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Abstract Coral reefs are home to the greatest diversity of

marine life, and many species on reefs live in symbiotic asso-

ciations. Studying the historical biogeography of symbiotic

species is key to unravelling (potential) coevolutionary pro-

cesses and explaining species richness patterns. Coral-dwelling

gall crabs (Cryptochiridae) live in obligate symbiosis with a

scleractinian host, and are ideally suited to study the evolu-

tionary history between heterogeneous taxa involved in a

symbiotic relationship. The genus Opecarcinus Kropp and

Manning, 1987, like its host coral familyAgariciidae, occurs in

both Indo-Pacific and Caribbean seas, and is the only cryp-

tochirid genus with a circumtropical distribution. Here, we use

mitochondrial and nuclear DNA gene fragments of Opecarci-

nus specimens sampled from 21 Indo-Pacific localities and one

Atlantic (Caribbean) locality. We applied several species

delimitation tests to characterise species diversity, inferred a

Bayesian molecular-clock time-calibrated phylogeny to esti-

mate divergence times and performed an ancestral area

reconstruction. Time to the most recent common ancestor

(tMRCA) of Opecarcinus is estimated at 15-6 Mya (middle

Miocene—late Miocene). The genus harbours * 15 unde-

scribed species as well as several potential species complexes.

There are indications of strict host-specificity patterns in certain

Opecarcinus species in the Indo-Pacific andAtlantic, however,

a robust phylogeny reconstruction of Agariciidae corals—

needed to test this further—is currently lacking. The Indo-West

Pacificwas inferred to be themost probable ancestral area, from

where theOpecarcinus lineage colonised theWestern Atlantic

and subsequently speciated into O. hypostegus. Opecarcinus

likely invaded from the Indo-West Pacific across the East

Pacific Barrier to the Atlantic, before the full closure of the

Isthmus of Panama. The subsequent speciation of O. hyposte-

gus, is possibly associated with newly available niches in the

Caribbean, in combination with genetic isolation following the

closure of the Panama Isthmus.

Keywords Coral reef � Marine biodiversity � Historical
phylogeography � Panama Isthmus � Scleractinia �
Symbiosis

Introduction

Coral reefs are home to the greatest diversity of marine life,

and many species on reefs live in symbiotic associations.

Symbiosis plays a key role in maintaining the health and

balance of diversity of reef systems (Stewart et al. 2006).

The biodiversity of coral reefs is dominated by inverte-

brates, many of which rely on hosts for food, habitat, or

settlement cues (Stella et al. 2011; Hoeksema et al. 2012).

While the diversity, distribution, and relationships of some

reef organisms are fairly well-studied, we know relatively

less about coral symbionts other than zooxanthellae. The
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study of the historical biogeography of symbiont taxa is

important for our understanding of the evolution of sym-

biotic relationships and their species richness gradients

(Pinto-Ledezma et al. 2017).

While reefs and reef corals exist in all four tropical marine

regions, they are best developed and most diverse in the Indo-

West Pacific (IWP) and theWest Atlantic (WA), and occur to a

more limited extent in the East Pacific (EP) and East Atlantic

(EA). Theorigin and evolutionof reef biota in the twogreat reef

regions have been complex.Within the IWP theCoral Triangle

(CT) is the centre of marine biodiversity (Renema et al. 2008),

and diversity of most marine organisms declines from there

with both latitude (Ukuwela et al. 2016) and longitude (Miller

et al. 2018). These diversity clines have long been studied and

numerous hypotheses advanced to explain them (Rosen 1988;

Paulay 1997; Bellwood et al. 2005; Huang et al. 2018).

Diversity in the IWP is about an order of magnitude

greater than in the WA (Paulay 1997). Part of the biota of

both regions have radiated in situ, while other lineages

have not diversified since their arrival. In situ radiations

dominate the IWP fauna, while migrant lineages that have

not diversified are more common in the WA. In situ

diversification is nevertheless common in the WA, and

characterises much of the biota, as exemplified by several

coral clades (Fukami et al. 2004, 2008), mithracid crabs

(Windsor and Felder 2014), and cone snails (Kohn 2014).

Other WA species represent isolated lineages that have not

diversified within the basin (e.g. O’Hara et al. 2019).

WA lineages that have IWP ancestry range broadly in

age. Phylogenetic analyses reveal that some species that

range across the IWP and WA show little differentiation

and are recently or currently connected (Collin et al. 2020).

Other species that were thought to be so wide-ranging

turned out to be cryptic complexes, with divergent lineages

in the IWP and WA (Michonneau 2015; Dudoit et al.

2018). Many well-characterised and older WA endemics

are nestled in IWP clades (O’Hara et al. 2019).

Some clades or lineages that range across the IWP and

WA have attained their wide ranges by crossing the East

Pacific Barrier (EPB) prior to when the Isthmus of Panama

separated the EP and WA (Glynn and Ault 2000; Lessios

and Robertson 2006; Baraf et al. 2019), others have colo-

nised the WA around the Cape of Good Hope via the

Benguela Current (Rocha et al. 2005; Andrews et al. 2016),

and some have done both (Bowen et al. 2001). The more

species-rich IWP has typically been the source for inter-

regional dispersal, with some notable exceptions (Levinton

et al. 1996; Huang et al. 2018).

To what extent is the diversification and distribution of

symbiotic groups coordinated? Here we investigate the evo-

lutionary dynamics of a crab lineage that is obligately sym-

biotic with stony corals. The modern scleractinian faunas of

both IWP and WA are dominated by locally diversified

lineages, such as the endemic Faviidae, Meandrinidae, and

Agaricia Lamarck, 1801 of the WA, and most coral clades in

the IWP. In contrast, local radiations appear to be common in

coral-symbiotic crabs in the IWP, but not in the WA.

Several crab lineages have evolved obligate or faculta-

tive symbioses with scleractinian corals (Castro 2015), and

these symbionts are much more diverse in the IWP than

WA. Cryptochiridae and Domeciidae (not Maldivia Bor-

radaile, 1902, which associates with gorgonians) include

representatives in both the IWP and WA, while the

Tetraliidae, Trapezia Latreille, 1828 (Trapeziidae),

Tanaocheles Kropp, 1984 (Tanaochelidae) and Cymo De

Haan, 1833 (Xanthidae) associate with scleractinians in the

Indo-Pacific (Lai et al. 2009; Castro 2015). Currently 47

cryptochirid species have been described from the IWP,

and only four are known from the WA in three genera, with

one of these genera endemic to the WA (Kropp and

Manning 1987; Ng et al. 2008; Van der Meij 2014b; Castro

2015; WoRMS 2021). Five domeciids are known from the

IWP and only one from the WA (Castro et al. 2004). Thus

it appears that symbiotic crabs may not have diversified

within the WA, although this needs further testing given

the high diversity of undiscovered and cryptic species in

these groups (as we also demonstrate below) (Van Tien-

deren and Van der Meij 2017).

Our goal is to explore the diversity and distributional

dynamics of the cryptochirid genus Opecarcinus, obligate

symbionts of the scleractinian coral family Agariciidae.

These crabs are a prime example of species living in obli-

gate symbiosis with a scleractinian coral host (Castro 1988).

Van der Meij and Schubart (2014) demonstrated that the

Cryptochiridae is monophyletic, and their most recent

common ancestor (MRCA) is estimated at 50–23 Mya (Van

der Meij and Klaus 2015). The cryptochirid MRCA was

previously estimated at * 83 Mya in a study on the infra-

order Brachyura by Tsang et al. (2014), however, the clade

containing the cryptochirid specimen has poor support. The

Agariciidae currently includes seven genera that range

across the IWP, EP, and WA, although ongoing taxonomic

revisions will likely lead to changes in generic classification

(Terraneo et al. 2017). Agariciidae are mostly zooxanthel-

late reef corals, common in tropical shallow-waters and also

well represented in mesophotic reefs (Terraneo et al. 2017).

The genera Agaricia and Helioseris Milne Edwards &

Haime, 1849 are restricted to the WA; Leptoseris Milne

Edwards and Haime, 1849 occurs in both the Indo-Pacific

and WA, and the remaining four genera are limited to the

IWP, with two (Pavona Lamarck, 1801 and Gardineroseris

Scheer and Pillai, 1974) extending to the EP.

We explore the diversity of the genus using a multi-

marker dataset to assess how much undiscovered and

cryptic diversity exists and where these additional species

live. With a time-calibrated, multigene phylogeny we then
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explore how the diversity of this group has evolved across

the tropical reefscape, with special attention to how WA

and IWP species are related. Do Opecarcinus in these

regions represent sister lineages or are they nested? What is

the timing and likely route of colonisation?

Materials and Methods

Sample collection and data collection

Species of Opecarcinus and Pseudohapalocarcinus ransoni

Fize and Serène, 1956 (and cryptochirid outgroups) were

collected from 21 localities in the IWP and WA (Fig. 1,

Table S1), between 2006 and 2017. Nine species belonging

to seven cryptochirid genera were chosen as outgroups

according to Van der Meij and Nieman (2016). Specimens

were photographed alive to document colour patterns, then

fixed and stored in 80% ethanol. The material collected

from the Red Sea, Maldives, Coral Triangle, Japan, New

Caledonia, and Curaçao is deposited in Naturalis Biodi-

versity Center, Leiden, The Netherlands (RMNH), whereas

specimens from the remaining localities are deposited in

the Florida Museum of Natural History, University of

Florida, Gainesville, USA (UF) (Table S1). Most sampled

localities were extensively explored for gall crabs, with the

exception of Japan, Taiwan, Hawaii and New Caledonia,

for which a limited number of Opecarcinus specimens

were available for analyses. DNA extractions, PCR and

sequencing followed the protocol in Van der Meij (2015).

Specimens were identified using Kropp (1989) and Van der

Meij (2014b), using morphological characters combined

with host and distribution data. Provisional names were

assigned to species that did not fit established described

taxa, using the prefix SET (for SET van der Meij) and a

numeric designation. These names will be consistently

applied to these OTUs in the future until a proper name is

established for each.

Phylogenetic analyses and divergence time

estimation

All analyses were performed on a concatenated

Opecarcinus dataset of two mitochondrial genes (Cy-

tochrome Oxidase I (COI) and 16S rRNA) and a nuclear

gene (Histone H3). The total data set consisted of 1539 bp:

658 bp for COI, 594 bp for 16S rRNA and 287 bp for H3.

The sequences of each marker were aligned separately

using Clustal W 2.1 (Thompson et al. 1994) and then

adjusted manually. All sequences were concatenated by

Phylosuite 1.2.1 (Zhang et al. 2020); subsequently Parti-

tionFinder 2 (Lanfear et al. 2017) was applied to find the

best partition scheme for the complete dataset consisting of

230 terminals. The best-fit scheme corresponded with the

markers (COI, 16S, H3) in the original dataset. Parti-

tionFinder was also used to find the best-fit nucleotide

Fig. 1 Map of sampling sites, constructed in ArcGIS v10.5.1 (ESRI,

Redlands, CA, USA). SAU–Saudi Arabia, Red Sea; MAD–Faafu

Atoll, Maldives; LAX–Layang-Layang, Spratly Islands, Malaysia;

TMP–Tun Mustapha Park, Kudat, N Borneo, Malaysia; SEM–

Semporna, N Borneo, Malaysia; MEN–Manado, N Sulawesi, Indone-

sia; LEM–Lembeh, N Sulawesi, Indonesia; TER–Ternate, Halmahera,

Indonesia; RAJ–Raja Ampat, Papua, Indonesia; RYU–Okinawa,

Ryukyus, Japan; TWI–Taiwan Island; NC–New Caledonia; CAO–

Curaçao. Hawaii includes Maui and Oahu; SE Polynesia includes

Moorea; A, B and D are Scattered Islands, C is Nosy Be, Madagascar,

and E is Réunion
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substitution models for the respective partitions, based on

the Bayesian Information Criterion (BIC; Schwarz 1978).

Bayesian Inference (BI) analyses and divergence time

estimations were conducted on the concatenated data set in

BEAST v1.10.4 (Suchard et al. 2018) by running the

Markov chain for 100 9 106 steps iterations, sampling

every 5000 iterations. The TN93 ? C ? I ? X substitu-

tion model was applied to COI, while the best model for

16S and H3 was GTR ? C ? I ? X. A Yule tree prior

with default settings for the speciation rate and an uncor-

related relaxed clock with lognormal distribution were

applied. Tracer v1.7.1 (Rambaut et al. 2018) was used to

test for convergence, where Effective Sample Size (ESS) of

all parameters exceeded 200. Maximum Clade Credibility

(MCC) tree was obtained through TreeAnnotator v1.10.4,

with the first 10% trees discarded as burn-in. The phy-

logeny reconstruction was visualised using Figtree v1.4.4

(Rambaut and Drummond 2018).

Calibration information for divergence time estimation

can come from several sources, such as substitution rates,

fossils, and geological data (Heath 2015). There are no

known cryptochirid fossils (only trace fossils, see Klomp-

maker et al. 2016), hence substitution rates for each of the

three gene fragments were used for calibration (Van der

Meij and Klaus 2015). The priors for substitution rates

were set as follows. Substitution rates of the COI locus in

arthropods range between 0.7% and 2.0% per Myr (e.g.

Schubart et al. 1998; Daniels et al. 2015). Here the mean

rate of 1.17% per Myr for COI locus was used with an SD

of 0.9%, and 95% highest posterior density (HPD) was

from 0.20 to 2.69%. The base substitution rate of 16S

rRNA was set to 1.09 ± 0.24% (mean ± SD) per Myr and

95% HPD was from 0.63 to 1.41%. Histone H3 was set to

0.19 ± 0.04% per Myr distribution and 95% HPD was

from 0.12 to 0.26% (Van der Meij and Klaus 2015). Sub-

stitution rates for the latter two genes are derived from

divergence time estimates of freshwater crabs from the Old

World (Asia, Africa and Europe) based on three fossil

calibration points (Klaus et al. 2010). All priors of gene

fragments were calculated using a normal distribution.

In addition to the time-calibrated phylogenetic recon-

struction, a ML analysis based on three concatenated

markers (COI, 16S rRNA and H3) including Opecarcinus,

Pseudohapalocarcinus ransoni and nine cryptochirid out-

groups was conducted by IQ-TREE (Nguyen et al. 2015)

for 10,000 ultrafast bootstraps (Minh et al. 2013). The best-

fit nucleotide substitution model for each marker was

GTR ? I ? G.

Three species delimitation tests were applied to the

Opecarcinus dataset, separately for the COI and the three-

marker concatenated dataset (Reid and Carstens 2012): (1)

a General Mixed Yule-Coalescent (GMYC) approach

(Fujisawa and Barraclough 2013) implemented with the R

package ‘splits’ (Ezard et al. 2009; R Core Team 2020); (2)

Automatic Barcode Gap Discovery (ABGD) (Puillandre

et al. 2012); and (3) the Poisson Tree Processes (PTP)

method (Zhang et al. 2013). The most conservative out-

come from these three tests was used for delimiting

Opecarcinus species (Table S1).

Ancestral area reconstruction

The Opecarcinus samples were collected from IWP and

WA, and these two regions were applied to ancestral area

reconstruction. To estimate ancestral ranges across the

Opecarcinus phylogeny, a Maximum Clade Credibility

(MCC) tree was implemented with BEAST using the same

process as described above for the divergence time esti-

mation. The best-fit nucleotide substitution model for 16S

was GTR based on PartitionFinder 2. However, the

eigenvalues did not converge, likely because the GTR

model was applied to small partitions with too few taxa

(Drummond and Bouckaert 2015), so HKY was used

instead for 16S. Parametric methods (e.g. DEC and its

extension; Yu et al. 2015) have been developed as a

response to the shortcomings in event-based methods,

which focus on integrating biogeographic processes and

patterns (e.g. Dispersal-Vicariance Analysis, DIVA)

(Ronquist 1997). Hence, ancestral range estimation was

computed using the R package ‘BioGeoBEARS’ under the

Dispersal-Extinction Cladogenesis model (DEC) (Ree et al.

2005; Ree and Smith 2008; R Core Team 2020). Consid-

ering the criticism of the DEC ? j model (Ree and San-

martı́n 2018), ‘jump’ speciation was not considered in our

analyses.

Results

Phylogenetic inference and divergence time

of Opecarcinus

The phylogenetic reconstruction and species delimitation

tests recovered 25 species in Opecarcinus by all species

delineation methods (Fig. 2, Table S1) and all with high

branch support. Additional species were recovered by

some, but not all, delineation methods within seven spe-

cies: O. hypostegus Shaw and Hopkins, 1977, O. pholeter

Kropp, 1989, O. SET7, O. SET8, O. SET12, O. SET14, and

O. SET16 (Table S1). We treated each of these latter as

single species.

Time to the Most Recent Common Ancestor (tMRCA)

of Opecarcinus was estimated at 15–6 Mya (middle Mio-

cene—late Miocene). Within Opecarcinus two main clades

can be discerned (Fig. 2, Fig. S2). Clade I (tMRCA 12-4

Mya) contains two deeply divergent species: (1)
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Opecarcinus SET11 inhabiting Pavona venosa Ehrenberg,

1834 and P. varians Verrill, 1864 in the Red Sea and

O. SET13 inhabiting various Pavona species and Gar-

dineroseris planulata Dana, 1846 from the Red Sea to SE

Polynesia.

Clade II (tMRCA 10-5 Mya) contains all other

Opecarcinus species. Within this clade several groupings

can be discerned, and several potential species complexes

are revealed (Fig. 2, S2). Potential (cryptic) speciation and/

or high levels of intraspecific genetic diversity is observed

in O. pholeter, O. hypostegus, O. SET7, O. SET8,

O. SET12, O. SET14, and O. SET16. Opecarcinus SET1,

O. SET2 and O. SET8 all inhabit Leptoseris yabei Pillai &

Scheer, 1976, however, there are no indications that L.

yabei is a species complex (F. Benzoni, pers. comm).

Opecarcinus cathyae van der Meij, 2014a, b, O. SET10,

and O. SET19 inhabit Pavona minuta Wells, 1954, P.

clavus Dana, 1846 and P. bipartita Nemenzo, 1979,

whereas Opecarcinus lobifrons Kropp 1989 and O. pho-

leter inhabit Gardinoseris planulata and Pavona explanu-

lata Lamarck, 1816, respectively. A well-supported clade

containing Opecarcinus SET3, O. SET4, O. SET7,

O. SET12, O. SET15, O. SET17, and O. SET18, associates

with a range of Leptoseris and Pavona corals, similar to the

remaining species Opecarcinus sierra Kropp, 1989,

Opecarcinus peliops Kropp, 1989, O. SET9, O. SET14,

and O. SET16. Opecarcinus peliops and O. SET9 are

morphologically very similar and further work is needed to

understand the morphological boundaries between the two

species. The closely related species O. SET5 and O. SET6,

inhabit various plate-forming Leptoseris and Pavona spe-

cies. Both species are restricted to the Coral Triangle, and,

interestingly, are sister taxa to the Atlantic species O.

hypostegus inhabiting Agaricia and Helioseris (Van der

Meij 2014a; Hoeksema 2017). The latter shows high levels

of intraspecific divergence.

Ancestral area reconstruction

The IWP was recovered as the most probable ancestral area

for Opecarcinus as a whole, as well as for all nodes within

the genus (Fig. 3). Opecarcinus colonised the WA from the

IWP, and speciated into O. hypostegus. Our divergence

Fig. 2 Time-calibrated, three-

marker MCC tree of

Opecarcinus highlighting the

diversity in the genus. Three

inner circles (yellow to soft

pink) in different colours are the

results of species delimitation

tests (GMYC, ABGD, and PTP)

based on a single gene (COI),

and three outer circles (blue to

light green) are based on three

concatenated markers.

Photographs by Sancia van der

Meij / Bastian Reijnen
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time estimation indicates that Opecarcinus colonised the

Atlantic ca. 3.25 Mya (95% CI [2.07, 4.82]; Fig. S2).

Discussion

Diversity of Opecarcinus

Currently Opecarcinus contains nine described species

(Van der Meij 2014b; WoRMS 2021), however, our results

suggest that the genus includes at least 25 species

(Figs. 2, S2, Table S1). These results will form the basis of

a taxonomic revision of the genus. Moreover, substantial

genetic variation in several species (e.g. O. pholeter,

O. SET7, and O. SET12; see Figs. 2, S2), suggests further,

potential cryptic species diversity, which warrants

investigation. The only Atlantic species, O. hypostegus, is

also a potential species complex (Fig. 2, S2). This cryp-

tochirid inhabits species of Agaricia (Kropp and Manning,

1987; Van der Meij 2014a), and Helioseris cucullata Ellis

and Solander, 1786 (Hoeksema et al. 2017). Our results are

in line with those of Van Tienderen and Van der Meij

(2017), who identified high levels of genetic divergence

within this species, with significant genetic differentiation

across its host species. The authors hypothesised that this

differentiation may represent early signs of host speciation

in O. hypostegus, but still considered this gall crab a single

species.

Opecarcinus is strictly associated with the Agariciidae

(Kropp 1989; Van der Meij 2014b). This coral family also

hosts the monotypic gall crab genera Pseudohapalocarci-

nus and Luciades Kropp and Manning, 1996, neither of

Fig. 3 Ancestral area estimation for Opecarcinus, implemented in

BiogGeoBEARS under the DEC model. Each terminal clade is

represented by one sequence. The most likely ancestral area is

indicated by letters at nodes and corners, the latter are the immediate

states after species divergence
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which occurs in the Atlantic. The position of P. ransoni is

not fixed in the various reconstructions of the Cryp-

tochiridae (e.g. Van der Meij and Klaus 2015; Van der

Meij and Nieman 2016), however, our results show that it

falls well within Opecarcinus with full support (Fig. S1),

making Opecarcinus paraphyletic. Further study with

additional markers, combined with morphological data, is

needed to robustly place P. ransoni within Opecarcinus.

No fresh material of Luciades agana Kropp and Manning,

1996 is currently available for genetic analyses, hence we

cannot assess its phylogenetic position. However, the

overall morphology of this species is similar to Opecarci-

nus (distinguished only by the lack of a distal expansion of

pereopod 2), as is its association with the agariciid Lep-

toseris papyracea Dana, 1846, suggesting that L. agana

may also fall within Opecarcinus (Kropp and Manning

1996; Komatsu and Takeda 2013).

The origin of Opecarcinus

Van der Meij and Klaus (2015) established the first time-

calibrated phylogenetic reconstruction of Cryptochiridae,

including species belonging to 17 of 21 described genera.

They estimated the MRCA of Cryptochiridae at 50–23

Mya, much later than the estimated Middle Ordovician

origin of Scleractinia (Seiblitz et al. 2020). Such a dis-

crepancy in diversification between host and symbiont has

been observed in other taxa, such as coral-dwelling gobies

(Duchene et al. 2013). A more focussed approach studying

gall crab species in a single genus, allowing for the study of

biogeographic and host use patterns in more detail, has

been lacking.

Our divergence time estimation indicates that the

tMRCA for Opercarcinus is around 15–6 Mya (middle

Miocene—late Miocene), in line with the results (11–5

Mya) of Van der Meij and Klaus (2015). Our ancestral area

reconstruction based on samples collected from IWP and

WA is the first analyses of the evolutionary history of

Opecarcinus, and indicates the IWP as the area of origin.

Timing and route of colonisation

How did the largely endemic biotas of the major reef

regions develop? Cryptochirids are most diverse in the

IWP, and only four species are currently recorded from the

WA. What are the origins of these WA gall crabs? Our

results indicate that Opecarcinus hypostegus is a relatively

recent (ca. 3.25 Mya) colonist in the WA from the

IWP. Limited phylogenetic information on two other WA

gall crabs (Kroppcarcinus siderastreicola Badaro, Neves,

Castro and Johnsson, 2012, Troglocarcinus corallicola

Verrill, 1908) suggests they also have sister taxa in the IWP

(Van der Meij and Klaus 2015; Van der Meij and Nieman

2016). These studies did not aim to trace the origin and

route of colonisation of the WA species. Van der Meij and

Klaus (2015) estimated that K. siderastreicola and T.

corallicola diverged early within their respective clades

[36–15 Mya], at a time when the connection between the

Atlantic/Mediterranean Sea and IWP across the Tethys

seaway was still open and thus may have served as a

colonisation route, in addition to the two other routes dis-

cussed below (Bialik et al. 2019).

Subsequent to the closure of the Tethys in the early

Miocene, dispersal between the IWP and the Atlantic could

occur around the Cape of Good Hope, or across the EPB

prior to the rise of the Isthmus of Panama. Reef organisms

appear to have utilised both paths. Atlantic populations that

established after the closure of the Isthmus had to have

dispersed around the Cape of Good Hope as has been

demonstrated in brachyuran crabs (Guinot and Castro

2007; Rahayu and Ng 2014; Shih et al. 2016) and other

organisms, such as Etelis Cuvier, 1828 snappers, Gnatho-

lepis Bleeker, 1874 gobies, Stenopus Latreille, 1819

shrimp, and the sea star Valvaster Perrier, 1875, some

potentially facilitated by unusual life history strategies,

such as larval cloning (Rocha et al. 2005; Andrews et al.

2016; Dudoit et al. 2018; Collin et al. 2020).

The EPB is a semipermeable biogeographic barrier as

evidenced by comparisons of populations across this vast

expanse of open ocean. There are some examples from

corals (Glynn and Ault 2000) and molluscs (Emerson and

Chaney 1995). Dispersal from the IWP to the WA across

the EPB prior to the closure of the Isthmus has been put

forward to account for the presence of numerous marine

taxa in the Atlantic (e.g. Barber and Bellwood 2005; Baraf

et al. 2019), including several crabs (Harrison and Crespi

1999; Thiercelin and Schubart 2014; Magalhães et al.

2016).

Opecarcinus appears to have crossed the EPB, one of

the world’s most potent marine biogeographic barriers,

multiple times. Two Opecarcinus species are recorded

from both the IWP and EP. Opecarcinus crescentus

Edmondson, 1925 has been recorded from Vietnam, Palau

and Johnston Island in the IWP (Garth 1965), and from

Clipperton Island to the Gulf of California in the EP (Garth

and Hopkins 1968). Opecarcinus lobifrons is known from

the Red Sea to French Polynesia in the IWP, and Clip-

perton Atoll off the American mainland in the EP (Kropp

1989). Unfortunately, we lack samples from the EP, hence

have not been able to assess the origin and diversity of

Opecarcinus from this region directly. Opecarcinus SET5

and O. SET6, the likely sister taxa of O. hypostegus, are

currently only known from the Pacific and not from the

Indian Ocean. The estimated divergence time of O.

hypostegus at ca. 3.25 Mya (Fig. S2) roughly coincides

with the closure time of the Isthmus of Panama at 2.8 Mya
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(O’Dea et al. 2016), suggesting that this lineage could have

arrived in the Atlantic by crossing the EPB, before the

closure of the Isthmus of Panama.

Agariciids have a well-established fossil record in the

Caribbean indicating that suitable hosts were available at

the time Opecarcinus colonised the region. Pavona and

Gardineroseris, currently restricted to the Indo-Pacific,

have a Caribbean fossil record from the late Miocene to the

Middle Pleistocene (Budd et al. 1994). The Caribbean

endemic Agaricia first appeared in the Early to Middle

Miocene (Budd 2000). Trace fossils (dwellings) of gall

crabs are recorded from late Pliocene–Pleistocene corals

from the WA, including Agaricia (Klompmaker et al.

2016). Given Opecarcinus’ high levels of host specificity,

we hypothesise that gall crabs diverged over closely related

coral species, and subsequently speciated through host-

switching to newly available niches (i.e. Agaricia) in the

Atlantic. This result is in contrast with a study on coral-

associated hydrozoans of the genus Zanclea Gegenbaur,

1856, where the Caribbean harbours the same generalist

hydrozoan species as the Indo-Pacific (Maggioni et al.

2020), highlighting the suitability of Cryptochiridae crabs

for co-evolutionary studies.

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s00338-

021-02163-1.
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Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, Li WX, Wang GT

(2020) PhyloSuite: An integrated and scalable desktop platform

for streamlined molecular sequence data management and

evolutionary phylogenetics studies. Mol Ecol Resour 20:348-355

Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) A general species

delimitation method with applications to phylogenetic place-

ments. Bioinformatics 29:2869-2876

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Coral Reefs (2022) 41:699–709 709

123

https://www.marinespecies.org/aphia.php?p=taxdetails&id=106753
https://www.marinespecies.org/aphia.php?p=taxdetails&id=106753

	Diversification and distribution of gall crabs (Brachyura: Cryptochiridae: Opecarcinus) associated with Agariciidae corals
	Abstract
	Introduction
	Materials and Methods
	Sample collection and data collection
	Phylogenetic analyses and divergence time estimation
	Ancestral area reconstruction

	Results
	Phylogenetic inference and divergence time of Opecarcinus
	Ancestral area reconstruction

	Discussion
	Diversity of Opecarcinus
	The origin of Opecarcinus
	Timing and route of colonisation

	Acknowledgements
	References




