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Abstract Coral reef research and management efforts can

be improved when supported by reef maps providing local-

scale details across global extents. However, such maps are

difficult to generate due to the broad geographic range of

coral reefs, the complexities of relating satellite imagery to

geomorphic or ecological realities, and other challenges.

However, reef extent maps are one of the most commonly

used and most valuable data products from the perspective

of reef scientists and managers. Here, we used convolu-

tional neural networks to generate a globally consistent

coral reef probability map—a probabilistic estimate of the

geospatial extent of reef ecosystems—to facilitate scien-

tific, conservation, and management efforts. We combined

a global mosaic of high spatial resolution Planet Dove

satellite imagery with regional Millennium Coral Reef

Mapping Project reef extents to build training, validation,

and application datasets. These datasets trained our reef

extent prediction model, a neural network with a dense-

unet architecture followed by a random forest classifier,

which was used to produce a global coral reef probability

map. Based on this probability map, we generated a global

coral reef extent map from a 60% threshold of reef prob-

ability (reef: probability C 60%, non-reef: probabil-

ity\ 60%). Our findings provide a proof-of-concept

method for global reef extent estimates using a consistent

and readily updateable methodology that leverages modern

deep learning approaches to support downstream users.

These maps are openly-available through the Allen Coral

Atlas.
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Introduction

Accurate and reliable maps are a prerequisite for quanti-

fying and analyzing geospatial patterns and the processes

that underpin those patterns. With coral reefs experiencing

unprecedented change (Hughes et al. 2018; Eakin et al.

2019), reef management and monitoring agencies, as well

as the science community, require information on the

location and extent of these environments from local (km)

to global scales, to understand and manage these biodiverse

and valuable ecosystems. Global reef maps are funda-

mental to the valuation of reef ecosystem services

(Pendleton et al. 2016; Spalding et al. 2017), understanding

the past (Heron et al. 2016), present (Burke et al. 2017),

and future threats to reefs (Van Hooidonk et al. 2016),

supporting more effective conservation (Beyer et al. 2018)

and reef restoration strategies (Foo and Asner 2019), and

facilitating scientific collaborations and research outcomes
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(McManus 1994). Now, increasingly sophisticated Earth

observation data and analytical tools provide an opportu-

nity to improve the spatial and thematic resolution of reef

maps, both over large spatial extents and at increasing

temporal frequencies (Roelfsema et al. 2020).

A single coral reef map has been the basis of most

modern scientific and management efforts. In 1994, the

United Nations Environment Program (UNEP) World

Conservation Monitoring Centre (UNEP-WCMC) began

compiling and digitizing 150 years of reef maps into a

single layer ‘‘World Atlas of Coral Reefs’’ (Spalding et al.

2001). Concurrently, Landsat 7 imagery made it possible to

begin estimating reef extents from space (Millennium

Coral Reef Mapping Project; hereafter, MCRMP), espe-

cially in remote or inaccessible locations (Andrefouet et al.

2006). The combination of these efforts and others has

resulted in the UNEP-WCMC Global Distribution of Coral

Reefs data product (Spalding et al. 2001; IMaRS-USF

2005; UNEP-WCMC et al. 2018), leading to many of the

outcomes already cited and innumerable others. At the

same time, its accuracy can be inconsistent because the

underlying data are derived from multiple sources with

different methodologies, and regions have different levels

of sampling intensity.

There have been efforts to iterate on the UNEP-WCMC

reef map with direct observations, remote sensing, and

modeling approaches, often to produce maps with detailed

geomorphic and ecological features. The NOAA National

Ocean Service has developed their mapping effort, cover-

ing 43,000 km2 from 0 to 150 m depth within US waters in

the Pacific and Caribbean (Monaco et al. 2012). More

recently, the Allen Coral Atlas is developing a global reef

map using field and satellite techniques carried out on a

region-by-region basis (Lyons et al. 2020; http://allencor

alatlas.org), while the Living Oceans Foundation has

mapped, by their estimates, 95,000 km2 (5% of the global

reef area) using seafloor observations, depth sounding, and

WorldView satellite imagery (Purkis et al. 2019). These

various approaches are promising and may lead to syner-

gistic outputs, i.e., methodological differences between

regions in a single map can be problematic, whereas map

‘‘ensembles’’ can be created and analyzed when maps are

internally consistent but differ from one another in terms of

goals, assumptions, and methodologies.

Convolutional neural networks (CNNs) are commonly

used for computer vision and image processing tasks. CNNs

have been used extensively in remote sensing (Cheng et al.

2017; Ma et al. 2019) and are rapidly being adopted for

ecological applications of remote sensing data (Brodrick

et al. 2019; Christin et al. 2019; Li et al. 2020b). Similar to

other conventional approaches, CNNs can incorporate

spectral or color information, but they have the advantage of

incorporating spatial context, local or global texture features,

and can self-generate features rather than rely on hand-

crafted features from experts. At the same time, CNNs also

have greater programming and computational overhead, and

they require large training datasets. Even so, CNNs are a

natural choice for developing geospatial data resources from

high-resolution satellite imagery.

We present a global coral reef probability map and a

global coral reef extent map generated by convolutional

neural networks and Planet Dove satellite imagery, with the

ultimate goal of linking coral reef ecology and monitoring

groups. Our maps are a useful resource because they: (1)

use a single methodology and are therefore globally con-

sistent and updateable, (2) leverage modern deep learning

methods to build on previous approaches, while incorpo-

rating new ones, and (3) provide a unique comparison with

other mapping resources. Here we describe the develop-

ment of the satellite imagery and reef extent inputs, the

model architecture, and training strategy. We then report

on the results from the global coral reef probability map

and global coral reef extent map at global and regional

scales. Finally, we discuss opportunities for improving the

approach and future maps.

Materials and methods

Planet Dove satellite imagery

The features used to train the model came from a global

natural color composite mosaic generated from the Planet

Dove satellite constellation. The mosaic was generated by

the Planet team (www.planet.com) using 554,663 individ-

ual scenes collected between 1 Oct. 2017 and 1 Sept. 2018.

It contains three spectral bands corresponding to red,

green, and blue portions of the solar-reflected spectrum.

The global visual mosaic is split into sub-regional images

called ‘‘quads’’, with each image being 4096 9 4096 pix-

els at approximately 4.5 m resolution, or almost

20,000 9 20,000 m. We filtered the visual mosaic down to

any quads in tropical and subtropical regions which may

have any amount of reef area, for a total of 50,084 quads.

The filtering was achieved by making a global mask of

waters less than 20 m deep using the GEBCO bathymetry

layer (GEBCO Group 2019), and large turbid or rocky

embayments (non-reef) were additionally filtered out using

a normalized difference index threshold from a 2017 global

median MODIS mosaic ([band 1 - band 3]/[band

1 ? band 3][- 0.8). This mask was then buffered by

10 km, and we then confirmed that all existing reef poly-

gons from the UNEP-WCMC mapping were covered.

The Planet mosaicking process modified band values

and inter-band relationships to create a ‘‘Dove visual

mosaic’’ that was meant to be a seamless representation of
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the globe with limited cloud and cloud shadow. In addition

to losing the inter-band relationships, this also meant that

raw reflectance values and the near-infrared band are not

available. As a result, this visual mosaic of red, green, and

blue bands precluded an effective classification of land

features, correction for sun glint or waves, or water depth

estimation, among other challenges. While these signifi-

cantly limit the use of the visual mosaic for some scientific

applications, the curated removal of cloud and cloud sha-

dow by Planet in creating the visual mosaic was considered

invaluable in the often cloud-covered tropics.

Millennium Coral Reef Mapping Project (MCRMP)

reef features

The reef data used to train the model were acquired from

the open-access MCRMP maps, which cover a subset of

the world’s reefs (IMaRS-USF 2005). The MCRMP-clas-

sified reef features were based on a supervised classifica-

tion method and manual post-processing. The features were

classified into several hierarchical categories, from coarse

to detailed, and covered a representative sample of global

reef diversity. We chose to train the model with only this

dataset to ensure that reef features were created with con-

sistent definitions and methodologies. The MCRMP maps

were manually reviewed to assess consistency with the

Dove visual mosaic. The MCRMP maps for Chagos, Sri

Lanka, Tobago, and Vietnam were removed due to low

correspondence between the visual mosaic and the

MCRMP reef features, that is, sometimes reef features

would not be visually apparent due to water depth or clarity

and therefore would not be effective training examples for

the model. This helped to ensure that the model would find

more consistent relationships between the visual mosaic

and reef features. The remaining MCRMP training data

features were spread across 2518 of the 50,084 visual

mosaic quads (2425 after reducing the training dataset

further, see below).

The MCRMP reef classes were reduced to a subset that

would be tractable to model and sufficient for predicting

global reef extent. The MCRMP classifications have five

hierarchical levels of resolution, from coarse (‘‘L1’’) to

detailed (‘‘L5’’). We chose the L4 attribute level as the

starting point because the L4 level appeared to be adequate

for our needs, that is, the L3 attributes were not fine enough

to separate spectrally-distinct reef features into distinct

classes, while the L5 attributes appeared to sometimes

partition spectrally- and ecologically-similar reef features

into distinct classes. We mapped the 62 L4 attribute classes

to 11 combined classes for our model training process

(Table 1): one for land, two for water, five for reef features,

and three for non-reef features (submerged, but visible

features which did not represent reef area). The reef classes

were separated into fore reefs, shallow reef flats, variable

depth reef flats, pinnacles, and lagoons.

Several assumptions guided this mapping process as a

result of our manual exploration of the data, with three

critical assumptions driving the majority of our work. First,

we focused on mapping reef and non-reef classes sepa-

rately. Second, depth plays a significant role in the

appearance (or lack thereof) of reef features in the imagery,

so we largely kept shallow and variable depth classes

separate, and removed most deep features completely,

using the MCRMP depth attribute to group these classes.

The two deep classes retained in the model were the ‘‘shelf

hardground’’ and ‘‘shelf-slope’’, as they were more often

visible in the Dove visual mosaic and represent a signifi-

cant portion of the benthos in some regions, including the

Caribbean. Third, we redefined lagoon classes from non-

reef to reef because they are fundamental geological,

ecological, and socio-economic components of reef

ecosystems (Aswani and Vaccaro 2008; Montaggioni and

Braithwaite 2009).

Other assumptions were made to best facilitate the

modeling process (detailed information can be found in

Table 1). First, we removed features with classes contain-

ing ‘‘with constructions’’ from the training data, including

‘‘terrace with constructions’’ or ‘‘lagoon with construc-

tions’’. Each of these classes represents multiple spectral or

geomorphic features in a single class—e.g., both terrace

and constructions, or both lagoon and constructions—and

we instead train the model to predict these classes sepa-

rately and at a finer spatial resolution. Second, we mapped

the ‘‘aquatic land features’’ and ‘‘brackish atoll lagoon’’

classes to their own water class, as they were visually

distinct from other water features in many cases and a

separate class would likely improve model performance.

Third, we removed features in the ‘‘reticulated fringing’’

class as their boundaries were not always precisely or

accurately defined, at least relative to our visual mosaic.

All modifications above did not have a large effect on the

results because they impacted a small proportion of fea-

tures, or focused on non-reef classes.

Supplemental training data

The MCRMP data alone are not sufficient for training a

global reef model because they do not include classes for

other non-reef geospatial features found in the Dove visual

mosaic. Specifically, the MCRMP data have no classes for

deep water or clouds, and our sampling process (described

below) initially under-sampled land areas. We addressed

these issues by manually creating supplementary training

data with three additional classes—deep water, clouds, and

supplementary land—which led to the final 14 classes used

for the model (Table 1).
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We used early versions of the model to identify imagery

with high-value supplemental training data. For deep water

and land classes, the model would misclassify areas with

unique spectral patterns or textures, and we were able to

iteratively train the model, generate additional training data

to improve performance, and retrain the model. For

instance, in addition to deep water with a rich, sapphire

color, we also collected samples from areas with distinct

waves or sunglint patterns. For land, we selected additional

samples from areas with grassland, forests, jungles, and

cities, both in flat areas and in areas with topography that

could cause shadows. Similarly, the supplementary cloud

training data were selected by running earlier versions of

the model and finding areas where the model had mis-

classified clouds, most often as reef features. Because the

model output can be converted to vector format, we were

able to easily convert the ‘‘outlines’’ that the model had

drawn around clouds (and misclassified as reef) to a new

cloud class.

Convolutional neural network

We used a CNN to model the relationship between the red,

green, and blue band pixel values in the Dove visual

mosaic and the 14 reef training classes. We tested several

CNN architectures [i.e., u-net, dense u-net, Fully Convo-

lutional Network (FCN)] and selected a dense u-net

architecture because it showed the highest performance

(Figs. 1, 2; Zhang et al. 2018; Guan et al. 2019). The dense

u-net architecture is a combination of a u-net architecture

(Iandola et al. 2014; Ronneberger et al. 2015) and a dense

net architecture. The u-net structure is defined by the

encoder-decoder pattern, through which the image features

are downsampled to a smaller resolution and then upsam-

pled to the original resolution for the final predictions

(Fig. 1). This pattern drives the model to reduce the

number of features to a subset that is most useful for pre-

dicting the responses, while also using pass-through layers

to localize those predictions at the original image resolu-

tion during the upsampling process. The dense net com-

ponent is that each convolutional layer additionally has

Table 1 Cross-connections between original Millennium Coral Reef Mapping Project reef feature classes, model training classes, and aggre-

gated model classes

MCRMP classes Model training

classes

Aggregated model

classes

Land on reef, main land Land Land

N/A Supplemental

land

Land

Channel, deep lagoon, double barrier lagoon, drowned lagoon, haa enclosed lagoon, pass Water Water

Aquatic land features, brackish atoll lagoon Water other Water

N/A Supplemental

deep water

Water

Faro forereef, forereef Forereef Reef

Enclosed basin, enclosed lagoon, enclosed lagoon or basin, faro enclosed lagoon, shallow lagoon Lagoon Reef

Bay exposed fringing, crest, faro reef flat, fractal reef flat, intermediate reef flat, linear reef flat, pass

reef flat, reef flat, ridge and fossil crest, uplifted reef flat

Shallow reef flat Reef

Immature reef flat, subtidal reef flat Variable depth

reef flat

Reef

Barrier reef pinnacle/patch, lagoon pinnacle, pinnacle Pinnacle Reef

Diffuse fringing Shallow non-reef Non-reef

Cross-shelf, inner slope, inner terrace, outer terrace, shallow lagoonal terrace, shallow terrace, shelf

terrace

Variable depth

non-reef

Non-reef

Shelf hardground, shelf slope Deep non-reef Non-reef

N/A Supplemental

clouds

Non-reef (clouds)

Bridge, deep drowned reef flat, deep terrace, drowned bank, drowned inner slope, deep lagoon with

constructions, deep terrace with constructions, drowned pass, drowned patch, drowned rim, enclosed

lagoon or basin with constructions, enclosed lagoon with constructions, forereef or terrace, haa

subtidal reef flat, reticulated fringing, shallow lagoon with constructions, shallow lagoonal terrace

with constructions, shallow terrace with constructions, shelf terrace with constructions, undetermined

envelope

Removed N/A
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access to the initial model inputs and inputs from each

preceding layer (Fig. 2), rather than simply the outputs

from the previous layer. This gives the model the oppor-

tunity to propagate information through the network across

paths of varying lengths, rather than restricting information

flow to a limited set of fixed-length paths, and ultimately

increases model performance. The combination of these

two architectures performed better than either architecture

separately in early tests.

We tested a variety of dense-unet network parameteri-

zations to find a model variant with adequate performance.

In general, our models took approximately 2 to 8 h to train

on modern computer graphics processing units (GPU),

limiting our ability to do an extensive search of all possible

architectures. We found it sufficient to conduct a grid

Fig. 1 Sample dense u-net architecture, with four levels of dense

blocks and 16 filters. The RGB input is passed into the first layer of

the network in the upper left. The first half of the network, or encoder,

feeds the data through three levels of dense blocks and downsam-

pling, i.e., max pooling, represented by the three dark blue rectangles

and arrows. The bottom gray square represents the dense block and

transition between the encoder on the right and decoder on the left.

The second half of the network, or decoder, feeds the data through

three levels of dense blocks and upsampling, represented by the light

yellow rectangles and arrows, which return the data to the original

spatial resolution. Finally, the features pass through one last

convolution layer and a fully connected layer with softmax activa-

tions to calculate the final reef class probabilities. Note that features

from the encoder are ‘‘passed-through’’ (dashed teal) to the decoder to

be concatenated with the upsampled features prior to each dense

block, helping to localize predictions

Fig. 2 Sample dense block, with four convolutions and 16 filters.

The input data are passed to the first convolution on the left (gray

block) and has a variable number of channels (X) depending on the

network level and whether features from the pass-through layers are

concatenated prior to the dense block. The input to each convolution

layer is the concatenation of the input to the dense block (dark purple)

and the output of each preceding convolution layer, e.g., the input to

the third convolution is the concatenation of the dense block input

(dark purple) and the output from convolution layers one (dark blue)

and two (teal). The first operation in each convolution layer is a 1 9 1

convolution (white arrow) to reduce the number of channels to the

specified filter number. The second operation in each convolution

layer is a 3 9 3 convolution (gray arrow) to derive new features.

Finally, the output of the dense block is the concatenation of the dense

block input and all convolution layer outputs
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search to identify reasonable model architectures and

hyperparameters, even though random parameter searches,

Bayesian optimization approaches, or network architecture

searches can improve model performance (Dernoncourt

and Lee 2016). We varied the number of dense blocks at

different model resolutions from two to four blocks, varied

the number of convolution layers within each dense block

at four, six, and eight, and varied the number of filters in

multiples of two from eight to 32. We split training data

into 256px 9 256px images, included no growth in filter

number throughout the network, used 3 9 3 convolution

kernels, and both upsampled and downsampled with 2 9 2

kernels.

Model training

We sampled * 5000 256 9 256 pixel images from the

visual mosaic and response data. We restricted samples to

areas within 64 pixels of reef classes, which was necessary

to keep classes balanced and get a sufficient number of reef

samples, given the massive amount of mainland available

in the MCRMP data. In selecting model training data, we

only used samples with at least 75% feature coverage (i.e.,

at least 75% pixels are in ocean region) and at least 10%

response coverage. Asymmetric thresholds were appropri-

ate because feature data were relatively complete, except

near the boundaries of the visual mosaic, while the

MCRMP data were sparse in areas where reef segments

were surrounded by unlabeled deep water.

We split samples into training and validation sets rep-

resenting 90% and 10% of the data, respectively. We

included 16 samples in each neural network training

batch—i.e., the number of samples used for a single update

of the model parameters—due to model size and aug-

mented samples during the training process. Image aug-

mentations included flips, rotations, and transpositions;

crops and scalings; color shifts and brightenings; distor-

tions, blurs, noise additions, and dropouts; and the addition

of ‘‘fog-like’’ whitening. These augmentations improved

model performance and are a standard practice for neural

network model training (Christin et al. 2019; Ma et al.

2019). Response classes were weighted proportional to the

inverse of their abundance, which over-weighted classes

like reefs that appeared infrequently and under-weighted

classes like land or deep water that were more common.

Global coral reef probability map through model

classification

We generated a global coral reef probability map through

model classification. The final layer in the CNN was con-

figured to use softmax output activations, such that the

model output is the relative probability that a pixel repre-

sents one of the 14 training classes. Because the model is

based on only the three Dove satellite bands, it was limited

in its ability to distinguish between spectrally-similar

classes. As a result, we achieved greater accuracy by

allowing the model to predict the 14 classes, and then

aggregating those probabilities further into land, water,

reef, and non-reef classes. We tested several methods of

converting the 14 classes into the four aggregated classes,

including directly in the CNN, using a maximum-likeli-

hood approach on the CNN probabilities, and using a

random forest classifier trained on the CNN probabilities.

Here, we present the results for the random forest classifier

because it outperformed the other two methods. We split

the validation data into fivefold for training the random

forest classifiers, ultimately settling on 200 trees with a

max depth of 40 splits and weighted subsamples. The

output of the random forest classifier is the probability that

a pixel is one of the aggregated model classes (reef or non-

reef (e.g., land, water, etc.); Table 1).

Global coral reef extent map and testing

We generated a global coral reef extent map from a 60%

threshold of reef probability (reef: probability C 60%, non-

reef: probability\ 60%). To test this map, we created a

global coral reef field location dataset. We collected coral

reef locations from public datasets, in particular, the Allen

(a)

(b)

(c)

Fig. 3 Global summaries of the data inputs and model outputs in the

context of Marine Ecoregions of the World (MEOW). In panel a,

training quads (yellow) come from a manually-selected subset of the

MCRMP data, while testing quads come from all potential coral reef

locations. Area is buffered for visibility and not proportional to actual

coverage, as only 5% of the satellite imagery has associated training

data. In panel b, the total area tested within each of the 130 MEOW

ecoregions with quad coverage. In panel c, the average reef

probability within each MEOW ecoregion. Please note that ecoregion

summaries are not sufficient for data interpretation because values are

dependent on ecoregion size, the proportion of ecoregion covered by

satellite data, and the proportion of land and open water relative to

reef area
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Coral Atlas (https://allencoralatlas.org/), Atlantic and Gulf

Rapid Reef Assessment (https://www.agrra.org/), Khaled

bin Sultan Living Oceans Foundation (https://www.livin

goceansfoundation.org/), the National summary of

NOAA’s shallow-water benthic habitat mapping of U.S.

coral reef ecosystems (https://repository.library.noaa.gov/

view/noaa/748), the USGS Coral Reef Project, and Red Sea

Biodiversity Surveys (http://redseabiodiversity.sencken

berg.de/). We also used coral location records from pub-

lished literature (Lang 2003; Rezai et al. 2004; Bertels

et al. 2008; Solandt and Wood 2008; Bruckner 2011;

Madduppa et al. 2012; Monaco et al. 2012; Riegl et al.

2012, 2012; Torres-Pulliza et al. 2013; Pramudya et al.

2014; Jadot et al. 2015; Hossain et al. 2016; Fujii 2017;

Hafizt et al. 2017; Ampou et al. 2018; Edmunds and

Kuffner 2018; Purkis et al. 2019). In total, we accessed

1952 coral reef location points (Fig. S1). Moreover, we

also generated 1403 non-reef location points globally (e.g.,

land, water, cloud, etc.) to test our reef extent map using a

confusion matrix.

Table 2 Comparison of Spalding et al. (2001) reef estimates to reef estimates generated from our reef probability maps

Region Results, lower threshold Spalding et al. (2001) (km2) Results, upper threshold

Global 301,110 km2 (60%) 284,300 154,049 km2 (65%)

Atlantic and Caribbean 25,958 km2 (65%) 21,600 16,446 km2 (70%)

Caribbean 24,981 km2 (65%) 20,000 16,087 km2 (70%)

Atlantic 2640 km2 (60%) 1600 976 km2 (65%)

Indo-Pacific 506,555 km2 (55%) 261,200 257,323 km2 (60%)

Red Sea and Gulf of Aden 18,088 km2 (55%) 17,400 12,126 km2 (60%)

Arabian Gulf and Sea 6327 km2 (65%) 4200 2487 km2 (70%)

Indian Ocean 35,630 km2 (60%) 32,000 13,735 km2 (65%)

Southeast Asia 180,065 km2 (55%) 91,700 85,814 km2 (60%)

Pacific 188,471 km2 (55%) 115,900 104,554 km2 (60%)

Eastern Pacific 2672 km2 (55%) 1600 1312 km2 (60%)

Reef extents estimates were generated for probability thresholds in 5% increments (i.e., 0%, 5%, 10%, … 95%). We report the results for the

thresholds which cover the range inclusive of the Spalding estimates; e.g., the Spalding reef estimate falls between 65 and 70% for the Caribbean,

but between 60 and 65% for the Atlantic. The selected regions and ordering were chosen to match the original reef estimate table from Spalding

et al. (2001)

Fig. 4 Visual comparisons of the UNEP-WCMC reef map with our global coral reef extent map in different regions, including a Great Barrier

Reef (GBR), Australia, Papua New Guinea, Indonesia; b Madagascar, East Africa; c Red Sea, Samoa, Virgin Islands
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Results

Our global coral reef probability map and coral reef extent

map is available for download and interactive viewing

from Allen Coral Atlas (allencoralatlas.org). Our global

Dove mosaic quads covered coral reefs in tropical and

subtropical regions (Fig. 3). Within the Marine Ecoregions

of the World boundaries (MEOW) framework, the quads

spanned 9 of 12 realms, 39 of 62 provinces, and 130 of 232

ecoregions (Spalding et al. 2007). In total, these quads

included 10.26 million km2 of satellite imagery represented

by 121.75 billion pixels. The total area mapped in the

global reef probability map sufficiently covered coral reefs

globally (Fig. 3).

We tested the feasibility of our reef probability map by

using it to derive reef area estimates compared to other

global and regional estimates (Spalding et al. 2001,

Table 2). We derived reef area by setting a probability

threshold and counting pixels as reef when their reef

probability exceeded that threshold. We tested probability

thresholds from 0 to 95% in increments of 5%. Depending

on the region, the estimates derived from a threshold

between 55 and 70% aligned well with Spalding’s esti-

mates, with most of the three regions or eight subregions

having thresholds very close to 60% (Table 2). Therefore,

we created a global coral reef extent map using a 60%

threshold.

We compared our global coral reef extent map with the

UNEP-WCMC reef map worldwide (UNEP-WCMC et al.

2018). In some regions of the UNEP-WCMC map (i.e.,

GBR), some reef contours did not match, polygons

extended beyond reef structures, and there were gaps in

reef area (Fig. 4a–c). In contrast, our reef extent map

appeared to better track the actual reef extent (Fig. 4a–c).

These suggest that our mapping approach is especially

useful in delineating reef extent details in most regions,

which cumulatively will generate more accurate uses for

our map at jurisdictional scales such as country- or island-

level applications.

Compared with a global coral reef field dataset, our

global coral reef extent map had a producer’s accuracy of

87.3% (Table S2). Most of the coral reef location points

from the field dataset (1704) matched with reef regions of

our extent map. We plotted coral reef field location points

and the reef extent map (Fig. 5, Fig. S2 to Fig. S5) and

found that coral reef regions were accurately illustrated in

the reef extent map. Only several deep reef locations (e.g.,

Fig. S5, Caribbean) did not appear on our reef extent map.

As expected, neural network architecture and parame-

ters had a large impact on model performance and results

(Table 3, Table S1). The two best performing models had

F-scores of 0.66, but one had slightly higher precision

Fig. 5 Visual comparisons of the coral reef field locations with our

global coral reef extent map, including Great Barrier Reef (GBR),

Australia, Indonesia, Madagascar, French Polynesia, Red Sea, and

Caribbean

Table 3 Classification

performance results (average

values using 14 classes) for

select model architectures

Dense block number Convolution layers per block Filters Precision Recall F1-score Accuracy

2 4 16 0.68 0.38 0.49 0.91

2 6 32 0.74 0.55 0.63 0.92

2 8 24 0.77 0.58 0.66 0.93

3 4 24 0.69 0.50 0.58 0.92

3 6 24 0.76 0.50 0.60 0.92

3 8 32 0.63 0.36 0.46 0.90

4 4 32 0.71 0.43 0.54 0.91

4 6 8 0.67 0.44 0.53 0.91

4 8 8 0.76 0.59 0.66 0.93

Bold means the best performances
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(0.77 vs 0.76) while the other had slightly higher recall

(0.59 vs 0.58). We chose to use the model with higher

precision for global application after manual review indi-

cated that the choice was not likely to lead to qualitative

differences, and because the map generation process was

too computationally expensive to generate multiple maps.

Discussion

Our global coral reef extent map and coral reef probability

map add value to existing reef products, as both a

methodological improvement and a new source of vitally

needed data. Methodological advantages include high-res-

olution satellite imagery, modern deep learning approa-

ches, and consistent global methods. Our coral reef extent

map provides new high-resolution (i.e., 4.5 m) spatial

information of coral reefs at a global scale. Our coral reef

probability map can be used as a new data source by

combining the reef probabilities with other global maps to

create synergistic data products, or combining the reef

probabilities with other types of data layers to create

derived data or analytic products. Thus, our probability

map could be used in concert with other maps or datasets.

Our methods were composed of high-value and low-cost

approaches to modeling the global reef extent, but these

methods are not exhaustive and can be improved over time,

with corresponding improvements in the generated reef

probabilities. Additional data sources could be incorpo-

rated, whether they include other satellite products like

Sentinel-2 or Landsat-8, or derived data products like tur-

bidity, bathymetry, or geomorphology (Hedley et al.

2016, 2018; Hafizt et al. 2017; Kerr and Purkis 2018;

Purkis 2018; Roelfsema et al. 2018, 2020; Li et al.

2019a, b; Purkis et al. 2019; Lyons et al. 2020). These

additional data sources could account for shortcomings in

the Dove feature data or add additional power to separate

response classes. Our model could be updated to include

both spatial and temporal resolutions with new network

architectures (e.g., Mou et al. 2018), again helping to dis-

tinguish between response classes. Supplemental response

categories could be enhanced to better handle a variety of

cloud patterns, turbid water, or other confounding spectral

or textural patterns. Multiple models could be generated for

different regions of the globe or different types of reef

formations, or incorporated in model ensembles for more

accurate predictions.

Our model performances are affected by the technical

(e.g., mosaicking, misalignment) or environmental (e.g.,

clouds, turbid water) ‘‘noise’’ in the satellite data, and by

inaccuracies in the extent or category of reef in the

MCRMP training data. Moreover, reef features could

simply not be visible due to excessive depth where bottom

habitats are invisible (Brando et al. 2009; Thompson et al.

2017; Li et al. 2020a), even if the satellite data and reef

extents are otherwise accurate. For these reasons and

potentially others, we would expect a ‘‘perfect’’ model to

have less than perfect performance when tested against

validation data.

The growing quantity and quality of Earth observation

data, as well as the increasing sophistication and perfor-

mance of machine learning approaches, are double-edged

swords. They provide new opportunities for coral reef

research and applied outcomes, but present new barriers to

entry and effective and efficient progress. In addition to

coral reef domain knowledge and the ability to communi-

cate and coordinate with policymakers and stakeholders,

teams need members with robust data science and software

engineering skills. This project required the capacity to

store on the order of tens of terabytes of data and access to

hundreds of computer GPU hours. Teams of organized

collaborators can produce better outcomes more quickly

than individual contributors, and continued collaborations

can iterate on existing datasets, codebases, and models

more quickly than teams starting from scratch. We

encourage others to join us in continuing to develop this

resource and others.
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