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Introduction

Historical analysis of coral reef communities can provide 
insights into ecological dynamics that span human time-
scales (Pandolfi 2011) and can help alleviate the shifting 
baseline syndrome (Pauly 1995). Paleontological data, from 
coring efforts and studies of exposed facies, have revealed 
community structure and stability for millennia prior to 
rapid change over the last half century (McCulloch et al. 
2003; Aronson et al. 2004). In many cases, this recent and 
rapid shift in the ecological state of corals reefs has resulted 
from the increased human influence on the environment 
(Jackson 1997).

Push-coring through unconsolidated coral reef framework 
is a popular method to obtain Holocene reef fossils given its 
wide applicability, efficiency, and low environmental impact 
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(Dardeau et al. 2000; Aronson et al. 2002). Yet, unconsoli-
dated reef matrices are scare on many carbonate islands. For 
instance, although corals are abundant on the nearshore reefs 
of Guam, the largest island in Micronesia, the local geology 
consists mainly of basement rock covered with a thin layer 
(< 0.5 m) of marine sediment. Moreover, there are no known 
raised or inundated fossil reefs from previous sea-level high 
stands, making the Holocene history of Guam’s coral reefs 
challenging to study.

However, in several locations the Pliocene–Pleistocene 
basement limestone features karst dissolution caves, or 
“coral holes,” which formed during previous glacial maxi-
mums. These coral holes, which occur behind the reef crest, 
can be discerned in satellite images by their discrete shapes 
and lighter colorations among patches of coral and hard bot-
tom (Fig. 1; Burdick 2005). Since these holes trap sediment, 
live coral, and rubble from the surrounding reef, they might 
offer a way to reconstruct reef community histories in this 
region.

Included within these reef sediments are assemblages of 
symbiont-bearing foraminifera. Many species are sensitive 
to nutrient loading (Hallock 1981, 2000; Zamora-Duran 
et al. 2020), making foraminifera useful proxies of envi-
ronmental change associated with nutrient pollution (Bar-
mawidjaja et al. 1995; Carnahan et al. 2009). This idea has 

been applied to coral reef studies with the establishment of 
the FORAM Index (Hallock et al. 2003), which quantifies 
reef viability based on the relative abundances of different 
foraminifera groups. According to this index, areas that sup-
port the healthiest reefs are characterized by having a large 
abundance of photosymbiotic foraminifera, which thrive in 
oligotrophic waters.

Like other reefs in the North Pacific, the vitality of 
Guam’s coral reefs has been declining over the last 40 years 
(Burdick et al. 2008; Andrew et al. 2011), though the full 
extent of loss is difficult to establish without a pre-anthro-
pogenic baseline. Recent threats to reefs include declining 
water quality from development, jungle burning-induced 
sedimentation (Wolanski et al. 2003; Williams et al. 2015), 
sewage outflow from inadequate treatment plants (Red-
ding et al. 2013; Pinkerton et al. 2015; Duprey et al. 2017), 
increased outbreaks of coral predators such crown-of-thorns 
sea star Acanthaster planci (COTS; Colgan 1987), overfish-
ing (Houk et al. 2012; Bejarano et al. 2013), and coral dis-
eases (Redding et al. 2013). Additionally, Guam’s reefs have 
not escaped global threats such as climate change and ther-
mal bleaching. Between 2013 and 2017, bleaching events 
led to the loss of approximately 30–60% of coral cover on 
reefs around the island (Raymundo et al. 2019). Acropora 
spp. were particularly impacted, with a documented loss of 

Fig. 1   Study area, Guam. A 
Location of West Hagåtña 
(Agaña) Bay and the coral hole 
cored (red oval). B Location 
of Shark’s Hole, another coral 
hole cored and referenced in the 
manuscript, although data not 
presented. Panel B was included 
to show the distinction in the 
coral holes from the surround-
ing reef framework via satellite 
imagery. Imagery obtained from 
Google Earth Pro on August 
30, 2023
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over 36% due to their highly sensitive biology (Raymundo 
et al. 2019), a collapse mirrored on a global scale (Renema 
et al. 2016). Though these threats reduced coral cover, less 
is known about changes in community structure, particularly 
over the Guam’s longer-term history.

Here, we present the first known historical record of coral 
biodiversity in Guam over the last two hundred and eighty 
years. We employ a sediment push-coring method to col-
lect coral sub-fossil data from karst-formed coral holes. We 
also present a record of changes in relative abundance of 
Baculogypsina sphaerulata, a photosymbiotic foraminifer 
that thrives in oligotrophic waters, as a proxy for water clar-
ity. This study offers a proof-of-concept for documenting 
historical changes in coral diversity on reefs that lack sig-
nificant reef matrix substrate.

Materials and methods

Guam is the southernmost island of the Mariana Islands 
chain, located in the Micronesia sub-region of Oceania 
in the western Pacific. Manual push-cores (n = 3) were 
taken from a coral hole (approx. 20 × 40  m wide and 
0.5 m below the height of the surrounding reef) located in 
West Hagåtña (Agaña) Bay (13.48244 N, 144.7463 E) on the 
western coast of Guam (Fig. 1; Burdick 2005). Cores (AG-
1, AG-2 and AG-3) were taken at 5 m intervals across the 
hole using an open-barrel coring technique (Dardeau et al. 
2000; Aronson et al. 2002). A galvanized steel tube (2.5 m 
length × 6.35 cm diameter) was driven into the coral hole, 
capped at the top, extracted from the sediment and rubble 
matrix, and immediately capped at the bottom to retain the 
internal sediment structure. Cores were then extruded into 
5 cm segments at the University of Guam’s marine labora-
tory. Sediment samples were dried at 80 °C and weighed to 
determine dry weight per core segment. Each segment was 
sifted using an 8000, 1000, and 500 µm mesh soil sifters. 
Coral fragments from the > 8000 µm fraction were identi-
fied to family and all coral materials from the > 1000 µm 
fraction were weighed to determine total coral abundance 
per 5 cm segment. Corals were identified using a published 
coral atlas (Veron 2000), compared to field photographs of 
coral from Guam, or referred to coral taxonomists expert 
in the regional fauna. Foraminifera counts were made from 
4 g subsamples of the same core segments that corals were 
analyzed, using a sediment splitter from the > 500 µm frac-
tion of AG-1 and AG-2 cores. Each sample was washed with 
deionized water over a 63-μm sieve, air-dried on filter paper, 
and then counted in triplicate.

For a given segment, fragments from each coral fam-
ily were weighed, converted to proportional abundance to 
assess community composition of the surrounding reef, and 
total coral weight was calculated. Coral fragments from the 

deepest segment of all cores and one sample from the middle 
segment of AG-2 and AG-3 were radiocarbon-dated at the 
National Ocean Sciences Accelerator Mass Spectrometry 
Facility at Woods Hole Oceanographic Institution (Mas-
sachusetts, USA). Coral fragments chosen for radiocarbon 
dating were well-preserved and showed no signs of diagen-
esis externally (i.e., severe encrustation, pitting, biotic bor-
ing, abiotic weather) or when cut-open. The top segment of 
each core was assumed to correspond to the collection year 
(2015) since cores were taken through recently fragmented, 
yet living coral rubble found at the top of the coral hole.

Radiocarbon ages were calibrated using the Marine20 
curve (Heaton et al. 2020), and age–depth models were 
calculated using Bayesian modeling in OxCal version 4.4 
(Ramsey 2009). The ΔR value used to calibrate coral sam-
ples was − 141 ± 50 (Southon et al. 2002), retrieved from 
CALIB (calib.org). The additional ΔR (− 14 ± 50) reported 
for Guam was not included for analysis because it was sam-
pled from a mobile marine gastropod (Gibberulus gibberu-
lus: Linnaeus, 1758) with a different life history than a ses-
sile coral, meaning its carbon assimilation sources would 
be different. Additionally, the gastropod’s ΔR was an order 
of magnitude different than the next eight closest available 
ΔR dates for the region. A P_sequence model was used in 
OxCal with a variable k-value (Ramsey and Lee 2013). This 
model allowed for the incorporation of depth and sequence 
data (P_sequence) from our cores and accounted for variable 
sedimentation rates (variable k-values). Ages are reported in 
both calibrated years before present (cal. BP) and calendar 
years CE.

Total percent coral abundances (g), coral community 
composition (relative abundance by family), and foraminif-
era abundances (per 4 g sub-sample, corrected by the time 
each 5 cm segment encompasses) were analyzed against 
core segment age to determine temporal variation. Then, 
z-scores were calculated to compare total coral abundance 
and foraminifera abundance to allow for comparative analy-
sis. Z-score data were combined by time, and a nonpara-
metric Loess smooth curve was fit to identify composition 
trends using the ggplot2 package and geom_smooth function 
(Wickham 2016). The span chosen for corals and foraminif-
era (0.55, 0.60, respectively) for the LOESS smooth function 
that generated the least error was determined by generalized 
cross validation (Takezawa 2005). Analyses were performed 
in RStudio, version 2022.02.3 (R Core Team 2022).

Results and discussion

All cores contained coral fragments in most segments, 
embedded within a gravelly, muddy matrix. On average, each 
5 cm layer contained 40.5 ± 37.8 g of coral and accounted 
for 20.7 ± 17.9% of total fragment weight. Baculogypsina 
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sphaerulata was the dominant foraminifera species found 
in all cores. Acropora spp. fragments from bottom segments 
of the three cores dated to approximately 104, 143, 221 cal. 
BP, or 1848, 1807, and 1729 CE (Table 1).

Taxonomically, 99% of coral fragments from the cores 
belonged to four families: Acroporidae, Pocilloporidae, 
Faviidae, and Poritidae. Acroporidae was the most abun-
dant coral family in cores AG-1 and AG-3 for ~ 200-years; 
whereas, Pocilloporidae was most abundant in core AG-2. 
In all cores, Pocilloporidae abundance was variable and was 
often inversely related to Acroporidae. Over the last 50 years 
in AG-1 and AG-2 Pocilloporidae and/or Poritidae increased 
in relative dominance (Fig. 2). This shift is consistent with 
community patterns documented elsewhere (Greenstein 
et al. 1998), including in Guam (Raymundo et al. 2019; 
Greene et al. 2020). One possible explanation for this pat-
tern of decreasing Acroporid abundance is their life-history 
strategy. Acroporids tend to be highly competitive and fast 
growing, making them prominent reef developers; how-
ever, they are also highly sensitive to environmental change 
(Darling et al. 2012) which has led to their recent global 

decline (Renema et al. 2016; Cramer et al. 2020; Cybulski 
et al. 2020). The compiled core record (Figs. 1 and 2) could 
be documenting the decline of sensitive coral groups such 
as Acroporids, previously seen in nearby Guamanian reefs 
from COTS outbreaks (Colgan 1987) and bleaching (Ray-
mundo et al. 2019). Alternatively, some of the variability in 
coral relative abundance (Fig. 1) could be a result of how 
the coral rubble is deposited in the coral hole. Deposition of 
coral sub-fossils into coral holes is likely less uniform than 
the accumulation of reef matrix layers, the typical substrate 
sampled using push-cores. However, even if this pattern is 
taphonomic and driven by variable sedimentation, it is still 
indicative of changes in environmental conditions that led 
to decreased instances of Acroporid deposition.

Starting at approximately 1865 CE, we documented a 
sharp decline in B. sphaerulata z-scores (Fig. 3). Such a 
severe decline, with a lag in coral abundance and taxo-
nomic changes (Figs. 2 and 3) suggests one or multiple 
stressors that impacted each taxon differently. The drop 
in B. sphaerulata could be linked to a loss of habitat, or 
water clarity declines driven by increased nutrients and/or 

Table 1   Radiocarbon results 
from AMS radiocarbon dating 
at Woods Hole Oceanographic 
Institution (Massachusetts, 
USA). Median calibrated ages 
were then converted to calendar 
years CE for plotting

Core Depth (cm) F-modern 14C Age 14C error Δ14C Calibrated 
age, BP

Calendar 
year, CE

1σ error

AG-1 105 0.95650 355 15 − 50.94 143 1807 42
AG-2 120 0.96030 325 15 − 47.21 104 1848 48
AG-2 60 0.97560 200 20 − 32.09 21 1929 23
AG-3 60 0.93140 570 15 − 75.85 221 1729 80
AG-3 30 0.98140 150 15 − 26.26 54 1896 35
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sedimentation (Hallock 1981, 2000). Storm-related deteri-
orations to suitable habitat for B. sphaerulata, followed by 
the additional anthropogenic stressors from human devel-
opment could be one explanation to the decline and subse-
quent stagnation of our foraminifera record. For example, 
although the timing based on our current age model is 
not exact a possible cause in abundance declines could 
have been two severe storms that were documented on the 
island in 1848 and 1849 CE (Carano 1964). The fact that 
the foraminifera abundance remains low after the storm 
events with no recovery suggests that this decline was not 
due to the storms directly, or at least not the storms alone. 
The arrival of the US Navy in 1899 CE increased the pop-
ulation fivefold from ~ 10,000 to ~ 50,000 in 50 years. This 
sparked coastal development around nearby Hagåtña—
the original capital (Bayman and Peterson 2016), likely 

deteriorating water quality and clarity. This would have 
been detrimental to B. sphaerulata recovery.

The gradual decrease in coral abundance might indicate 
initial resilience to factors that caused the severe B. sphaeru-
lata decline. However, sediment loading and added nutrients 
often associated with terrestrial runoff from coastal devel-
opment (Fabricius 2005) as well as repeated intense storms 
between 1900 and 1965 CE (Scoffin 1993) could have been 
what caused the more drastic coral declines starting around 
1915 CE (Fig. 3). Similar impacts from acute storm events 
and increased population and development resulted in wide-
spread Acropora mortality on the inshore Great Barrier Reef 
(Roff et al. 2013).

Alternatively, it is possible that our abundance declines 
are not environmental or anthropogenic, but either tapho-
nomic or an artifact of age model uncertainty. These holes 

Fig. 3   Core summaries. A Total percent weight of coral fragments in 
the > 1000 µm sieve fraction, by core; and B average Baculogypsina 
sphaerulata counts by 4  g sediment sample, corrected by time by 
dividing the total number by the years represented in the 5 cm core 
segment. All data were fitted with a LOESS smooth with a span of 
0.95. Panel C shows both data sets converted to z-scores, and then 

LOESS smoothed separately with a span of 0.55 and 0.60 chosen for 
corals and B. sphaerulata,, respectively. Significant events in Guam’s 
history are highlighted by arrows. “Severe Storms” are those labeled 
as such and documented to have caused extreme damage and loss of 
life in Carano and Sanchez (1964)
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could have rapidly filled after Holocene sea-level rise, 
resulting in repeated replacement and time-averaging of its 
top portion. However, because of the linear age progres-
sion of the dates, this is unlikely. A more parsimonious 
interpretation is that the coral reef accreted enough around 
the hole to create more headspace for debris accumula-
tion. Additionally, the wide variation in our dates (between 
± 23 and 80 years) makes associating specific events to 
declines in corals and foraminifera difficult. Additional 
coring and dating are needed to strengthen links between 
environmental and biotic changes.

Regardless, our top and bottom dates offer a snapshot 
of past coral communities and foraminifera assemblages 
in Guam for over 280 years. We show clear declines in 
both foraminifera and coral abundances, although timings 
of these declines vary, and the direct causes are unclear. 
This method could be expanded to other known coral holes 
around Guam such as Shark’s Hole (Fig. 1; 13.558630 N, 
144.815933 E, approx. 145 × 45 m wide) and Agat Bay 
(13.372192 N, 144.647095 E approx. 80 × 40 m wide; 
Burdick 2005) which are known to accumulate coral frag-
ments, or other Pleistocene karst-formed reef islands that 
are difficult to core such as Okinawa or Dongsha Atoll.
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