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Abstract Microbes in the coral holobiont play important

roles in nitrogen fixation, carbon supply, antibiotic pro-

duction, mucus recycling, and food supply to maintain

homeostasis in corals. However, microbes can also induce

coral diseases in response to environmental changes under

non-optimal conditions. Therefore, studies of microbial

communities are needed to understand the health statuses

of corals in response to environmental changes. In this

study, we performed 16S rDNA metabarcoding to inves-

tigate the bacterial communities in two healthy alcy-

onacean soft coral species (Sinularia sp. and Litophyton

sp.) inhabiting the coast of Weno Island (Chuuk,

Micronesia) and in ambient seawater. We identified 18

bacterial phyla, 24 classes, 54 orders, 109 families, and 222

genera associated with the two corals and seawater. The

bacterial communities differed in the corals and seawater.

The bacterial community in Sinularia sp. was dominated

by the genus Spirochaeta in Spirochaetaceae (63.9% rela-

tive abundance), followed by Endozoicomonas (10%). In

Litophyton sp., the bacterial community also contained

Spirochaeta (19.5%) and Endozoicomonas (4.7%),

although Cellvibrionaceae (23.7%) was dominant and other

groups such as Rhizobiales (11.5%) and Rhodospirillales

(8.7%) were evenly distributed. In ambient seawater, the

predominant bacteria were Pelagibacter (29.2%),

Rhodobacteraceae (15.5%), Prochlorococcus (11.3%), and

Vibrio (5.8%), which are distinct from the species in the

two coral species. The microbial communities between the

two alcyonacean soft corals and seawater were different,

and the microbial community differences were coral spe-

cies-specific.
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Introduction

Coral reefs are among the most biologically diverse

ecosystems on Earth, providing niches for numerous mar-

ine organisms (Blackall et al. 2015). However, coral reefs

and their associated organisms have become increasingly

vulnerable to disturbances from climate change and pol-

lution caused by human activities in recent years. Partic-

ularly, climate change causes coral bleaching, a stress

response in corals, resulting in the loss of their symbiotic

algae and causing the corals to turn white (Lesser 2007). In

some cases, these stress responses lead to the death of the

corals and devastation of coral reefs.

Generally, coral-associated microbes maintain coral

health by influencing the structure and function of coral

holobionts. This includes adaptation of coral to

Topic Editor Morgan S. Pratchett

& Taek-Kyun Lee

tklee@kiost.ac.kr

& Seung Won Jung

diatoms@kiost.ac.kr

1 Library of Marine Samples, Korea Institute of Ocean Science

& Technology, Geoje 53201, Republic of Korea

2 Marine Biotechnology Research Center, Korea Institute of

Ocean Science & Technology, Busan 49111, Republic of

Korea

3 Department of Bioscience, Mokpo National University,

Muan-gun 58554, Republic of Korea

4 Risk Assessment Research Center, Korea Institute of Ocean

Science & Technology, Geoje 53201, Republic of Korea

5 Department of Ocean Science, University of Science &

Technology, Daejeon 34113, Republic of Korea

123

Coral Reefs (2022) 41:563–574

https://doi.org/10.1007/s00338-021-02176-w

http://orcid.org/0000-0002-7473-7924
http://crossmark.crossref.org/dialog/?doi=10.1007/s00338-021-02176-w&amp;domain=pdf
https://doi.org/10.1007/s00338-021-02176-w


environmental changes and recycling of nutrients such as

sulfur, carbon, and nitrogen compounds (Webster and

Reusch 2017; Robbins et al. 2019; Pernice et al. 2020). In

addition, the health of the corals depends on their specific

bacterial colonization (Morrow et al. 2012; Krediet et al.

2013). In general, bacterial communities associated with

corals are among the most diverse and complex commu-

nities in the microbial biosphere (Sunagawa et al. 2010;

Bourne and Webster 2013; Hernandez-Agreda et al. 2016).

Coral-related bacterial communities vary in their response

based on intrinsic and extrinsic factors, such as the coral

species, habitat, and environmental conditions (Thompson

et al. 2014), and differ from those in ambient seawater

(Sunagawa et al. 2010; Barott et al. 2011; Roder et al.

2014). Specifically, coral metabolism affects the associated

bacterial community structure. Environmental factors, such

as geographic location, water depth, nutrient concentration,

and temperature, also have significant effects (Apprill et al.

2009; Vega Thurber et al. 2009; Littman et al. 2011).

Therefore, the relationship between bacterial communities

and their hosts or the environment have been described in

terms of bacterial diversity associated with corals (Rohwer

et al. 2002), host specificity (Ceh et al. 2011), changes in

bacterial communities in response to competition between

corals and macroalgae (Vega Thurber et al. 2012), and

coral disease (Rohwer et al. 2002; Ceh et al. 2011; Vega

Thurber et al. 2012; Wilson et al. 2012). However, changes

in the temporal and spatial diversity of bacterial commu-

nities in response to environmental changes have not been

widely studied. In addition, the composition of the micro-

bial community associated with corals and their health in

response to environmental changes and human activities

are unclear. Therefore, it is important to investigate the

composition of coral-associated microbial communities.

The alcyonacean soft coral genera Litophyton and Sin-

ularia are two of the most widely distributed soft corals

(Chen et al. 2012; Abou El-Kassem et al. 2018). They are

abundant in the tropical western Pacific regions, including

the islands of the Federated States of Micronesia (FSM)

(GBIF.org 2020). The FSM are surrounded by coral reefs

that support rich biodiversity. Thus, these reefs are bene-

ficial to the Micronesian people, supporting their survival

by providing food and revenue from fish sales and tourism.

In addition, these corals have drawn increased attention

because they contain pharmacological compounds and

have potential medicinal properties originating from their

various secondary metabolites such as sesquiterpenes,

diterpenes, polyhydroxylated steroids, and polyamines

(Grote et al. 2008; Chen et al. 2012). Although biodiversity

remains high within the FSM reefs, there are threats from a

variety of human activities, such as coastal development,

pollution, tourism, and fishing. Indeed, a Status Report of

2020 on the FSM (Hall 2020) showed that the coastal areas

of Chuuk State, FSM, were more affected by rapid popu-

lation growth, environmental pollution, and climate change

than the other islands around Micronesia, such as the Palau,

Kiribati, and Marshall Islands. However, few studies have

examined the bacterial community associated with the soft

corals Sinularia and Litophyton. Understanding the bacte-

rial associations in these two soft corals may provide

insight into the relationship between bacteria and coral in

the reefs of Chuuk State.

In this study, we analyzed the relative abundance of

bacterial taxa in the microbial communities in two different

leather soft corals, Litophyton sp. (Palau green tree leather

coral) and Sinularia sp. (smooth leathery soft coral), and in

the ambient coastal seawater from the Weno Island, Chuuk

State, FSM, using the 16S rDNA metabarcoding approach.

Overall, the potential functional roles of common bacteria

were explored, and their possible functional roles were

assessed based on their occurrence by comparing these

with the published reports.

Materials and methods

Sample collection and harvest of bacterial

communities from two alcyonacean soft corals

and ambient seawater

Ten fragments of a single colony in two visually healthy

alcyonacean soft coral species, Litophyton sp. and Sinu-

laria sp., were collected from a depth of 3–10 m along the

Coast of Weno Island by scuba diving on May 13, 2014

(7�27022.900 N, 151�54021.200 E, Fig. 1). Each coral sub-

sample was immediately placed in a plastic bag and

transported to the ship. On the ship, the coral samples were

washed twice with sterilized seawater, placed in sterilized

plastic bags, and stored on ice until they were transported

to the laboratory. The samples of two alcyonacean soft

coral species, Litophyton sp. (No. B_S_HI_00001111) and

Sinularia sp. (No. B_S_HI_00001112), were stored in the

Library of Marine Samples of the Korea Institute of Ocean

Science & Technology. The identification and characteri-

zation of these coral species were confirmed using mito-

chondrial DNA gene cytochrome oxidase I (COI) and

phylogenetic analyses (Suppl. Figure 1).

Ambient seawater samples (5 L each, sampling at a

depth of 3–10 m using a Niskin water sampler and placed

in a sterilized 5-L polyethylene bottle) were collected in

duplicate. Bacterial cells on the surface mucus layer of

each coral fragment were detached by performing repeated

sonication (VibramCell; Sonic & Materials, Inc., New-

town, CT, USA) at 15 A and 4 �C for 5 min in sterilized

seawater (Jung et al. 2013). The detached large-sized par-

ticles and organic matter were pre-filtrated (or removed)
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using a 3-lm polycarbonate membrane (TSTP04700;

Millipore, Billerica, MA, USA). The bacterial communities

were harvested from the flow-through by re-filtering using

a 0.2-lm polycarbonate membrane (TTTP04700, Milli-

pore). The filters were washed three times with approxi-

mately 50 mL distilled water at 50–60 �C to remove

environmental DNA debris (Jung et al. 2018). The bacterial

communities from seawater were also harvested using a

0.2-lm polycarbonate membrane. The filters were stored

at - 80 �C until genomic DNA (gDNA) extraction.

DNA extraction and 16S rDNA metabarcoding

analyses

The filters with the harvested bacterial communities were

cut into several pieces for gDNA extraction. gDNA was

extracted using a DNeasy PowerSoil Kit (QIAGEN, Hil-

den, Germany) according to the manufacturer’s instruc-

tions; DNA was diluted to a final concentration of 20 ng/

lL. The quantity and quality of the total gDNA were

determined using a NanoDrop (Nano-MD-NS, SCINCO

Ltd., South Korea). The V1–V3 hypervariable regions of

the bacterial 16S rDNA genes were amplified using the

universal tagged forward (27F: 50-GAG TTT GAT CMT

GGC TCA G-30) and reverse (518R: 50-ATT ACC GCG

GCT GG-30) primers (Kim et al. 2016). PCR was per-

formed using ExTaq polymerase (Takara, Shiga, Japan) on

a T100 PCR Thermal Cycler (Bio-Rad, Hercules, CA,

USA). The PCR protocol consisted of an initial denatura-

tion step at 95 �C for 3 min, followed by 35 cycles of

denaturation at 95 �C for 10 s, annealing at 52 �C for 45 s,

extension at 72 �C for 1 min, and a final extension step at

72 �C for 5 min. The amplified products were individually

purified using a QIAquick PCR Purification Kit (Qiagen).

Although we performed duplicate experiments, we

attempted to overcome the experimental bias and obtain

accurate results by performing three PCRs in distinct tubes

and mixing the PCR products to obtain more accurate

metabarcoding results (Jung et al. 2018). Prior to obtaining

the metabarcoding results, the amplified PCR products

were individually purified using an UltraClean PCR Clean-

up Kit (MoBio; Folsom, CA, USA). DNA concentrations

of the cleaned PCR products were measured using a Bio-

analyzer 2100 (Agilent Technologies, Santa Clara, CA,

USA). Equal concentrations of the PCR products were

analyzed using a 454 automated sequencer (GS Junior

Sequencing System, Roche, Basel, Switzerland) using

titanium chemistry. All sequences obtained from this study

have been deposited in the National Center for

Fig. 1 Corals and seawater

sampling site, and photographs

of the two alcyonacean soft

corals. a Red circle shows the

location of Chuuk Lagoon in

Northeastern Pacific Ocean.

b Red circle shows the coral and

seawater sampling site

(7�27022.900 N, 151�54021.200 E)
near Weno Island in Chuuk

Lagoon. c Litophyton sp.

d Sinularia sp.

Coral Reefs (2022) 41:563–574 565

123



Biotechnology Information Sequence Read Archive under

BioProject accession number PRJNA610452.

Bioinformatics, statistical analyses, and functional

annotation of common bacteria

Bioinformatics analyses were performed as described by

Kang et al. (2021). The sequences were subjected to a

quality check; short sequence reads (length\ 150 bp),

low-quality sequences (score\ 25), singletons and

chloroplast sequences, and any non-bacterial ribosome

sequences and chimeras were removed using Roche GS20

software (Gontcharova et al. 2010). Using the Basic Local

Alignment Search Tool, the sequence reads were compared

to the Silva rRNA database (Altschul et al. 1990; Quast

et al. 2013). Sequence reads with an E value less than 0.01

were considered as partial 16S rDNA sequences. 16S

rDNA sequences with at least 97% similarity were con-

sidered for species identification, and their complete tax-

onomic hierarchy was assigned, which consisted of the

phylum, class, order, family, genus, and species.

Alpha diversity indices were estimated by calculating

the Chao1, Shannon, and Simpson indices using the R

vegan package (Oksanen et al. 2010). All visualizations

except Venn diagrams were created in the R ggplot2

package. Venn diagrams were prepared using Venny 2.1.0

(https://bioinfogp.cnb.csic.es/tools/venny/). Operational

taxonomic units (OTUs) with an abundance of\ 1% in at

least one sample were filtered out. The relative abundances

of the filtered bacterial OTUs were normalized through

logarithmic transformations. Cluster analyses were per-

formed on the data from the filtered bacteria using the

group average clustering in the Bray–Curtis similarity

method. To test the null hypothesis (no significant differ-

ence between the groups discriminated according to the

agglomerative clustering analysis), similarities were ana-

lyzed with ANOSIM in PRIMER version 6.1.13 (Clarke

et al. 2006).

To predict the functional roles of the common bacterial

associates, functional annotation of prokaryotic taxa

(FAPROTAX) was performed using python col-

lapse_table.py with the normalized OTU table (Louca et al.

2016). The FAPROTAX dataset (available at http://www.

zoology.ubc.ca/louca/FAPROTAX) is a manually con-

structed database based on cultured representatives of

marine and freshwater microbiomes. The functional group

abundances in each module were calculated by multiplying

the calculated values (‘‘function tables’’) and the total sum

of OTUs belonging to each major module.

Results

Bacterial communities in the two alcyonacean soft corals

(Litophyton sp. and Sinularia sp.) and ambient seawater

were identified using 16S rDNA metabarcoding. A mean of

6437 reads was retrieved after quality trimming (Table 1),

among which 6108 were detected in ambient seawater

samples, whereas 7233 and 5971 reads were found in Li-

tophyton sp. and Sinularia sp., respectively. The mean

number of observed OTUs with 97% quantified reads was

lowest for Sinularia sp. (270), followed by Litophyton sp.

(327) and ambient seawater (384). Chao 1, Shannon

diversity, and Simpson evenness are presented in Fig. 2a;

ambient seawater samples had the highest alpha diversity

index (Chao1: mean 597; Shannon: 3.9; Simpson: 0.9),

whereas Sinularia sp. had the lowest index (Chao 1: mean

443; Shannon: 2.1; Simpson: 0.6). The Venn diagram

indicated that bacterial species in ambient seawater, Lito-

phyton sp., and Sinularia sp. represented 519, 424, and 531

taxa, respectively; in all samples, common bacteria over-

lapped in 39 taxa (3.3% of the total number of bacteria)

(Fig. 2b). Sinularia sp. and Litophyton sp. showed the

largest OTU overlap of 178 taxa and Litophyton sp., and

ambient seawater showed the smallest OTU overlap of 68

taxa.

Taxonomic classification revealed 18 bacterial phyla, 24

classes, 54 orders, 109 families, and 222 genera. Except for

the most dominant Proteobacteria, which were assigned at

the class level, the other bacterial groups were classified at

the phylum level (Fig. 3). The next most dominant phylum

was Cyanobacteria (13.3%), followed by Bacteroidetes

(3.8%). The bacteria associated with Sinularia sp. were

dominated by the genus Spirochaeta in Spirochaetaceae,

with a mean of 63.2% relative abundance, followed by

Gammaproteobacteria (13.0%), Alphaproteobacteria

(6.1%), and Cyanobacteria (3.4%). In Litophyton sp., the

associated bacteria differed from those of Sinularia sp. and

included Gammaproteobacteria (32.1%), Alphaproteobac-

teria (26.6%), Spirochaetes (19.7%), and Tenericutes

(6.2%). In seawater, Alphaproteobacteria and Gammapro-

teobacteria belonging to the phylum Proteobacteria were

dominant, with relative abundances of 57.9% and 22.4%,

respectively.

Common bacterial OTUs displaying a mean relative

abundance of[ 1% in the two corals and ambient seawater

included 36 taxa. The mean of the total relative abundance

of common OTUs was 85.7% in Sinularia sp., 84.0% in

Litophyton sp., and 69.4% in ambient seawater. The bac-

terial communities from the two corals were clustered with

35% similarity and contained four common bacterial OTUs

(OTU1161, OTU1162, OTU1002, and OTU1008); the first

two OTUs (Spirochaeta) were assigned to Spirochaetaceae,
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and the other two OTUs to Endozoicomonas. Interestingly,

the common bacterial associates showing[ 1% relative

abundance were not common between the corals and sea-

water (Fig. 4). Spirochaeta and Endozoicomonas were

predominant in Sinularia sp. with relative abundances of

63.9% and 10.0%, respectively. In addition to the two

bacterial groups that were common between the two corals,

Litophyon sp. had other associates, such as Cellvibri-

onaceae (23.7%), Rhizobiales (11.5%), and Rhodospiril-

lales (8.7%). In ambient seawater, the predominant

bacterial communities completely differed from those in

the two coral species, namely Pelagibacter in SAR11

(29.2%), Rhodobacteraceae (15.5%), Prochlorococcus in

Cyanobacteria (11.3%), Vibrio (5.8%), Alteromonadaceae

(3.8%), and Oceanospirillaceae (2.5%).

Thirty-six common bacterial OTUs were identified

using the pipeline of FAPROTAX to evaluate the potential

functional differences among samples (Fig. 5). The func-

tional profiles of bacteria in Sinularia sp. were mainly

associated with heterotrophy such as aerobic chemo-

heterotrophy and chemoheterotrophy, autotrophy such as in

Cyanobacteria, oxygenic photoautotrophy and phototro-

phy, carbon cycling such as fermentation, and nitrogen

cycling such as nitrogen fixation. Particularly,

Table 1 Observed OTUs and

alpha diversity index for the

bacterial communities in

ambient seawater and the two

corals

Alpha diversity Ambient seawater Litophyton sp. Sinularia sp.

1st 2nd mean 1st 2nd Mean 1st 2nd mean

No. of reads 6411 5805 6108 8497 5969 7233 3823 8118 5971

OTUs 404 363 384 366 288 327 220 319 270

Chao1 661 534 597 506 421 464 408 477 443

Simpson 0.946 0.940 0.943 0.878 0.895 0.887 0.616 0.663 0.639

Shannon 3.915 3.850 3.883 2.944 3.077 3.010 1.968 2.149 2.058

The observed OTUs ([ 97% sequence similarity) and alpha diversity indices (Chao1, Shannon, and

Simpson index) of bacteria communities are displayed

Fig. 2 Alpha diversity of two alcyonacean soft corals (Sinularia sp. and Litophyton sp.) and ambient seawater. a Observed OTUs, Chao 1,

Shannon, and Simpson index, b Venn diagram showing the shared and unique bacterial OTUs at 97% similarity cutoff

Fig. 3 Taxonomic composition of the bacterial communities in the two alcyonarian corals and ambient seawater
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chemoheterotrophy and fermentation were the most

prominent functions, averaging 48.4% and 41.8% of the

total functional categories, respectively. In Litophyton sp.,

the functional categories predominant were heterotrophy

(52.4%; chemoheterotrophy, aerobic chemoheterotrophy,

and photoheterotrophy), carbon cycling associated with

fermentation (9.0%), nitrogen cycling (24.9%; nitrogen

fixation, ureolysis, nitrogen reduction, nitrate respiration,

and nitrogen respiration), and autotrophy (1.5%). In

ambient seawater, the functional groups of bacteria were

autotrophy (33.0%; photoautotrophy, phototrophy, oxy-

genic phototrophy, Cyanobacteria, and phototrophy),

heterotrophy (69.0%; chemoheterotrophy, aerobic chemo-

heterotrophy, and fermentation), carbon cycling (1.2%;

hydrocarbon degradation and aliphatic non-methane

hydrocarbon degradation), and nitrogen cycling (11.2%;

nitrogen reduction, nitrate respiration, and nitrogen

respiration).

Fig. 4 Bubble chart showing the most abundant bacterial OTUs. Scale indicates the relative abundance. Common bacterial OTUs were clustered

using the Bray–Curtis similarity method
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Discussion

Generally, coral-associated bacteria communities play

crucial roles in coral holobionts and are essential for coral

biology by performing complementary metabolism.

Therefore, identifying and studying these communities can

provide insights into the interactions between coral and

microbiota and predict the coral health condition in

response to environmental changes. In this study, we

compared the bacterial communities in two co-occurring

and ecologically important tropical alcyonacean soft coral

species, Sinularia sp. and Litophyton sp., with those in

ambient seawater. We found that the microbial communi-

ties between the two alcyonacean soft corals and seawater

were different and observed microbial community differ-

ences in coral species-specific (Frias-Lopez et al. 2002;

Apprill et al. 2009; Ochsenkühn et al. 2018). Specifically,

the microbial community in Sinularia sp. was dominated

by the genus Spirochaeta in Spirochaetaceae, followed by

Endozoicomonas. In Litophyton sp., the microbial com-

munity was dominated by Spirochaeta and Endo-

zoicomonas, but other associates, such as Cellvibrionaceae,

Rhizobiales, and Rhodospirillales, were also common.

However, in ambient seawater, the predominant bacteria

were Pelagibacter, Rhodobacteraceae, Prochlorococcus,

and Vibrio, which are distinct from the species in the two

alcyonacean coral species. Particularly, Spirochaetaceae

was the predominant taxon in approximately half the Sin-

ularia sp. and was present in Litophyton sp. but not in

ambient seawater. Generally, some bacteria, such as Spir-

ochaetaceae and Endozoicomonas in Sinularia sp., are

frequently found in various corals worldwide, whereas

Cellvibrionaceae, Rhizobiales, and Rhodospirillales bac-

teria in the Litophyton sp. are rarely detected near other

corals (Lesser et al. 2018; Weber and Apprill 2020; Rosales

et al. 2020). Indeed, previous studies reported that Spir-

ochaetaceae is associated with various corals in different

regions, such as the Muricea coral species (Holm and

Heidelberg 2016), Anthothela coral species from deep sea

(Lawler et al. 2016), Lophelia pertusa from cold water

(Kellogg et al. 2009), gorgonians from deep sea (Gray et al.

2011), and Corallium rubrum (van de Water et al. 2016),

suggesting that Spirochaetaceae are commonly found in

coral reefs including Sinularia sp. and Litophyton sp.

Although Spirochaetaceae are a coral symbiont found

across different coral species, regions, and water depths,

we could not confirm the specific environmental factors

that determine the occurrence of these bacteria as a coral

association.

Additionally, previous studies reported that Spir-

ochaetes are likely associated with the breakdown of lig-

nocellulose and nitrogen fixation in termite guts (Lilburn

et al. 2001; Brune 2014). Although Spirochaetaceae was

found in two alcyonacean soft corals, the role of Spir-

ochaetaceae remains unclear, as they have been found in

diseased and healthy corals (Frias-Lopez et al. 2002; Sekar

et al. 2008; Closek et al. 2014; Ainsworth et al. 2015).

Therefore, functional prediction using FAPROTAX and

the database of metagenomics of bacterial community-

identified ecosystem functions were searched, although the

database is not exhaustive. The putative roles of the iden-

tified common bacteria are summarized in Table 2.

Recently, FAPROTAX and metagenomic sequencing have

been developed as powerful tools for predicting metabolic

and ecological relevant functions of bacterial communities

from 16S rRNA gene sequencing data (Jung et al. 2021;

Sansupa et al. 2021). In this study, the functional profiles

revealed that differences in the bacterial communities

between the two corals and ambient seawater can be

attributed to nitrogen functions in coral bacteria and pho-

totrophic functions in seawater.

Generally, distinct bacterial communities in corals may

play functional roles in sustaining nutrient cycling and

promoting coral acclimatization to environmental changes

Fig. 5 Functional groups of 36

common bacteria in two corals

and ambient seawater. These

data were obtained through

functional annotation of

prokaryotic taxa (FAPROTAX)

analyses

Coral Reefs (2022) 41:563–574 569
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(Reshef et al. 2006; Ziegler et al. 2017; Bang et al. 2018).

The roles of bacterial associations in coral have been

estimated in terms of their contribution to symbiont func-

tions, including nitrogen (Rohwer et al. 2002; Lesser et al.

2004; Siboni et al. 2008; Lema et al. 2012; Rädecker et al.

2015), sulfur (Raina et al. 2013; Zhang et al. 2015), and

carbon cycling (Baker et al. 2015; van de Water et al.

2018). In addition, they protect the host coral from

potential pathogens in ambient seawater by producing

antibiotics (Reshef et al. 2006; Ritchie 2006; Shnit-Orland

and Kushmaro 2009). Indeed, previous studies reported

that coral-associated microbial communities are involved

in nitrogen fixation, carbon supply, antibiotic production,

mucus recycling, and food supply in corals (Rohwer et al.

2002; Lesser et al. 2004; Wild et al. 2004; Ritchie 2006).

For example, the functional characteristics of Spirochetes

as coral associations have been studied in the context of

nitrogen (Lilburn et al. 2001; Kimes et al. 2010) and carbon

fixation (Baker et al. 2015), as well as in chemotactic

responses to chemical stimulants (Charon et al. 1992).

Recently, van de Water et al. (2016) reported that Spiro-

chetes were abundant in red coral Corallium rubrum and

may have a symbiotic function similar to nitrogen-fixing

bacteria in tropical regions, indicating that Spirochaetaceae

are involved in nitrogen fixation, carbon supply, antibiotic

production, mucus recycling, and food supply in corals,

which may have important roles in the holobiont health of

the two soft corals.

Spirochaetaceae and Endozoicomonas species were

found to be common bacterial associates in our two soft

corals and are frequently found in shallow waters globally.

They are considered as conserved ‘‘core’’ microbial asso-

ciates (van de Water et al. 2016; Neave et al. 2017; Brener-

Raffalli et al. 2018; Kellogg 2019). The core bacteria in

coral holobiont may contribute to dimethylsulfoniopropi-

onate (DMSP) breakdown in the sulfur cycle (Raina et al.

2009, 2010). However, this functional role in Endo-

zoicomonas has been questioned because of the lack of

genes related to DMSP metabolic pathways (Neave et al.

2017). Recently, Tandon et al. (2020) corroborated the

functional role of Endozoicomonas in sulfur cycles by

confirming the presence of DMSP degradation-related

genes. A genomic study of Endozoicomonas revealed

functional genes related to the transport of molecules that

potentially influence the transfer of organic molecules

between diverse animal hosts and the bacteria (Neave et al.

2014, 2017). Therefore, Endozoicomonas bacteria species

play important roles in the coral sulfur cycle in the two

alcyonacean soft corals. In addition to Spirochaetaceae and

Endozoicomonas, Litophyton sp. also has other common

bacterial associates, including Cellvibrionaceae, Rhizo-

biales, and Rhodospirillales. Cellvibrionaceae are marine

bacteria found in surface seawater (Lucena et al. 2020) and

as a symbiont in the gills of mollusks (Spring et al. 2015;

Brito et al. 2018). Cellvibrionaceae has also been reported

from other corals, such as Porites astreoides (Weber and

Apprill 2020) and stony coral (Rosales et al. 2020),

although they were not abundant. Most species in this

family possess a large variety of polysaccharide-degrading

enzymes (Spring et al. 2015; Lucena et al. 2020). The

abundant presence of Cellvibrionaceae in Litophyton sp.

may contribute to carbon cycling through polysaccharide

degradation. Rhizobiales and Rhodospirillales are dia-

zotrophic bacteria that contribute to nitrogen fixation

(Lodwig et al. 2003; Lesser et al. 2018). These bacteria are

frequently found in other corals in a high relative abun-

dance (Lesser et al. 2018; Rosales et al. 2020). Widely

known as diazotrophs, the functional role of Rhizobiales

and Rhodospirillales in corals may be related to nitrogen

cycling (Lema et al. 2012; Olson and Lesser 2013). In

addition, Rhizobiales are potential causative agents for

stony coral tissue loss disease (Rosales et al. 2020).

Table 2 Putative contribution of the two alcyonacean soft coral-associated common bacteria

Bacterial

influence

Putative roles

and effect

Sinularia sp. Litophyton sp.

Biogeochemical

cycling

Nitrogen

fixation

Spirochaetaceae (Kimes et al. 2010; Holm

and Heidelberg 2016; Lawler et al. 2016;

van de Water et al. 2016)

Spirochaetaceae (Kimes et al. 2010; Holm and Heidelberg

2016; Lawler et al. 2016; van de Water et al. 2016),

Rhizobiales and Rhodospirillales (Lema et al. 2012;

Wiegel 2015)

DMSP

degradation

Endozoicomonas (Tandon et al. 2020) Endozoicomonas (Tandon et al. 2020)

Carbon fixation Spirochaetaceae (Baker et al. 2015) Spirochaetaceae (Baker et al. 2015)

Polysaccharide

degradation

– Cellvibrionaceae (Raina et al. 2009; Kellogg 2019)

Potential

pathogen

Bleaching – Rhizobiales (Rosales et al. 2020)
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However, the Rhizobiales in Litophyton sp. may play

functional roles in nitrogen cycling and not as disease-

causing agents, as we observed no lesions in this study.

Taken together, the dominant Spirochaetaceae bacteria

may contribute to nitrogen and carbon cycling and Endo-

zoicomonas to sulfur cycling in the coral host Sinularia sp.

In addition, in Litophyton sp., Spirochaetaceae, Rhizo-

biales, and Rhodospirillales may play functional roles in

nitrogen fixation, Endozoicomonas in sulfur cycling, and

Cellvibrionaceae in carbon cycling.

We found that the microbial communities in ambient

seawater significantly differ from those in the two corals, as

they were dominated by Pelagibacter, Prochlorococcus,

Rhodobacteraceae, and Vibrio bacteria. The bacteria in the

ambient seawater of Chuuk, FSM, were similar to those in

our previous studies (Suh et al. 2014). Generally, Pro-

teobacteria, Bacteroidetes, and Cyanobacteria are common

bacteria in the ocean environment, and the most common

genera are Pelagibacter, Roseovarius, Prochlorococcus,

and Vibrio. In particular, Pelagibacter and Roseovarius are

most abundant in the oligotrophic ocean environment

(Morris et al. 2002). Prochlorococcus is the smallest soli-

tary Cyanobacteria and most abundant picophytoplankton

in tropical waters (Partensky et al. 1999), dominating

nutrient-depleted tropical regions (Biller et al. 2015). The

occurrence of these oligotrophic bacterial associates mat-

ches well with the oligotrophic seawater conditions in

Chuuk, suggesting that seawater-associated bacteria in

Chuuk are widely distributed in the ocean environment,

particularly in nutrient-depleted tropical regions. We also

confirmed that Vibrio spp. is common in seawater. Gen-

erally, Vibrio species are widely distributed in aquatic

environments and have been extensively studied in several

coral diseases (Mouchka et al. 2010; Sweet et al. 2014).

Therefore, its presence in the ambient seawater indicates

that the corals can be infected by opportunistic outbreaks of

these potential pathogenic bacteria following environ-

mental changes caused by anthropogenic pollution and

climate changes. However, these potential pathogenic

bacteria are only rarely present in the corals, possibly

because of the defense mechanisms used by corals (van de

Water et al. 2018). In general, coral metabolites play a role

in defending against infection by potential pathogenic

bacteria via inhibition of the growth and attachment of

pathogens (Gochfeld et al. 2015). In addition, the absence

of Vibrio sp. in the corals’ microbiome may result from the

defense mechanism, such as shedding of the surface mucus

layer, despite the presence of potentially pathogenic Vibrio

sp. in ambient seawater. Taken together, the bacteria

community may play an important role in the defense

mechanisms in the two alcyonacean soft corals.

In conclusion, the two alcyonacean soft corals (Lito-

phyton sp. and Sinularia sp.) from Chuuk, Micronesia,

have different microbial associates, and the most common

bacterial associates are related to the biogeochemical

functional roles of the coral holobiont. This study improves

the understanding of the composition and functions of the

bacterial communities in the two corals and provides a

foundation for further investigating the health status of the

two corals in response to environmental changes in the

Chuuk State.

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s00338-

021-02176-w.

Acknowledgements The genomic DNA samples of corals and sea-

waters were obtained from the Library of Marine Samples, Korea

Institute of Ocean Science & Technology, Republic of Korea. This

research was supported by the Bio & Medical Technology Devel-

opment Program of the National Research Foundation (NRF) funded

by the Ministry of Science & ICT (NRF-2017M3A9E4072753) and

entitled ‘‘Development of technology for mass production of useful

marine bioproducts’’ by the Research Program of Korea Institute of

Ocean Science and Technology (PE99922).

Declarations

Conflict of interest There are no conflicts of interests to declare.

References

Abou El-Kassem LT, Hawas UW, El-Desouky SK, Al-Farawati R

(2018) Sesquiterpenes from the Saudi Red Sea: Litophyton
arboreum with their cytotoxic and antimicrobial activities.

Z Naturforsch C J Biosci 73:9–14

Ainsworth TD, Krause L, Bridge T, Torda G, Raina J-B, Zakrzewski

M, Gates RD, Padilla-Gamiño JL, Spalding HL, Smith C,

Woolsey ES, Bourne DG, Bongaerts P, Hoegh-Guldberg O,

Leggat W (2015) The coral core microbiome identifies rare

bacterial taxa as ubiquitous endosymbionts. ISME J

9:2261–2274

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic

local alignment search tool. J Mol Biol 215:403–410

Apprill A, Marlow HQ, Martindale MQ, Rappe MS (2009) The onset

of microbial associations in the coral Pocillopora meandrina.
ISME J 3:685–699

Baker BJ, Lazar CS, Teske AP, Dick GJ (2015) Genomic resolution

of linkages in carbon, nitrogen, and sulfur cycling among

widespread estuary sediment bacteria. Microbiome 3:14

Bang C, Dagan T, Deines P, Dubilier N, Duschl WJ, Fraune S,

Hentschel U, Hirt H, Hülter N, Lachnit T, Picazo D, Pita L,
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