOAc [50.0 ml]; MeOH-EtOAc, 1:9, [5.0 ml:45.0 ml]) 
or reversed-phase chromatography (solvent system: 
 H2O-MeOH, 2:8, [4.0 ml:16.0 ml]; MeOH [20.0 ml], EtOAc 
[20.0 ml]). The newly obtained fractions were tested for bio-
activity using disk diffusion assays (Fig. 1D). Three frac-
tions exhibited substantial antimicrobial activity against the 
V. coralliilyticus strains. These active fractions were ana-
lyzed by thin layer chromatography (TLC) using different 
mobile phases (EtOAc; EtOAc-hexanes, 1:1;  H2O-MeOH, 
1:9; MeOH [Fig. 1E]) to evaluate their complexity and 
possible similarity. Among these fractions, one (selected 
based on the clarity of the inhibition zones produced on 
the Vibrio lawns and TLC compound separation spectrum) 
was further purified through repeated reversed-phase (RP) 
high-performance liquid chromatography (HPLC). RP-
HPLC was performed at room temperature of 23 °C using 
a Waters (Milford, MA, USA) 1525 binary HPLC pump 
connected to a YMC (Devens, MA, USA) HPLC semi-
prep column of 250 × 10 mm RP-C-18 and using a solvent 
mixture of  H2O-MeOH (2.5:7.5) at a flow rate of 3.0 ml/
min. The outflow was monitored using a Waters 2489 UV/
visible detector with the Breeze 2 program at UV 220 and 
235 nm. This method was repeated using a solvent mixture 
of 1.5:8.5  H2O-MeOH to give pure compounds (Fig. 1F, H). 
These compounds were subjected to proton nuclear mag-
netic resonance (H-NMR) spectroscopy and high-resolution 
mass spectroscopy (HRMS) analysis. The H-NMR spectra 
were obtained in  CDCl3 on a JEOL (JEOL USA, Peabody, 
MA, USA) 600 MHz spectrometer running Delta software 
(version 4.3.6). The electrospray ionization (ESI) HRMS 
data were obtained using a JEOL AccuTOF-DART 4G 
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equipped with an ESI source operating in positive mode. The 
DART-HRMS data were obtained using the same instru-
ment equipped with a Direct Analysis in Real Time (DART) 
ionization source (IonSense, Saugua, MA, USA) operating 
at 250 °C and ion guide RF voltage of 1000 V. The H-NMR, 
ESI-HRMS, and DART-HRMS were performed at Florida 
Atlantic University’s Harbor Branch Oceanographic Institute 
(Fort Pierce, FL, USA).

Statistical analyses

All analyses were performed using R version 3.4.3 (R Core 
Team 2017). Measures of zones of inhibition are expressed 
as the mean value of the three replicates ± standard error. 
To verify non-significant differences in homogeneity of vari-
ances of the data, the function leveneTest in the car pack-
age (Fox and Weisberg 2012) was performed followed by a 
visual inspection of the residuals. Generalized linear models 
(GLMs) were employed to test for possible significant differ-
ences between the sizes of the ZOIs produced by the solvent 
controls and those of the octocoral partitions and fractions 
(codes are provided in Suppl. 1). Because multiple compari-
sons were calculated in the GLMs, Bonferroni corrections 
were applied for each model.

Results

Antimicrobial activity of octocoral natural products

A total of 28.11 g, 16.39 g, 29.02 g, and 37.44 g (wet 
weight) of coral material was obtained from the pooled 
samples from four individuals of A. americana, G. ven-
talina, P. homomalla, and E. flexuosa,, respectively. After 

three rounds of extraction with different solvents and 
separation of the EtOAc–MeOH crude extract, three par-
titions for each octocoral species were obtained (Fig. 2), 
which were then tested for bioactivity against eight V. 
coralliilyticus strains and the putative probiotic strain 
Pseudoalteromonas sp. McH1-7. When tested at a stand-
ard concentration against V. coralliilyticus, the EtOAc 
partitions from the EtOAc–MeOH extracts from the four 
octocoral species produced significantly larger ZOIs com-
pared to the solvent controls (GLMs Bonferroni adjusted 
p < 0.0125, Fig. 2, Suppl. 1), ranging from a minimum of 
14.47 (± 0.87) mm obtained from G. ventalina on a lawn 
of strain Cn52H-1 to a maximum of 35.91 (± 3.36) mm 
from E. flexuosa on a lawn of strain OfT6-21. The n-BuOH 
partitions combined with the initial n-BuOH extract from 
all octocorals yielded similar significant results, with ZOIs 
ranging from a minimum of 9.90 (± 0.70) mm from P. 
homomalla against strain CN52H-1 to 37.48 (± 1.32) mm 
from A. americana against strain OfT7-21 (GLMs Bonfer-
roni adjusted p < 0.0125, Fig. 2, Suppl. 1). V. coralliilyti-
cus strains OfT7-21 and OCN-014 appeared to be most 
susceptible (Fig. 2). Water partitions from all octocoral 
species generated non-significant inhibition against all 
pathogen strains with the exception of those from E. flexu-
osa against strains CN52H-1 and OfT6-21 (Fig. 2, Suppl. 
1). Overall, the V. coralliilyticus isolates from the Indian 
and Pacific Oceans appeared to be more susceptible to the 
octocoral compounds than the Florida V. coralliilyticus 
isolates, as larger ZOIs were recorded on the plates seeded 
with the Pacific strains. Finally, the MeOH solvent control 
disks produced small ZOIs on all pathogen lawns, ranging 
from a minimum of 1.50 (± 0.54) mm to a maximum of 
5.27 (± 1.46) mm on the lawns of CN52H-1 and OfT7-21 
strains respectively.

Fig. 2  Zones of inhibition (average ± standard error in mm) pro-
duced by the partitions (EtOAc = Ethyl acetate; n-BuOH = n-Butanol; 
 H2O = Water) of the organic crude extracts obtained from A. ameri-
cana, E. flexuosa, G. ventalina and P. homomalla when tested against 

V. coralliilyticus strains and Pseudoalteromonas strain McH1-7. Sol-
vent control = 100% methanol; positive control = nalidixic acid at 
15.62 mg  l–1. Darker color = larger zone of inhibition
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Bioactive compounds from Antillogorgia americana 
active against Vibrio coralliilyticus

A series of bioassay-guided fractionations employing nor-
mal- and reversed-phase chromatographic separations, TLC, 
and HPLC of the organic extracts obtained from A. ameri-
cana allowed for the investigation of bioactive chemical 
compounds produced by this octocoral against two strains of 
V. coralliilyticus. Among the three partitions obtained from 
separation of the EtOAc–MeOH crude extract (Fig. 1A), 
the EtOAc partition (Fig. 1B) demonstrated bioactivity 
with clear and significantly larger zones of inhibition when 
tested at 125 µg compared to the MeOH control (ZOI on 
Cn52H-1 = 15.83 (± 0.97) mm GLM Estimate = 14.327, 
Bonferroni adjusted p < 0.0125; ZOI on OfT6-21 = 15.79 
(± 0.82) mm, GLM Estimate = 13.623, Bonferroni adjusted 
p < 0.0125; Table 1, Suppl. 1).

Similarly, the n-BuOH partition (Fig. 1B) tested at the 
same concentration was able to significantly inhibit the 
growth of V. coralliilyticus compared to the MeOH con-
trol (ZOI on Cn52H-1 = 12.27 (± 1.40) mm, GLM Estimate 
= 10.767, Bonferroni adjusted p < 0.0125; ZOI on OfT6-
21 = 11.45 (± 1.22) mm, GLM Estimate = 12.277, Bonfer-
roni adjusted p < 0.0125; Table 1, Suppl. 1). Conversely, the 
water partition did not show significant bioactivity compared 
to the solvent control. The EtOAc and n-BuOH partitions 
(Fig. 1B) were each further separated into five fractions 
through column chromatography (Fig. 1C). When tested 
against the two strains of V. coralliilyticus, only fraction 1.1 
(hexanes) from the original EtOAc partition did not show 
significant differences in antimicrobial activity when tested 
at 13.80 µg compared to the MeOH control (Cn52H-1 GLM 
Estimate = 4.820, Bonferroni adjusted p > 0.008; OfT6-21 
GLM Estimate = 6.593, Bonferroni adjusted p > 0.008) 
(Table 1, Suppl. 1). For the five fractions obtained from 
the original n-BuOH partition, only fraction 2.5 (EtOAc) 
produced significantly larger ZOIs than the MeOH control 
(Cn52H-1 GLM Estimate = 33.720, Bonferroni adjusted 
p < 0.008; OfT6-21 GLM Estimate = 65.880, Bonferroni 
adjusted p < 0.008; Table 1, Suppl. 1) showing that the activ-
ity was in the nonpolar portion of the n-BuOH partition. 
Because there were many significantly active fractions, only 
those that produced very clear (e.g., no haze) ZOIs, indicat-
ing complete growth inhibition, were selected for further 
analyses. Fraction 1.3 (EtOAc) was subjected to additional 
column chromatography to generate four new fractions, 
fractions 1.3.1 through 1.3.4 (Fig. 1D; Table 1). Fraction 
1.5 (MeOH) was also selected for additional C-18 chroma-
tography, resulting in three new fractions, fractions 1.5.1 
through 1.5.3 (Fig. 1D; Table 1). Among these fractions, 
1.3.2, 1.3.3, and 1.5.3 demonstrated significant bioactivity 
against both V. coralliilyticus strains Cn52H-1 and OfT6-21 
(Table 1, Suppl. 1).

The three fractions with significant bioactivity were sub-
jected to TLC (Fig. 1E), and based on the results fraction 
1.3.3 was selected for HPLC separation using the solvent 
mixture  H2O-MeOH (2.5:7.5). HPLC guided by UV trace 
(235 nm) separated the fraction 1.3.3 into six new fractions 
(1.3.3.1–1.3.3.6), which were again tested for bioactivity 
(Fig. 1F; Table 1; Suppl. 1).

The two less-polar fractions (1.3.3.5 and 1.3.3.6) tested 
at 4.47 µg demonstrated the greatest antimicrobial inhibi-
tion against both Vibrio strains (Table 1; Suppl. 1). Fraction 
1.3.3.6 produced clearer, although smaller, ZOIs than 1.3.3.5 
(Table 1) on lawns of both pathogens. Proton NMR spec-
troscopy analysis of both fractions (Fig. 1G; Suppl. Figure 1, 
2) indicated the presence of at least seven methyl singlets 
and one or two methyl doublets in the methyl region of the 
spectra. In addition, there were signals for the presence of 
hydroxy groups, unsaturation, and a cyclopropyl ring system 
in these molecules. The H-NMR spectrum of fraction 1.3.3.5 
indicated the presence of a mixture of three or four sterols, 
while the proton spectrum of fraction 1.3.3.6 showed the 
presence of two sterols with cyclopropyl rings. This fraction 
was further separated through HPLC using the solvent mix-
ture of  H2O-MeOH (1.5:8.5) (Fig. 1H). From this separation, 
the second most nonpolar fraction (1.3.3.6.5) eluted as a sin-
gle peak at a retention time between 26.9 and 28.0 min. This 
HPLC peak demonstrated significant bioactivity against both 
Vibrio strains (Cn52H-1 GLM Estimate = 5.157, Bonferroni 
adjusted p < 0.017; OfT6-21 GLM Estimate = 4.883, Bon-
ferroni adjusted p < 0.017; Table 1 Suppl. 1), and its proton 
NMR spectrum appeared to be a 9:1 mixture of two ster-
ols. The H-NMR spectrum of the major compound showed 
close similarities to cyclopropyl ring-containing secosterols 
reported in the literature (Enwall et al. 1972; Bonini et al. 
1983; Capon and Faulkner 1985; Pika et al. 1992; Migliuolo 
et al. 1992; Pika and Andersen 1993; Lopp et al. 1994). The 
proton NMR showed the presence of four methyl singlets 
at δ1.37, 1.02, 0.87 and 0.67 and three methyl doublets at 
δ0.94 (J = 6.9 Hz), 0.92 (J = 6.8 Hz) and 0.85 (J = 6.2 Hz). 
Three characteristic high field multiplets at δ0.48 (1H, m), 
0.23 (1H, m), − 0.13 (1H, m) indicated the presence of a 
tri substituted cyclopropyl ring system. The spectrum also 
indicated the presence of a C-3 hydroxymethine at δ3.48 
(1H, m), hydroxymethylene group at δ3.88 (1H, m), 3.73 
(1H, m) at C-11 position of the secosterol skeleton and an 
olefinic proton at δ5.48 (1H, m) at C-6 position.

The presence of a carbonyl at the C-9 position was evi-
dent from the presence of C-10 methyl at δ1.33 and C-8 pro-
ton at δ3.04. The presence of the primary hydroxyl group at 
C-11, a keto group at C-9, seven methyl groups, and trisub-
stituted cyclopropyl ring system suggested that the major 
compound is a cyclopropyl group-containing 9-11 secos-
terol. These proton NMR data closely match those reported 
for secogorgosterol  (C30H50O3) in the literature (Enwall et al. 
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1972; Bonini et al. 1983; Capon and Faulkner 1985; Pika 
et al. 1992; Migliuolo et al. 1992; Pika and Andersen 1993; 
Lopp et al. 1994; He et al. 1995). The compound appeared 
to be unstable in storage at − 20 °C. High-resolution mass 
spectral analysis using ESI and DART methods of the stored 
compound 1.3.3.6.5 gave two strong peaks for molecular 
ion plus sodium at m/z 509.3637 and 513.3159 in addition 
to several minor peaks. ESI-HRMS gave the strongest peak 
at m/z 509.3637 for (M + Na)+ (calc’d for  C31H50O4Na, 
509.3606) suggesting a molecular formula of  C31H50O4 for 
the major component in the mixture.

Due to the small quantity of the compound, our analy-
ses were limited to mass spectrometry and proton NMR. 
Therefore, the tentative structure was determined using the 
high-resolution mass data and H-NMR data in  CDCl3. The 
H-NMR spectrum indicated the presence of four methyl sin-
glets: a high field singlet at δ0.67 assigned to C-18, a sec-
ond methyl singlet at δ0.87 assigned to C-30, a third methyl 
singlet at δ1.02 assigned to C-19 methyl, and its low field 
shift indicated the presence of a carbonyl group at adjacent 
C-9 position. The presence of a carbonyl group at position-9 
is characteristic for secosterols. The fourth methyl singlet 
at δ1.37 was assigned to the C-29 methyl. Its downfield 
shift suggested the presence of a hydroxy group attached to 
the same carbon atom C-25. The three methyl doublets at 
δ0.85 (J = 6.2 Hz), 0.92 (J = 6.8 Hz), 0.94 (J = 6.9 Hz) were 
assigned to positions C-21, C-27, and C-28. A multiplet 
at δ3.03 indicted the presence of the C-3 hydroxymethine 
proton. Similarly, the signals at δ3.73 (1H) and 3.88 (1H) 
showed the presence of the secosterol primary hydroxyl 
group at C-12. A single down field signal at δ5.47 (1H) was 
assigned to the C-6 olefinic proton. Further, the character-
istic three down field coupled multiplets at δ0.23 (1H), 0.48 
(1H), and − 0.13 (1H) indicated the presence of one cyclo-
propyl group likely attached to the C-22 and C-23 positions. 
These data suggested that the bioactive compound isolated 
was a 31-carbon 3, 12 dihydroxy 9-oxo 5-6-ene 22-23-cyclo-
propyl 9-11 secosterol (Supplementary Material 2). Addi-
tional carbon-13 and several 2D NMR data are required to 
confirm the complete stereochemical structure of this com-
pound. Instability of the compound and insufficient material 
prevented acquisition of these additional NMR data.

Discussion

Despite the increasing number of coral diseases recorded 
worldwide, only a few microorganisms have been identified 
as etiological agents with many more proposed as putative 
pathogens involved in the onset and/or progress of different 
diseases (Pollock et al. 2011; Sweet et al. 2012). Among 
the bacterial pathogens, V. coralliilyticus, which has been 
implicated in several diseases and syndromes affecting a 

wide range of scleractinian species as well as other marine 
invertebrates in the Indian, Atlantic, and Pacific oceans 
(Ben-Haim et al. 2003; Sussman et al. 2008; Ushijima et al. 
2014a), is one of the best characterized. Recent studies iden-
tified strains of V. coralliilyticus associated with virulent 
SCTLD lesions, suggesting that this organism may play an 
important role in this unprecedented threat to Caribbean 
scleractinians (Ushijima et al 2020; Huntley et al. 2022). As 
coral diseases, including SCTLD, continue to decimate scle-
ractinian populations on Florida and Caribbean coral reefs, 
the benthic assemblages of some reefs in these locations 
have shifted towards dominance of octocorals (Ruzicka et al. 
2013; Lenz et al. 2015), as these organisms do not appear 
to be affected by the majority of scleractinian coral diseases 
(Weil et al. 2016; Rioja-Nieto and Alvarez-Filip 2019).

Here, we demonstrated the presence of antimicrobial 
compounds in the organic extracts of four common Carib-
bean octocoral species, A. americana, E. flexuosa, G. ven-
talina, and P. homomalla, that inhibited the growth of eight 
strains of V. coralliilyticus isolated during previous studies 
of scleractinian coral diseases. These diseases included tis-
sue lysis in Pocillopora damicornis (Ben-Haim et al. 2003), 
white syndromes in the genera Acropora and Montipora 
(Ushijima et al. 2014a, b), and SCTLD (Ushijima et al. 
2020). Our results support the body of research on octo-
coral bioactive compounds (e.g., Puglisi et al. 2014; Cerri 
et al. 2022) although few prior studies evaluated their activ-
ity against marine bacteria (Kim 1994; Jensen et al. 1996). 
Interestingly, these earlier studies tested organic extracts 
from a variety of Caribbean octocorals, reporting that 
octocorals generally did not possess potent broad-spectrum 
bioactivity against opportunistic marine pathogens, although 
extracts from individual species, including A. americana, 
were able to inhibit the growth of several bacterial strains 
(Jensen et al. 1996). There are a number of possible expla-
nations for the discrepancies between our results and those 
of previous studies, including the type of bioassay proce-
dures employed, the identity of the test organisms used, 
or changes to the composition of the octocoral-associated 
microbial communities that may have occurred over time. 
Nevertheless, the antimicrobial activity of the octocoral nat-
ural products extracted from the four Caribbean octocoral 
species against the suite of V. coralliilyticus strains tested in 
this study may represent a mechanism to allow octocorals 
to avoid colonization by or control the proliferation of this 
opportunistic pathogen and may in part explain their success 
on Caribbean reefs.

Equally intriguing is the lack of bioactivity of the 
organic extracts from the four species of octocorals against 
the putative coral probiotic Pseudoalteromonas sp. McH1-
7. Studies showed that the application of this organism 
to SCTLD-affected scleractinian corals stopped or slowed 
the progression of disease both ex situ (Ushijima et al. 
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2023) and in early field tests (Meyer et al. 2019; Paul et al. 
2021). This lack of bioactivity against Pseudoalteromonas 
sp. McH1-7 may permit the expansion of current efforts 
to treat SCTLD, as the active components in the octoc-
oral-derived organic extracts could be used as probiotic 
adjuvants targeting opportunistic pathogens, such as V. 
coralliilyticus. V. coralliilyticus has been shown to co-
infect diseased scleractinian corals and increase the rate 
of tissue loss (Ushijima et al. 2020). Additional studies are 
warranted to assess the specificity of the bioactivity of the 
octocoral chemical extracts and/or purified active com-
pounds on the coral-associated microbial community, as 
negative impacts on beneficial community members may 
result in further damage to host health.

Although both polar and nonpolar fractions of the 
chemical extracts derived from A. americana demonstrated 
bioactivity against the V. coralliilyticus strains tested, the 
compounds obtained from nonpolar fractions created 
clearer zones of inhibition on pathogen lawns. Similarly, 
Kim (1994) reported that polar fractions obtained from 
eight octocorals were less effective than nonpolar fractions 
against six bacterial species. Interestingly, all fractions 
analyzed showed some level of inhibition against V. cor-
alliilyticus strains OfT6-21 and Cn52H-1, suggesting the 
presence of multiple bioactive compounds across a wide 
range of polarity. Our results support other studies that 
found the genus Antillogorgia to be one of the most highly 
chemically defended Caribbean octocorals (Pawlik et al. 
1987; Fenical et al. 1987; Harvell et al. 1988; O’Neal and 
Pawlik 2002; Epifanio et al. 2007; Berrue and Kerr 2009).

The bioactivity of nonpolar EtOAc fractions of A. amer-
icana that consistently demonstrated bioactivity against 
V. coralliilyticus strains became the focus for compound 
structure elucidation. HPLC separations and NMR analy-
ses revealed the presence of secosterols, natural products 
that have been previously found in octocorals (e.g., Ciere-
szko et al. 1989; Epifanio et al. 2007; Sarma et al. 2009; 
Marrero et al. 2010; Rocha et al. 2011). Our proton NMR 
spectra were similar to the proton NMR spectra reported 
for secogorgosterol and suggested that the major bioac-
tive compound is a cyclopropyl group-containing 9-11 
secosterol. Although A. americana is known to produce 
several 9-11 secosterols (Enwall et al. 1972; Musmar and 
Weinheimern 1990; He et al. 1995, 2017; Naz et al. 2000; 
Sica and Musumeci 2004; Epifanio et al. 2007), the study 
on the potential ecological functions of these compounds 
remains still relatively unexplored. One study conducted 
by Epifanio et al. (2007) identified two secosterols (9-11 
secogorgosterol and 9-11 secodinosterol) from Bahamian 
A. americana colonies that deterred fish feeding activity 
both in aquaria and in situ, suggesting that these molecules 
provide chemical defense against predation.

Because octocoral holobionts were used for chemical 
extractions, the origin of the natural products encountered 
could not be elucidated (e.g., produced by the host octo-
coral, by members of its associated microbial community 
including Symbiodiniaceae, or by an interaction between 
holobiont members). Culture experiments have shown that 
the dinoflagellates living in octocoral tissues have the ability 
to produce gorgosterol and dinosterol (Withers et al. 1982; 
Ciereszko 1989), while Kerr et al. (1996) experimentally 
showed that radiolabeled gorgosterol was transformed into 
9-11 secogorgosterol by an enzyme extract of A. americana. 
Accordingly, Epifanio et al. (2007) suggested that antipreda-
tory secosterols in A. americana were dinoflagellate-pro-
duced prior to subsequent oxidation by the octocoral host to 
form C-ring-seco-sterols. Further studies are warranted to 
determine the origin and biosynthetic pathway of the bioac-
tive compounds in our study.

Despite the extensive body of the literature regarding 
octocoral-derived chemical compounds and their pharma-
ceutical properties, their potential bioactivity against marine 
pathogens remains surprisingly unexplored. To the best of 
our knowledge, this study is the first to investigate the activ-
ity of octocoral-derived natural products against a suite of 
pathogenic V. coralliilyticus strains and provides a baseline 
for additional research. The results generated information 
that might explain the apparent resistance of octocorals to 
many scleractinian coral diseases and provide insights into 
the success of these organisms within the benthic communi-
ties of Caribbean and Mesoamerican reefs.
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