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in the bleached coral tissue. Presumably, microbial func-
tion based on the taxonomic compositions was accordingly 
changed in coral tissue, but not in the mucus layer, when 
the coral bleached. This study suggests that both rRNA- and 
rDNA-based methods for bacterial community analysis are 
fit for evaluating P. damicornis health implications. Further-
more, the results of this study demonstrate the differential 
responses of mucus- and tissue-associated bacterial com-
munities to coral bleaching.
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Introduction

The coral-associated bacteria community includes endos-
ymbiotic, symbiotic, and loosely associated partners (Ains-
worth et al. 2015). They are distributed among several ana-
tomical compartments, including the skeleton, polyp tissue, 
and external surface mucopolysaccharide layer (Bourne and 
Munn 2005; Brown and Bythell 2005; Sweet et al. 2011; 
Krediet et al. 2013; Ainsworth et al. 2015). These three 
compartments within a coral colony (i.e., mucus, tissue, and 
skeleton) are colonized by distinct bacterial communities, 
as shown by using 16S rRNA gene profiling (Rohwer et al. 
2002; Sweet et al. 2011; Bourne et al. 2013; Li et al. 2014). 
Coral-associated bacteria have important functions in car-
bon (Brown and Bythell 2005; Littman et al. 2009; Thurber 
et al. 2009; Kimes et al. 2010; Webster and Thomas 2016), 
nitrogen (Lema et al. 2012, 2014; Sharp et al. 2012), and 
sulfur (Raina et al. 2010, 2016; Garren et al. 2014) cycling.

Coral bleaching, the disruption of the symbiotic rela-
tionship between corals and their photosynthetic algae, can 
lead to coral morbidity and mortality and has substantially 
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decimated coral reefs worldwide (Heron et al. 2016; Oliver 
et al. 2018). In addition to the loss of symbiotic Sym-
biodiniaceae, the overall composition of coral-associated 
bacterial communities changes when coral bleaches (Ains-
worth and Hoegh-Guldberg 2009; Lee et al. 2015; Hadaidi 
et al. 2017). The abundance of potential pathogens was 
found to increase in bleached coral mucus (Nguyen-Kim 
et al. 2015) and tissue (Li et al. 2021). Several bacterial 
taxa, such as Sphingomonadaceae, Flavobacteriaceae, and 
Rhodobacteraceae, were more abundant in bleached coral 
(Goyen et al. 2019; Botté et al. 2022; Li et al. 2021). There 
is a consensus that the bacterial communities in coral tis-
sues change during bleaching (Pantos et al. 2003; Bourne 
and Munn 2005; Bourne et al. 2008; Gardner et al. 2019; 
Li et al. 2021), although there is some argument about 
changes in coral mucus communities (Lee et al. 2015; 
Nguyen-Kim et al. 2015; Hadaidi et al. 2017).

The microniche-specific bacterial community might be 
attributed to the unique set of physicochemical proper-
ties of these microhabitats (Sweet et al. 2011; Engelen 
et al. 2018). Owing to the extreme diurnal variation of 
oxygen saturation levels (from supersaturated to nearly 
anoxic) (Shashar et al. 1996) and exuded organic carbon 
in dissolved form which creates a nutrient-rich medium, 
Proteobacteria (mostly Alpha- and Gamma proteobacte-
ria) and Bacteroidetes were found to be enriched in coral 
mucus (Sweet et al. 2011; Lee et al. 2015; Marchioro et al. 
2020). These mucus-associated bacterial communities 
showed host specificity (Sweet et al. 2011; Li et al. 2014; 
Marchioro et al. 2020). In contrast to those in the mucus 
layer, bacterial communities in the coral tissue are embed-
ded within a relatively stable microenvironment (Bourne 
and Munn 2005; Sweet et al. 2011; Lee et al. 2015). Pre-
vious studies have revealed that bacterial communities 
associated with coral tissues, such as Porites astreoides, 
Acropora muricata, and Pocillopora damicornis, were 
mostly comprised of members belonging to the phyla Pro-
teobacteria and Actinobacteria (Klaus et al. 2005; Sweet 
et al. 2011; Krediet et al. 2013; Ainsworth et al. 2015). 
Additionally, Endozoicomonas (Gammaproteobacteria) is 
abundant and often considered a potential endosymbiont 
in corals for example, Acropora hemprichii and Pocillo-
pora damicornis (Neave et al. 2016, 2017; Li et al. 2021). 
Similar to those in the coral mucus, the tissue-associated 
bacterial communities also show host specificity (Rohwer 
et al. 2002; Daniels et al. 2011; Li et al. 2014; Lee et al. 
2015; Neave et al. 2017). Owing to the apparent differ-
ences in bacterial communities associated with different 
coral compartments, it is important to consider compart-
ments when investigating the relationship between bacte-
rial symbionts and coral health (Rosenberg et al. 2007; 
Bourne et al. 2008; Ainsworth et al. 2010; Garren et al. 
2014). However, the bleaching responses of microbial 

communities associated with different coral compartments 
have seldom been directly compared (Lee et al. 2015).

DNA-based high-throughput sequencing is the most 
widely used method for investigating microbial communi-
ties (Ward et al. 1990; Herlemann et al. 2011; Bourne et al. 
2013; Li et al. 2014) that provides information regarding 
the total microbial community, including active, moribund, 
encysted, and metabolically inactive members, as well as 
nonliving genetic material (Hu et al. 2016). As RNA is 
more susceptible to degradation than DNA (Egge et al. 
2015), RNA-based analysis (mainly using a complemen-
tary DNA sequence library) provides information regarding 
active members (Hu et al. 2016; Tian and Li 2017; Ziegler 
et al. 2017). From this perspective, RNA-based sequenc-
ing may be better than DNA-based methods for evaluating 
the responses of a microbial community to environmental 
perturbations (Terrado et al. 2011; Egge et al. 2015). Previ-
ous studies targeting both 16S rRNA and rDNA have shown 
significant differences between the active and the total bac-
terial communities in various habitats, including seawater 
(Wang et al. 2019), sea ice (Stecher et al. 2016), atmosphere 
(Klein et al. 2016), benthic biofilms in streams (Wilhelm 
et al. 2014), and mosses (Tian and Li 2017). Until now, 
coral-associated bacterial communities have mainly been 
characterized using DNA-based sequencing (Sweet et al. 
2011; Li et al. 2014, 2021; Hadaidi et al. 2017). Although 
RNA-based 16S rRNA gene sequencing has been used by 
Ziegler et al. (2017), there have been few direct comparisons 
between coral-associated bacterial communities revealed by 
DNA- versus RNA-based sequencing. Therefore, we do not 
know whether the results of these two distinct methods must 
be interpreted differently.

In this study, we investigated the compositions and poten-
tial functions of bacterial communities in the tissues and 
mucus of healthy and bleached corals via DNA- and RNA-
based 16S rRNA gene sequencing. Our aims were to (1) 
determine whether the bacterial communities revealed by 
DNA- and RNA-based 16S rRNA gene sequencing are dif-
ferent, (2) characterize the bacterial communities in different 
compartments of healthy and bleached corals, and (3) deter-
mine whether the bacterial community changes differently 
in the coral tissue and mucus layer under different health 
conditions.

Materials and methods

Coral sample collection

Coral Pocillopora damicornis samples were collected at 
a depth of 3–5 m in October 2014 in the Luhuitou Reef 
(109°47′ E, 18°19′ N) area, Sanya. Hammers and chisels 
were used to collect fragments (approximately 10  cm3) from 
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three healthy and three partially bleached coral colonies in 
the same area with a distance of 0.5 m between colonies. 
One fragment was cut from each healthy coral colony, and 
one bleached fragment was cut from each partially bleached 
colony. These fragments were separately placed in sterile 
sampling bags, kept in a low-temperature storage box, and 
then sent to the laboratory within 20 min. In the laboratory, 
corals were rinsed with 0.2-μm-filtered (Merck Millipore, 
Burlington, MA, USA) autoclaved seawater to clean surfaces 
and remove loosely bound bacteria. A 700-μL mucus sam-
ple was extracted from each fragment with a 1-mL sterile 
syringe and then diluted with 100 mL sterile seawater before 
being filtered through a 0.2-μm membrane. The filter mem-
brane was stored in a 2-mL frozen storage tube (Corning, 
Corning, NY, USA), immediately frozen with liquid nitro-
gen, and stored in a freezer at − 80 °C. The coral fragment 
was cut into small sections, placed in a sterilized centrifuge 
tube, and then immediately frozen with liquid nitrogen and 
stored at − 80 °C.

DNA and RNA extraction

DNA and RNA were extracted simultaneously from each 
sample using an All Prep DNA/RNA Universal Kit (Qia-
gen, Dusseldorf, Germany). For the mucus sample, the filter 
membrane was cut into pieces and used for DNA and RNA 
extraction (Frias-Lopez et al. 2002; Weinbauer et al. 2002). 
Coral tissue was removed from the fragment using a sterile 
syringe with sterile deionized water; the tissue suspension 
was then centrifuged at 13,000 × g for 5 min, and the cell 
pellet was subsequently collected. The membranes and cell 
pellets were transferred into 1.5 mL centrifuge tubes contain-
ing 600 μL Buffer RLT Plus. The tubes were placed on the 
Vortex Genie2 (Mo Bio, Carlsbad, CA, USA) and vortexed 
at maximum speed for 10 min, before being centrifuged at 
18,000 × g for 3 min. After transferring the supernatant into 
the filter column provided by the kit, the DNA and RNA 
were extracted stepwise according to the manufacturer’s 
instructions. All RNA samples were purified using RNase-
Free DNase Set (Qiagen) according to the manufacturer’s 
instructions. After purification, all samples were investigated 
using PCR with the primers 27F and 1492R (Lane 1991) 
targeting the bacterial 16S rRNA genes. Fifty microliter of 
PCR reaction mix was run in triplicate per sample using 
multiplex PCR master mix (Takara, Kyoto, Japan), with a 
200 ng template and final primer concentration of 0.2 μM. 
PCR cycling conditions were 95 °C for 5 min, followed by 
30 cycles of 95 °C for 30 s, 54 °C for 45 s and 72 °C for 90 s, 
with a final extension time of 5 min. PCR products were run 
on a 1% ultra -pure agarose gel, and negative amplification 
indicated that the DNA was removed in the template, i.e., 
there was no DNA in the RNA samples.

PCR amplification and sequencing

Reverse transcription of the total RNA was carried out 
according to the protocol of the Promega GoScript Reverse 
Transcription System (Promega, Madison, WI, USA). All 
cDNA and DNA were amplified using the primers 341F and 
805R (Herlemann et al. 2011) targeting the V3-V4 hyper-
variable regions. MiSeq indexing adaptors were added via 
PCR according to the Illumina 16S metagenomic sequencing 
library preparation protocol. 50 μL of the PCR reaction mix 
was run in triplicate per sample using multiplex PCR master 
mix, with 200 ng DNA or cDNA template and a final primer 
concentration of 0.2 μM. PCR cycling conditions were 95 °C 
for 5 min, followed by 35 cycles of 95 °C for 30 s, 55 °C 
for 30 s and 72 °C for 30 s, with a final extension time of 
5 min. Triplicate PCR products were pooled, run on a 2% 
ultra-pure agarose gel, and purified using a QIAquick Gel 
Extraction Kit (Qiagen). Sequencing was performed on an 
Illumina MiSeq platform with 2 × 300 bp paired-end reads.

Sequence processing

The 16S rRNA gene sequences were processed using the 
QIIME 2 Pipeline version 2020.02 (Bolyen et al. 2019). The 
Demux plugin (Bolyen et al. 2019) was used to visualize 
the interactive quality plots and to proofread quality. The 
DADA2 plugin (Callahan et al. 2016) was then applied to 
remove primers, truncate poor-quality fragments, derepli-
cate, identify chimeras, and merge paired-end reads. Tax-
onomy was assigned to Amplicon Sequence Variants (ASVs) 
using the q2-feature-classifier (Bokulich et al. 2018) which 
employs the classify-sklearn naïve Bayes taxonomy classi-
fier against the SILVA 132 99% OTUs reference sequences 
(Quast et al. 2012). After clustering the ASVs, the metagen-
omic functional content was predicted using Phylogenetic 
Investigation of Communities by Reconstruction of Unob-
served States (PICRUSt) (Langille et al. 2013) for each 
DNA and cDNA library. The “Picrust2_pipeline.py” com-
mand was used to predict functions and annotate KO abun-
dances. The command “add_comm.py” was used to anno-
tate KO information. The Kyoto Encyclopedia of Genes and 
Genomes (KEGG) results were generated using the com-
mands “pathway_pipeline.py” and “add_merchant.py”. For 
quality control, the Nearest Sequenced Index (weighted 
NSTI) was calculated for each sample. The results were 
in a satisfactory range for metagenomic predictions (mean 
NSTI = 0.17 ± 0.12 s.d.) (Langille et al. 2013).

Statistical analyses

ASVs with relative abundances less than 0.005% were 
removed (Bokulich et al. 2013). The communities were 
compared based on the Aitchison distances among the 
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samples. Briefly, the ASV and KEGG pathway abundance 
matrices were represented by centered log-ratio (CLR)-
transformed (zero value abundance with plus one process-
ing), and the R language (version 3.6.1) “robcomposition” 
package (version 2.2.1) (Templ et al. 2011) was used to 
calculate the Aitchison distance between each pair of sam-
ples. The similarity between the DNA and cDNA libraries 
of the same sample was defined as 1 minus the Aitchison 
distance between them. According to the distance matrix, 
principal coordinates analysis (PCoA) was performed to 
show the differences among the samples, and non paramet-
ric multivariate analysis of variance (PERMANOVA) was 
used to analyze the significance of the differences. PCoA 
and PERMANOVA were performed using the vegan pack-
age (version 2.5–6) in R. As the bacterial communities 
revealed by DNA and cDNA libraries within each sample 
were highly similar, the samples were grouped by com-
partment and health status (without considering the factor 
DNA versus cDNA library) for PCoA and PERMANOVA.

The ALDeX2 package (version 1.18.0) (Fernandes et al. 
2013) in R language was used to identify the differen-
tial ASVs and KEGG pathways based on the abundance 
matrix of ASVs and the functional genes, respectively. 
The differential ASVs and KEGG pathways between the 
DNA and cDNA libraries within each category of coral 
samples were identified. Differentials were also identified 
among coral sample categories to address the factors of 
coral compartment and health status (combining DNA and 
cDNA libraries within each coral sample). After CLR-
transformation of the abundance matrix with the “aldex.
clr” function, the significance of each factor was tested 
using the “aldex.kw” function. Regression fitting and the 
Benjamini–Hochberg corrected p-value variables were 
used by default in this analysis.

Results

Compositions of the coral‑associated bacterial 
communities

After quality control and removal of contaminated 
sequences, 435,603 sequences were retained from 24 librar-
ies (12 cDNA and 12 DNA libraries) and 946 ASVs were 
yielded. All sequences were classified into 22 bacterial phyla 
or classes (Fig. 1), and 1.27% of all ASVs were unclassified. 
Gammaproteobacteria were predominant in healthy coral 
mucus (relative abundances 94–99%) and tissue (62–99%), 
except for one cDNA library of a tissue sample (2C), in 
which Alphaproteobacteria were dominant (54%). Gam-
maproteobacteria remained dominant in bleached coral 
mucus (83–95%), whereas Chloroflexi (30–46%), Alphapro-
teobacteria (4–13%), Acidobacteria (4–6%), and Actinobac-
teria (3–7%) were abundant in bleached coral tissue, except 
in the DNA (B2) and cDNA (B2C) libraries of the same 
tissue sample in which Gammaproteobacteria was a major 
group (98% and 96%, respectively).

The similarities (defined as one minus the Aitchison 
distance) between bacterial communities of the same coral 
sample revealed by the cDNA and DNA libraries were ˃89%, 
with 89–96% in healthy coral tissue, 93–95% in healthy 
coral mucus, 92–93% in bleached coral tissue, and 92–93% 
in bleached coral mucus (Figs. 1 and 2a). Additionally, the 
results of differential ASV analysis showed that only three 
ASVs were detected in the DNA and cDNA libraries of 
healthy coral mucus: a Gammaproteobacteria was enriched 
in the DNA libraries, whereas a Marinobacterium sp. and 
Alteromonas sp. were enriched in the cDNA libraries. No 
differential ASVs were observed in other comparisons 
between DNA and cDNA libraries. Moreover, the poten-
tial functional compositions predicted from the taxonomic 

Fig. 1  Bacterial commu-
nity composition in the coral 
samples. 1, 2, and 3 represent 
DNA libraries; 1C, 2C, and 3C 
represent cDNA libraries
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compositions did not show a significant difference between 
the DNA and cDNA libraries of the same coral samples.

Distinct bacterial communities associated with coral 
mucus and tissue

Bacterial communities were distinct in mucus and tis-
sue, both for the healthy (PERMANOVA, R2 = 0.550, 
F = 12.247, p < 0.01) and bleached (PERMANOVA, 
R2 = 0.492, F = 9.684, p < 0.01) corals (Fig. 2a). Addition-
ally, bacterial community functions were significantly dif-
ferent between the tissue and mucus of the healthy (PER-
MANOVA, R2 = 0.350, F = 5.380, p < 0.01) and bleached 
(PERMANOVA, R2 = 0.361, F = 5.660, p < 0.01) corals 
(Fig. 2b).

Furthermore, we defined significantly enriched (i.e., 
more abundant) or reduced (i.e., less abundant) ASVs 
using a corrected threshold of significance (p < 0.05; 
Fig.  3). In comparisons between healthy coral tissue 

and mucus, ASVs belonging to Marinobacterium, Alte-
romonadaceae, Rhodobacteraceae, Saccharospirillaceae, 
Bermanella, Litoricola, and Vibrio were enriched in the 
mucus layer, whereas three Endozoicomonas ASVs were 
enriched in the tissue. In bleached coral, ASVs affiliated 
to Marinobacterium, Alteromonadaceae, Bermanella, 
Saccharospirillaceae, Litoricola and Vibrio were mainly 
enriched in the mucus compared with that in the tissues 
(Fig. 3).

Analysis of the relative abundances of functional genes 
involved in different KEGG pathways revealed significantly 
altered pathways. These were identified using ALDeX2 with 
a corrected threshold of significance (p < 0.05; Supplemen-
tary Fig. 1). Between healthy coral tissues and mucus, a 
total of 19 pathways were significantly different. Among 
them, functional genes involved in chlorocyclohexane and 
chlorobenzene degradation, bacterial chemotaxis, flagel-
lar assembly, and D-arginine and D-ornithine metabolism 
were enriched in mucus, with > twofold higher relative 
abundances compared with tissue (Supplementary Fig. 1a). 
Between bleached coral tissue and mucus, a total of 34 path-
ways differed significantly. Among them, functional genes 
involved in glycosaminoglycan degradation, and chlorocy-
clonhexane and chlorobenzene degradation were enriched in 
mucus, with > threefold higher relative abundances in com-
parison with that in tissue (Supplementary Fig. 1b).

Differential responses of mucus‑ and tissue‑associated 
bacterial communities to coral bleaching

The bacterial communities were significantly different 
between healthy and bleached coral tissues (PERMANOVA, 
R2 = 0.446, F = 8.039, p < 0.01), whereas they were similar 
in the mucus (PERMANOVA, R2 = 0.126, F = 1.444, p > 0.1; 
Fig. 2a). In addition, bacterial functions were significantly 
different between the healthy and bleached tissues (PER-
MANOVA, R2 = 0.351, F = 5.407, p < 0.01), whereas they 
were similar between the healthy and bleached mucus (PER-
MANOVA, R2 = 0.090, F = 0.991, p > 0.1) (Fig. 2b).

Three Endozoicomonas ASVs were enriched in healthy 
coral tissue, whereas their relative abundances decreased by 
more than 90% in bleached coral tissue (Fig. 3). In healthy 
coral tissue, the bacterial functions were mainly enriched 
in five pathways—notch signaling, primary and secondary 
bile acid biosynthesis, steroid hormone biosynthesis, and 
glycosaminoglycan degradation with 10 fold higher relative 
abundances than that in bleached tissue. In the bleached 
coral tissue, bacterial function was mainly enriched in pro-
teasome, biosynthesis of type II polyketide backbone, N-gly-
can biosynthesis, D-arginine and D-ornithine metabolism, 
tetracycline biosynthesis, biosynthesis of ansamycins, and 
carotenoid biosynthesis (Supplementary Fig. 1c).

Fig. 2  PCoA results based on ASVs (a) and KEGG pathways (b). 
HT and BT represent healthy and bleached coral tissue, respectively; 
HM and BM represent healthy and bleached coral mucus, respec-
tively
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Discussion

Although DNA- and RNA-based sequencing has been used 
to reveal the total bacterial community and its active part, 
respectively, in various habitats (Hu et al. 2016; Stecher 
et al. 2016; Tian and Li 2017), these methods have not been 
applied simultaneously in coral holobionts. In this study, 
we analyzed the bacterial community structures in the tis-
sue and mucus of healthy and bleached corals by using both 
DNA- and RNA-based 16S rRNA gene sequencing. The 
results show that coral-associated microbial communities 
revealed by investigating DNA and RNA/cDNA libraries 
were similar, in contrast to previous results obtained in 
seawater (Wang et al. 2019), sea ice (Stecher et al. 2016), 
and seagrass (Ling et al. 2018; Zhang et al. 2018; He and 
Guodong 2020). Given the consistent results obtained in 
this study by using these two methods, we suggest that both 
DNA- and RNA-based 16S rRNA gene sequencing are effi-
cient and sensitive methods for active bacteria detection in 
P. damicornis. Considering that only one coral species was 
investigated in this study, the comparison is worth extending 
and validating in other coral species.

In this study, the functions of the bacterial community 
were predicted using PICRUSt. It has been suggested that 
there are two main limitations of amplicon-based func-
tional prediction: (1) rare environment-specific functions 
are less likely to be identified, and (2) amplicon-based pre-
dictions cannot provide sufficient resolution to distinguish 

strain-specific functionality (Douglas et al. 2020). There-
fore, the predicted functions revealed in this study should 
be interpreted with caution.

Investigation of the spatial organization of bacterial com-
munities within the coral holobiont is crucial for understand-
ing the relationship between coral and bacterial assemblages 
(Li et al. 2014). Consistent with the results of previous stud-
ies (Rohwer et al. 2002; Sweet et al. 2011; Bourne et al. 
2013; Li et al. 2014), we found that the coral P. damicornis 
tissue and mucus layer were colonized by distinct bacterial 
communities. These distinct bacterial communities might 
be shaped by different microhabitats within the coral host 
(Sweet et al. 2011; Engelen et al. 2018). Compared with 
the variable environment in the mucus layer, coral tissue 
provided a more stable and host-controlled environment 
(Bourne and Munn 2005; Lee et al. 2015).

Coral tissue-associated bacterial communities altered 
when bleaching occurred. The dynamic nature of the coral-
associated bacterial community is considered to be a mecha-
nism that allows for the rapid adaptation of corals in a chang-
ing environment (Reshef et al. 2006). Our results suggest the 
potential for functions, such as tetracycline and ansamycins 
biosynthesis, to be enriched in bleached coral tissue, which 
might support this hypothesis, considering their contribu-
tion to the inhibition of opportunistic pathogens. Thus, we 
suggest that the shifting bacterial communities in the tis-
sue of bleached P. damicornis might be an acclimatation to 
perturbation.

Fig. 3  Bacterial ASVs with significant alterations in relative abun-
dance. Each cell represents the log10-transformed relative abun-
dance of each ASV. The relative abundance was transformed by 
log10(X + 1). 1, 2, and 3 represent DNA libraries; 1C, 2C, and 3C 
represent cDNA libraries. *ASV was enriched in healthy coral tissue 

compared with that in healthy coral mucus and in bleached coral tis-
sue. #ASV was enriched in healthy coral mucus compared with that 
in healthy coral tissue. §ASV was enriched in bleached coral mucus 
compared with that in bleached coral tissue. ASVs without symbols 
appeared to be enriched in both the healthy and bleached coral mucus
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Endozoicomonas was a dominant group in the healthy 
coral tissue, whereas its relative abundance decreased mark-
edly in bleached coral tissue; these findings are consistent 
with the results of previous reports (Bourne et al. 2008; 
Gardner et al. 2019; Shiu and Tang 2019; Li et al. 2021). 
The dominance of Endozoicomonas in healthy coral tissue 
implies that it may play an important role in coral health 
(Rosenberg et al. 2007; Galand et al. 2018; Pogoreutz et al. 
2018). Endozoicomonas has been hypothesized to play a role 
in providing nutrients, constructing the host microbiome, 
and synthesizing amino acids and antibacterial substances 
(Shiu and Tang 2019). The difference in the relative abun-
dance of Endozoicomonas between healthy and bleached 
corals further supports the hypothesis that this group could 
be an indicator of the health status of P. damicornis (Rosen-
berg et al. 2007; Neave et al. 2017; Galand et al. 2018; 
Pogoreutz et al. 2018). Both the results of this study and 
a previous report (Li et al. 2021) showed that diverse bac-
teria, including Acidobacteria, Chloroflexi, Dadabacteria, 
and Nitrospirae, were enriched in bleached coral tissue, 
whereas the abundance of Endozoicomonas was reduced. 
The reduced abundance of Endozoicomonas might diminish 
its regulatory effect on the coral-associated bacterial com-
munity (Rua et al. 2014; Neave et al. 2016, 2017; Li et al. 
2021).

In this study, the bacterial communities associated with P. 
damicornis mucus were found to be stable when bleaching 
occurred. This result is consistent with a previous report, in 
which a stable mucus-associated microbiome was observed 

in healthy and bleached Porites lobata (Hadaidi et al. 2017). 
However, the coral Acropora muricata showed a successive 
shift in the microbial community associated with its mucus 
layer under thermal stress (Lee et al. 2015). These inconsist-
ent observations might be attributed to the different coral 
species. We speculate that a stable microbial community 
structure could help mucus maintain its protective function 
(Brown and Bythell 2005; Ritchie 2006; Bythell and Wild 
2011; Hadaidi et al. 2017) after coral bleaching. Addition-
ally, Bermanella and Alteromonadaceae were abundant in 
healthy and bleached coral mucus, this finding could be 
attributed to their metabolism of polysaccharides (Lenihan 
and Edmunds 2010), which are the main components of 
coral mucus (Brown and Bythell 2005; Sweet et al. 2011; 
Krediet et al. 2013). The enrichment of Vibrio in mucus 
might be because of its chemotaxis toward the mucus layer 
(Garren et al. 2014).

We noticed that there were two libraries (2 and 2C) of 
a healthy tissue and two (B2 and B2C) of a bleached tis-
sue that showed differential bacterial community structures 
in comparison with others in the same group (i.e., healthy 
or bleached tissue). These results might be related to the 
different genotypes of the coral host (Pantos et al. 2015; 
Ziegler et al. 2017; Miller et al. 2020). This result suggests 
that the genotype of coral samples should be assessed in 
future studies.

This study provided the first comparison of bacterial com-
munities revealed by using both DNA- and RNA-based 16S 
rRNA gene sequencing in coral holobionts, and we found 

Fig. 4  Differential responses of the microbial communities in coral 
tissue and mucus to bleaching. Samples were collected from three 
healthy and three partially bleached coral colonies. The metagenomic 

functional content was predicted using PICRUSt based on the results 
of 16S rRNA gene sequencing
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that they were similar between cDNA (active bacterial mem-
bers) and DNA (the total bacterial community) libraries of 
the same coral sample. The results of this study show that 
bacterial assemblages tended to be dynamic in the tissue of 
P. damicornis when bleaching occurs, whereas they were 
rigid in the mucus (Fig. 4). The dominant genus in healthy 
coral tissue, namely Endozoicomonas, showed a dramatic 
decrease in relative abundance upon coral bleaching, sug-
gesting that this group might be an indicator of coral health. 
These results will advance our understanding of the relation-
ship between coral health and bacterial symbionts.
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