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Abstract Length–weight relationships (LWRs) are a fun-

damental tool for the non-intrusive determination of bio-

mass, a unit of measure that facilitates the quantification of

ecosystem and fisheries productivity. LWRs have been

defined and broadly applied for many marine species

across a range of ecosystems, especially regarding fishes.

However, LWRs are yet to be determined for the majority

of marine taxa, particularly for small cryptic organisms that

are difficult to census and poorly described. On coral reefs,

the motile cryptofauna represent the greatest density and

diversity of metazoan taxa that likely support critical steps

in trophic pathways, but little empirical data exist beyond

biodiversity assessments. We evaluated LWRs for 42

groups of motile cryptofauna across four microhabitats

(live Acropora, live Pocillopora, dead branching coral and

coral rubble) in Palau, Western Micronesia. We employed

a robust methodology to determine LWRs by comparing

the suitability of a series of linear, quadratic, polynomial

and power models. Using the best-fit equations for each

group, we provide the first documented LWRs for motile

cryptofauna, namely at the level of family. LWRs were

well fit (R2[ 0.90) for 45% of the groups and reasonable

(R2[ 0.70) for 76%. The presence, size and weight of

cryptofauna varied among microhabitats with the size

distribution of 13 groups significantly influenced by habitat

type. Establishment of these LWRs provides critical

baseline information regarding an overlooked group on

coral reefs, making population data on the cryptofauna

more accessible to support future research aiming to

characterise the roles of these taxa in ecosystem function-

ing and trophodynamics.

Keywords Biometrics � Coral reefs � Invertebrate �
Microhabitat � Rubble

Introduction

Ecology is founded on patterns in the density and abun-

dance of species within an ecosystem. For conspicuous

organisms, density data are generally easily obtained

through non-intrusive in situ survey methods including belt

transects and videography. Abundance, on the other hand,

is often quantified in terms of biomass, an important

indicator for assessing the condition or productivity of an

ecosystem (Griffiths 1986; Warwick and Clarke 1994;

Odum 2013). However, quantification of biomass has his-

torically depended on the harvest and sacrifice of a suffi-

cient number of individuals from a population. To abate

this issue, determination of biometrics, such as length–

weight relationships (LWRs), has gained traction in marine

ecology.
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LWRs improve our understandings of marine ecosys-

tems from the level of individuals through to community

dynamics (Duplisea et al. 2002; Jennings et al. 2002, 2007;

Robinson et al. 2010) and ecosystem productivity (Brey

1990; Edgar 1990). Estimation of biomass using LWRs is

essential for upscaling ecological surveys with many

applications including in fish stock assessments and eval-

uation of food web dynamics (Duplisea et al. 2002; Jen-

nings et al. 2002; Bascompte et al. 2005; Robinson et al.

2010). It is therefore not surprising that determination of

LWRs in marine ecosystems has largely focused on fishes

(Bohnsack and Harper 1988; St John et al. 1990; Letour-

neur et al. 1998; Kulbicki et al. 2005; Balart et al. 2006;

Froese 2006). Online resources, such as FishBase, are a

repository for LWRs for thousands of fishes of the world

(Froese and Pauly 2018), making them easily accessible

and therefore widely employed.

Despite their relatively small contribution to total coral

reef biodiversity (Reaka-Kudla 1997), ecological research

and monitoring have largely focused on reef fishes and

corals (Bellwood and Hughes 2001; Przeslawski et al.

2008; Fisher et al. 2015; Bellwood et al. 2017), as they are

easy to census and their taxonomy is relatively well known.

However, metazoan biomass of most ecosystems, including

coral reefs, is dominated by cryptic invertebrate fauna

(Wilson 1992; Reaka-Kudla 1997). For coral reef inverte-

brates, establishment of LWRs has largely been reserved

for conspicuous fauna with commercial or ecological

importance, including aspidochirotid sea cucumbers (Co-

nand 1993; Pitt and Duy 2004; Natan et al. 2015; Lee et al.

2018), diadematid sea urchins (Rahman et al. 2012),

penaeid prawns (Fontaine and Neal 1971; Penn 1980),

spiny lobsters (Ebert and Ford 1986; Wade et al. 1999;

Vaitheeswaran et al. 2012; Aisyah and Triharyuni 2017)

and trochid gastropods (Klumpp and Pulfrich 1989; Saleky

et al. 2016). Owing to their large size, determination of

biometrics for these groups can be conveniently and

directly measured with little training. Determination of

biometrics for motile cryptofauna—cryptobenthic organ-

isms that typically take refuge inside the complexities of

the reef matrix and dominate total reef biomass and

diversity (Peyrot-Clausade 1979; Hutchings 1983; Plai-

sance et al. 2011; Takada et al. 2012; Carvalho et al.

2019)—is more challenging (Brock 1982; Alzate et al.

2014).

Owing to their interstitial tendencies, the cryptofauna

are difficult to observe and are therefore poorly described

and monitored (Hutchings 1983; Reaka-Kudla 1997; Glynn

2013). Given that the majority of motile cryptofauna are

closely associated with their microhabitat, surveying these

taxa usually involves sampling the entire microhabitat (e.g.

a whole coral colony) (e.g. Alzate et al. 2014; Fraser et al.

2020), which is laborious, time-consuming and often

destructive. Thus, data on the biometrics of motile coral

reef cryptofauna are scarce (but see Opitz 1993; Balart

et al. 2006), though some effort has been made for small

mobile invertebrates in other marine ecosystems (e.g.

Taylor 1998; Robinson et al. 2010) including in the zoo-

plankton (Cohen and Lough 1981; Uye 1982; Heron et al.

1988; Watkins et al. 2011).

The cryptofauna are a foundation group in coral reef

trophic pathways, as outlined in great detail for crypto-

benthic fishes (Brandl et al. 2018, 2019). Biodiversity of

the motile cryptofauna is largely determined by micro-

habitat type and reef degradation profiles (Hutchings 1983;

Reaka-Kudla 1997; Enochs et al. 2011), which conse-

quently influences invertebrate–invertivore interactions

from the bottom-up (Rogers et al. 2014; Kramer et al.

2016; Rogers et al. 2018a). Dead coral and coral rubble

often host the most abundant and diverse populations of

metazoan fauna on coral reefs (Takada et al. 2007; Enochs

2012; Enochs and Manzello 2012). In contrast, cryptic

organisms that occupy live coral tend to be specialised

associates, including decapods of the Tetraliidae and

Trapeziidae (Stella et al. 2011). Yet, little empirical data

exist on the taxonomy, population structure and charac-

teristics of motile cryptofauna beyond biodiversity assess-

ments. Moving beyond such assessments through

quantification of biomass and rates of reproduction, growth

and population turnover is critical to determining the roles

of motile cryptofauna in ecosystem productivity and reef-

scale trophodynamics (Rogers et al. 2018b).

As exists for corals (e.g. Coral Trait Database: Madin

et al. 2016) and fishes (e.g. FishBase: Froese and Pauly

2018), we provide baseline information that can be used to

extrapolate size and biomass for motile cryptofauna in

future endeavours. Availability of these morphometric

relationships will relieve the requirement of destructive and

sacrificial sampling methods and encourage the application

of multi-model biometric analyses in coral reef and marine

ecology. These data may also enable estimations of bio-

mass to be conducted via fine-scale visual underwater

surveys for more conspicuous cryptofauna taxa (i.e. live

coral specialists), rather than current methods requiring

destructive microhabitat sampling.

Methods

Specimen collection and processing

Samples from four microhabitat types (live Acropora, live

Pocillopora, dead branching coral and coral rubble;

Fig. S1) were collected from the east coast of Palau,

Western Micronesia (Dec 2014–Feb 2015) to quantify the

motile cryptofauna population. Specimens were sampled
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from these four microhabitats to ensure the best represen-

tation of individuals across a range of cryptobenthic taxa

encompassing habitat specialists and generalists. Replicate

substrate samples (n = 23–24) and their resident crypto-

fauna were collected at 5–7 m depth across various sites.

For live (Acropora and Pocillopora) and dead (Acropora)

coral microhabitats, cryptofauna were collected by cover-

ing the entire coral colony with a plastic bag to prevent

mobile organisms from escaping, and the entire intact

colony was carefully chiselled free of the substrate and

sealed in the bag underwater. Coral rubble samples were

collected by inserting plastic mesh trays

(22 9 18 9 5.8 cm) filled with defaunated rubble in place

of a natural rubble patch. All rubble pieces were derived

from dead branching coral fragments. The rubble con-

tainers were left in the field for * 7 d to allow inhabitants

ample opportunity to resettle. Upon retrieval, trays were

lifted from their depression and placed into plastic bags, as

the above. All communities were transferred into individ-

ual buckets of seawater and transported back to the labo-

ratory within 2 h for processing.

To extract cryptofaunal specimens, each microhabitat

sample was searched extensively for conspicuous fauna

that could be easily removed using blunt probes, forceps

and plastic spoons and were placed into petri dishes for

identification. The microhabitats were then washed with

pressurised seawater over a tray to dislodge any fauna

clinging to the surface. This was done several times with

close inspection between washes. Water from the respec-

tive collection bags and wash trays was then poured

through mesh net (1 9 1 mm) and all fauna retrieved for

identification under a dissecting microscope (this method

excluded individuals \ 1 mm). Each organism was iden-

tified to the highest taxonomic resolution possible (namely

to family) and measured to the nearest 0.1 mm. Standard

measurements were used: carapace width for crab-like

crustaceans or length for shrimp-like crustaceans, shell

length for molluscs (widest distance), diameter for echin-

oderms with radial symmetry and length for all types of

worms. Each individual was then placed in a dry petri dish

to be weighed to the nearest mg using an analytical balance

(AND GR-120). Residual water was blotted off using fine

tissue paper under the microscope before weight was

recorded. All shelled specimens remained shelled for

length and weight measurements. All faunae were released

with their respective microhabitat at their original site of

collection.

Length–weight relationships

Length (mm) and weight (g) data were used to determine

LWRs for 42 taxonomic groups to make population and

biometric data more accessible for this overlooked group.

To calculate LWRs, data were combined across all four

microhabitat types for each group of cryptofauna. LWRs

were only produced for groups represented by C 17 indi-

viduals in the dataset. Groups represented by \ 17 indi-

viduals were excluded from all analyses. Consequently,

total densities of cryptofauna were not determined.

Statistical analyses

LWRs have typically been determined for single species or

among morphometrically similar groups (i.e. fishes) using

the power model equation: W = aLb (Kulbicki et al. 2005;

Froese 2006; Saleky et al. 2016; Lee et al. 2018), including

for those stored on FishBase (Froese and Pauly 2018).

Determination of LWRs from multiple models is particu-

larly important when addressing taxa across a diversity of

sizes and morphologies, as shown previously for inverte-

brates in terrestrial systems (Gowing and Recher 1984;

Ganihar 1997). Thus, LWRs were assessed here using

linear, quadratic, polynomial and power functions to

determine the best possible fit of data for each group.

Model selection was determined using second-order

Akaike Information Criterion (AICc) values in the MuMin

package of R (Sakamoto et al. 1986; Bartoń 2018). Each

best-fit LWR was then examined graphically to explore

potential model over-fitting. Where necessary, alternate

models were assessed and selected based on predicted R2

values, which are an effective selection criterion that

consider model predictive power and, when compared to

regular R2 values, provide a strong indication of model

over-fitting (Allan 1974; Cawley and Talbot 2010). Pre-

dicted R2 values were calculated using the Prediction of

Sum-of-Squares (PRESS) statistic function in the qpcR

package (Spiess 2018). Alternate model selection was

completed for 14 groups. For power models, data were log

transformed before determining LWRs, but back-transfor-

mations were conducted before producing the final equa-

tions. The equation of each best-fit model is presented in

Table 2 along with the respective model type and strength

of relationship (R2).

Differences in cryptofauna size among the four micro-

habitat types were examined using one-way analysis of

variance (ANOVA) in the stats package (R Core Team

2019). Separate ANOVAs were conducted for each

cryptofauna group. Two families found in just one micro-

habitat (Cancellaridae in rubble, Epialtidae in dead coral)

were excluded from this analysis, as were data for single

specimens within a microhabitat. As required for ANOVA,

normality and homogeneity of variance were explored

visually using residual and quantile–quantile plots in the

ggfortify package (Tang et al. 2016). For all models, post

hoc Tukey’s pairwise comparisons were performed using

the emmeans package when significant differences (p

Coral Reefs (2020) 39:1649–1660 1651
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B 0.05) were detected (Lenth 2019). All model develop-

ment and analyses were conducted in R 3.6.3 (R Core

Team 2019).

Results

Length–weight relationships

A total of 4581 individuals were identified and measured,

but there were insufficient data for 624 individuals (i.e.

groups with n\ 17). LWRs were produced for 42 groups

of motile coral reef cryptofauna using empirical length and

weight measurements for 3957 individuals (Tables 1, 2;

Fig. S2). Sample size of each group ranged from 574

individuals for the Amphipoda to 17 individuals for the

Epialtidae and Limidae (mean ± SE: 94.2 ± 18.3 indi-

viduals) (Table 1). Model selection resulted in a range of

best-fit linear (19%), quadratic (55%), polynomial (24%)

and power (2%) relationships across all groups (Table 2;

Fig. 1, S1). There were no similarities evident in the best-

fit model type based on taxonomy (Table 2; Fig. S2).

LWRs were well fit (R2[ 0.90) for 45% of the groups

assessed (Fig. 2), while 76% of groups had an R2 above

0.70 (Table 2). The strongest relationships (R2 C 0.99)

were determined for hippolytid decapods and molluscs of

the Conidae, Dialidae, Fasciolariidae and Phasianellidae

(Table 2; Fig. 2). The best-fit LWR for the worms (Poly-

chaeta) was found for the Nereididae (R2 = 0.95) (Table 2;

Fig. 2). Some groups exhibited poorly fit LWRs regardless

of model type, especially regarding the Caprellidae

(R2 = 0.001) and Tanaidacea (R2 = 0.19) (Table 2), owing

to their consistently low and variable weights, respectively

(Table 1; Fig. S2). The Caprellidae exhibited the minimum

weight range (0.001–0.002 g) despite a range in length of

4.1–9.5 mm (Table 1; Fig. S2). Most poorly fit LWRs

(R2\ 0.55) (Table 2; Fig. S2) existed for groups with the

lowest weight ranges (B 0.01 g) (Table 1), including the

Amphinomidae, Caprellidae, Isopoda, Joeropsididae and

Tanaidacea. Notably, molluscs with low weights

(\ 0.02 g) (e.g. Cancellaridae, Pyramidellidae, Terebridae;

Table 1) exhibited reliable LWRs (R2[ 0.80) (Table 2).

Microhabitat drivers

Motile cryptofauna were more abundant in dead coral and

coral rubble compared to live coral (Table 3, S1). Live

Acropora hosted the lowest numbers of cryptofauna by

over an order of magnitude compared to dead coral and

rubble (Table 3, S1). Conversely, live coral hosted a

greater mean size (length) of cryptofauna by around two-

fold compared to dead coral and rubble (Table 3). Live

Acropora and Pocillopora also hosted a greater mean

weight of cryptofauna by three- and sixfold, respectively,

compared to dead coral and rubble (Table 3).

Two of the 42 groups of motile cryptofauna for which

LWRs were calculated were found in just one habitat:

Cancellaridae in rubble and Epialtidae in dead coral

(Table S1). Seventeen groups were not found in live coral

with an additional 12 groups represented by just one or two

individuals in live coral (Table S1). Conversely, the

Tetraliidae were predominately found in live Acropora

with just one individual found in dead coral (Table S1).

Size distributions of 13 groups of motile cryptofauna

were significantly influenced by microhabitat (Table S2;

Fig. 3, S3). Decapods of the Alpheidae and Trapeziidae

were largest in live coral, as were Limidae bivalves (Fig. 3,

S3). Bivalves of the Mytilidae were largest in dead coral

compared to rubble (Fig. 3, S3), yet one large individual

was found in live Acropora (Table S1). Members of the

Palaemonidae and Turbinidae also exhibited significantly

greater sizes in live coral (Acropora or Pocillopora)

(Fig. 3, S3). Two groups of ophiuroids (Ophiactidae and

Ophiomyxidae) were largest in live Pocillopora (Fig. 3).

Diogenidae were largest in both live Pocillopora and coral

rubble (Fig. 3). The Caprellidae and Xanthidae were sig-

nificantly larger in rubble, while the Columbellidae were

largest in dead coral despite exhibiting a broad size range

in rubble (Table S2; Fig. 3). No Caprellidae were found in

live coral, and just one individual from the Columbellidae

was found in live coral (Pocillopora) (Table S1). Trapeziid

decapods were not found in rubble (Table S1).

Discussion

Length–weight equations are provided for 42 groups of

motile coral reef cryptofauna to support future research

aiming to evaluate this level of biodiversity and upscale

consideration of their roles in ecosystem functioning and

productivity. LWRs are yet to be empirically determined

for such a diversity of coral reef phyla nor through com-

parison of four model types, as done here. Calculated

LWRs were generally well fit (76% with R2[ 0.70),

although some were particularly unreliable (e.g. Caprelli-

dae: R2 = 0.001). Groups with the lowest weights

(B 0.01 g) tended to exhibit the weakest LWRs attributing

to the difficulties in attaining fine-scale length and weight

data for motile microfauna. Converse to that documented

for terrestrial invertebrates (Ganihar 1997), there were no

similarities evident in best-fit model type based on taxon-

omy, highlighting the importance of considering multiple

model types in the determination of LWRs across mor-

phologically diverse taxa.

LWRs were fit across all four microhabitats (live

Acropora, live Pocillopora, dead coral and rubble),
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Table 1 Minimum, mean (± SE) and maximum length (mm) and weight (g) of 42 groups of motile cryptofauna, including total sample size

(n) used to calculate length–weight relationships

Phylum Class Order Family n Length (mm) Weight (g)

Min Mean ± SE Max Min Mean ± SE Max

Annelida Polychaeta Amphinomida Amphinomidae 28 2.2 6.9 ± 0.8 16.6 0.001 0.009 ± 0.002 0.049

Phyllodocida Nereididae 22 3.1 10.3 ± 2.0 38.6 0.001 0.006 ± 0.002 0.050

Polychaeta* 195 0.1 7.9 ± 0.4 40.6 0.001 0.005 ± 0.001 0.183

Mollusca Gastropoda Heterobranchia Bullidae 48 0.8 2.1 ± 0.2 6.1 0.001 0.008 ± 0.002 0.088

Pyramidellidae 25 1.1 3.0 ± 0.2 4.4 0.001 0.005 ± 0.001 0.019

Vetigastropoda Haliotidae 57 1.3 4.3 ± 0.3 8.4 0.002 0.046 ± 0.006 0.216

Phasianellidae 25 1.3 3.4 ± 0.4 9.9 0.001 0.024 ± 0.011 0.226

Caenogastropoda Dialidae 33 1.2 2.4 ± 0.2 9.1 0.001 0.008 ± 0.005 0.156

Potamididae 275 0.7 3.4 ± 0.2 34 0.001 0.036 ± 0.023 6.105

Neogastropoda Buccinidae 42 1.1 3.6 ± 0.4 11.5 0.001 0.056 ± 0.026 0.816

Cancellaridae 31 1.9 2.9 ± 0.2 5.8 0.002 0.005 ± 0.001 0.019

Columbellidae 35 2.1 8.0 ± 0.6 12 0.003 0.237 ± 0.035 0.596

Conidae 19 3.7 8.4 ± 0.9 18.8 0.015 0.267 ± 0.087 1.646

Costellariidae 48 1.1 3.0 ± 0.2 7.7 0.001 0.009 ± 0.003 0.104

Fasciolariidae 118 1.1 4.4 ± 0.2 20.8 0.001 0.034 ± 0.009 1.014

Mitridae 19 0.4 3.1 ± 0.4 6.1 0.001 0.011 ± 0.003 0.050

Muricidae 83 2.3 10.6 ± 0.6 22.4 0.004 0.476 ± 0.062 3.410

Terebridae 30 1.1 3.6 ± 0.2 6.4 0.001 0.006 ± 0.001 0.016

Trochida Turbinidae 50 0.2 2.7 ± 0.6 22.2 0.001 0.143 ± 0.078 2.996

Bivalvia Limida Limidae 17 2.6 7.3 ± 0.9 13.1 0.004 0.098 ± 0.033 0.425

Mytilida Mytilidae 24 1.6 6.9 ± 1.0 22.3 0.003 0.129 ± 0.053 1.085

Arthropoda Malacostraca Amphipoda Amphipoda* 574 1.1 3.6 ± 0.1 8.7 0.001 0.003 ± 0.0001 0.020

Caprellidae 23 4.1 6.1 ± 0.4 9.5 0.001 0.001 ± 0.0001 0.002

Isopoda Anthuridae 20 2.2 5.4 ± 0.5 10.4 0.001 0.003 ± 0.0004 0.008

Isopoda* 139 0.8 3.0 ± 0.1 5.6 0.000 0.004 ± 0.0002 0.012

Joeropsididae 29 0.2 2.6 ± 0.1 7.2 0.001 0.002 ± 0.0002 0.005

Tanaidacea Tanaidacea* 132 1.1 3.1 ± 0.1 6.6 0.001 0.007 ± 0.001 0.048

Decapoda Alpheidae 166 2.3 10.1 ± 0.5 30.1 0.001 0.113 ± 0.017 0.904

Diogenidae 111 2.4 14.7 ± 0.7 41.6 0.019 1.183 ± 0.170 12.03

Epialtidae 17 1.6 3.4 ± 0.5 7.3 0.004 0.102 ± 0.037 0.440

Galatheidae 435 0.4 2.1 ± 0.04 4.1 0.001 0.019 ± 0.001 0.093

Hippolytidae 103 1.8 6.6 ± 0.3 27 0.001 0.011 ± 0.004 0.369

Majidae 22 1 2.9 ± 0.3 6.3 0.002 0.054 ± 0.016 0.247

Paguridae 39 1.1 4.8 ± 0.4 12.2 0.003 0.049 ± 0.012 0.292

Palaemonidae 196 2.8 9.3 ± 0.2 16.8 0.001 0.022 ± 0.001 0.104

Pilumnidae 19 1.7 2.7 ± 0.3 5.2 0.001 0.019 ± 0.007 0.110

Portunidae 62 1.8 8.3 ± 0.6 20 0.001 0.229 ± 0.033 1.014

Tetraliidae 54 2.1 6.6 ± 0.3 11.1 0.004 0.225 ± 0.022 0.604

Trapeziidae 181 1.7 6.5 ± 0.2 14.2 0.003 0.313 ± 0.029 1.565

Xanthidae 329 0.4 4.7 ± 0.2 14 0.001 0.132 ± 0.013 1.420

Echinodermata Ophiuroidea Amphilepidida Ophiactidae 45 0.1 1.4 ± 0.1 5.5 0.001 0.011 ± 0.004 0.174

Ophiacanthida Ophiomyxidae 37 0.8 3.1 ± 0.4 7.8 0.001 0.095 ± 0.025 0.563

Asterisk indicates higher levels of taxonomy

Coral Reefs (2020) 39:1649–1660 1653
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although microhabitat type significantly influenced the size

of one-third of the groups examined. At the community

level, live coral hosted fewer but larger individuals, while

dead coral and rubble hosted a disproportionate number of

small fauna. Over an order of magnitude, more individuals

were identified in dead coral than in live Acropora and

almost 15-fold more in coral rubble. Thus, while the mean

weight of motile cryptofauna was greatest in live coral,

total biomass is likely to be greatest in dead coral and

rubble owing to the sheer number of individuals present.

This contributes to the growing understanding that

microhabitat structure and type are important determinants

of cryptofauna assemblages (Depczynski and Bellwood

2005; Fraser et al. 2020), biomass allocation (Hutchings

1983; Reaka-Kudla 1997; Enochs et al. 2011), ecosystem

productivity (Morais et al. 2020) and, likely, trophic

pathways (Rogers et al. 2014; Kramer et al. 2016; Rogers

et al. 2018a) on coral reefs.

Stepping beyond biodiversity surveys for motile

cryptofauna is essential to the characterisation of

tractable trophodynamic and ecosystem-based fisheries

models that incorporate invertebrate–invertivore pathways.

The LWRs presented here provide data on motile crypto-

fauna to refine food web models from a bottom-up per-

spective. Models and research regarding coral reef

trophodynamics predict that reef degradation profiles—

from live to dead coral—may benefit fisheries productivity

due to an initial increase in resource availability (e.g.

invertebrates and turf algae) (Rogers et al. 2018a; Morais

et al. 2020). Our data support this notion through the

greater density of motile cryptofauna in dead coral and

rubble, although direct trophic links to higher-order taxa

(e.g. invertivorous fishes) on coral reefs are poorly

described (Wolfe et al. 2019).

Patterns in the cryptofauna among microhabitats are

likely to influence invertebrate–invertivore trophic path-

ways in coral reef ecosystems. For example, the complex

morphology of live coral limits prey extraction (Hixon and

Jones 2005) and supports a relatively high biomass of

coral-associated cryptofauna (Stella et al. 2010, 2011;

Kramer et al. 2014). This results in a greater biomass

allocation per prey item in live coral, which is largely

reserved for species with specialised morphologies that can

avail of the complex interstices, such as the bird wrasse,

Gomphosus varius (Wainwright et al. 2004; Kramer et al.

2014). Somewhat counterintuitively, coral reef invertivores

do not preferentially target habitats where invertebrate

density and abundance are greatest (i.e. dead coral or

rubble), as outlined for wrasses (Kramer et al. 2016).

Instead, invertivorous fishes are often opportunistic and

forage haphazardly for a diversity of prey across a range of

habitats (Fulton and Bellwood 2002; Kramer et al. 2016).

These generalist invertivores would require more frequentT
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success in dead coral and rubble where the relative yield

per prey item is likely to be lower.

Biogeography has been shown to influence LWRs in

some marine invertebrates (Al-Rashdi et al. 2007; Robin-

son et al. 2010; Saleky et al. 2016) and fishes (Yamagawa

1994; Blanchard et al. 2005; Joyeux et al. 2009; Jellyman

et al. 2013; Ahmed et al. 2015; Ontomwa et al. 2018)

owing to differences among seasons, habitats and/or fishing

intensity. Here, 13 groups of motile cryptofauna showed

significant differences in their size distribution based on

microhabitat type. This is an important consideration for

future research aiming to characterise habitat-specific

LWRs. We acknowledge that the level of detail provided

here is mostly to family and that species-specific variation

was largely overlooked in our length–weight calculations.
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Fig. 1 Length–weight relationships for a Majidae (n = 22), b Trapeziidae (n = 181), c Columbellidae (n = 35) and d Limidae (n = 17)

representing examples of the best-fit models for each model type
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Fig. 2 Length–weight relationships for motile cryptofauna with R2 C 0.90. Letters denote relationship fit (Q quadratic, P polynomial, Pw
power)

Table 3 Mean (± SE) length and weight and total number (n) of

motile cryptofauna found in four microhabitats

Habitat n Length (mm) Weight (g)

Live Acropora 126 7.29 ± 0.03 0.19 ± 0.002

Live Pocillopora 411 9.58 ± 0.02 0.40 ± 0.002

Dead coral 1507 4.40 ± 0.002 0.06 ± 0.0003

Rubble 1913 4.64 ± 0.002 0.06 ± 0.0001
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Thus, it is likely that these differences in size among

habitats are a reflection of taxonomy rather than inter-

specific variation. One exception could be for trapeziid

decapods, which are specialised coral associates that gen-

erally only move between live corals (i.e. to be found in

other microhabitats) as a result of saturated population

densities and/or territoriality in their live coral homes

(Stella et al. 2011); assumedly, smaller individuals would

be forced to move, which is why we found fewer but

smaller trapeziids in dead coral. Greater resolution in data,

including higher-order classification and increased sample

sizes, would improve our ability to differentiate LWRs for

speciose groups and disentangle the influence of micro-

habitat type on cryptofauna size spectra.

As evidenced by the three groups with the—lowest R2

values in their LWRs (Arthropoda: Caprellidae and

Tanaidacea; Polychaeta: Amphinomidae), measurements

of length for species with long and skinny morphologies

may not be a great indicator of weight. For example,

weight of the Caprellidae was consistently low

(0.001–0.002 g) despite a relatively broad range in length

(4.1–9.5 mm). Incorporation of width–weight measure-

ments may provide an effective method to account for

varying and/or disproportionate morphologies in future

LWR calculations, as shown among terrestrial insects

(Schoener 1980; Sample et al. 1993; Wardhaugh 2013).

We provide the first documentation of LWRs for a series

of motile cryptofaunal taxa common in coral reef ecosys-

tems, even at the family level. Given the paucity of data
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Fig. 3 Box plots showing length (mm) of motile cryptofauna in live

Acropora (LA), live Pocillopora (LP), dead coral (DC) and rubble

(RU). Data only shown for groups with a significant effect (p\ 0.05).

Absent data indicate no individuals were found. Post hoc Tukey’s

HSD: letters that are the same do not differ
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available for the motile cryptofauna beyond biodiversity

censuses, we provide summary information for all 42

groups regardless of the quality of the relationship to

ensure these data are carefully considered and to outline

where greater attention to detail is needed. We urge caution

in the application of the LWRs provided here for several

groups with poorly fit models (e.g. Caprellidae), owing to

their small size (\ 5 mm) and weight (\ 0.01 g). In con-

sideration of the high densities typical of motile crypto-

fauna, ecosystem-level biomass estimates should employ

these poor-fit LWRs with care. Moreover, datasets with

large individuals beyond the upper size limits used to

calculate LWRs here should be wary of overextrapolation,

particularly for LWRs defined using polynomial and power

models. Regardless, these data can be applied to better

understand reef ecosystem functioning and trophodynamics

from a novel perspective of reef biodiversity. Greater

attention to detail for the cryptofauna in models that

address habitat condition, food webs and fisheries pro-

ductivity on coral reefs will improve our ability to address

current patterns and future trajectories as reefs degrade.

The motile cryptofauna are an overlooked group owing

to the complexities in identifying, sampling and monitoring

their assemblages (Fraser et al. 2020). Availability of

LWRs, as presented here, may support and inspire a greater

recognition of the cryptofauna on coral reefs, making it

more possible for this field of research to expand. With this

baseline biometric information, fine-scale underwater sur-

veys could replace the labour-intensive and destructive

sampling method currently required to sample certain

members of the cryptofauna, most notably for live coral

specialists (e.g. Alpheidae, Tetraliidae, Trapeziidae). This

would facilitate the estimation of size and species richness

without the effort and time of collecting, transporting and

processing entire live coral microhabitats. However, iden-

tifying and monitoring cryptic individuals in situ remain a

significant challenge (Alzate et al. 2014), including through

videographic survey methods (Romero-Ramirez et al.

2016; Fraser et al. 2020), particularly in dead coral and

rubble where small fauna are abundant.
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