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Abstract Net calcification rates for coral reef and other

calcifiers have been shown to decline as ocean acidification

(OA) occurs. However, the role of calcium carbonate dis-

solution in lowering net calcification rates is unclear. The

objective of this study was to distinguish OA effects on

calcification and dissolution rates in dominant calcifying

macroalgae of the Florida Reef Tract, including two rho-

dophytes (Neogoniolithon strictum, Jania adhaerens) and

two chlorophytes (Halimeda scabra, Udotea luna). Two

experiments were conducted: (1) to assess the difference in

gross (45Ca uptake) versus net (total alkalinity anomaly)

calcification rates in the light/dark and (2) to determine

dark dissolution (45CaCO3), using pH levels predicted for

the year 2100 and ambient pH. At low pH in the light, all

species maintained gross calcification rates and most sus-

tained net calcification rates relative to controls. Net cal-

cification rates in the dark were *84% lower than in the

light. In contrast to the light, all species had lower net

calcification rates in the dark at low pH with chlorophytes

exhibiting net dissolution. These data are supported by the

relationship (R2 = 0.82) between increasing total alkalinity

and loss of 45Ca from pre-labelled 45CaCO3 thalli at low

pH in the dark. Dark dissolution of 45CaCO3-labelled thalli

was *18% higher in chlorophytes than rhodophytes at

ambient pH, and * twofold higher at low pH. Only

Udotea, which exhibited dissolution in the light, also had

lower daily calcification rates integrated over 24 h. Thus, if

tropical macroalgae can maintain high calcification rates in

the light, lower net calcification rates in the dark from

dissolution may not compromise daily calcification rates.

However, if organismal dissolution in the dark is additive

to sedimentary carbonate losses, reef dissolution may be

amplified under OA and contribute to erosion of the Florida

Reef Tract and other reefs that exhibit net dissolution.

Keywords Gross calcification � Net calcification �
Radioisotope � 45Ca � Total alkalinity anomaly

Introduction

Ocean acidification (OA), a consequence of anthropogenic

CO2 absorption by the ocean, leads to a rise in hydrogen

ion concentration [H?] that negatively affect calcifying
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marine organisms (Orr et al. 2005). Global oceanic pH is

projected to decline 0.3–0.4 units from a current 8.1 pH by

2100, causing a concurrent shift in dissolved inorganic

carbon (DIC) species. Ocean pH decline by the year 2100

leads to an increase in pCO2 and bicarbonate ion (HCO3
-)

concentration (?200% and ?30%, respectively), and a

decrease in carbonate ion (CO3
2-) concentration (-60%),

resulting in a lower (-60%) calcium carbonate (CaCO3)

saturation state (X) of seawater (Fabry et al. 2008; IPCC

2013). While the specific mechanisms are only recently

being articulated (Marubini et al. 2008; Hurd et al. 2011;

Jokiel 2011; McCulloch et al. 2012; Hendriks et al. 2015),

higher pCO2, greater [H
?], and reduced X in seawater have

been shown to coincide with lower calcification rates of

reef corals and macroalgae (reviewed in, Nelson 2009;

Pandolfi et al. 2011; Koch et al. 2013; Hofmann and Bis-

chof 2014; Hoegh-Guldberg et al. 2017). Calcified tropical

reef macroalgae are fundamental to coral reef ecosystem

function, including the enhancement of reef sediment

production, accretion, and stability, as well as facilitating

recruitment of coral larvae (Goreau 1963; Winman and

McKendree 1975; Littler and Littler 1984; Davies and

Marshall 1985; Heyward and Negri 1999; Chisholm 2000;

Rees et al. 2007). Thus, there is uncertainty in how OA will

affect the future role of calcified algae on reefs, necessi-

tating a more complete understanding of the mechanisms

leading to lower calcification rates at elevated pCO2 and

lower pH observed in some groups of macroalgae.

Currently, a number of studies show negative effects of

elevated pCO2 and lower pH on macroalgal calcification

(Gao et al. 1993; Anthony et al. 2008; Price et al. 2011;

Diaz-Pulido et al. 2014; Kato et al. 2014; Meyer et al.

2016); however, there is also evidence for continued cal-

cification under these conditions for many species,

including both rhodophytes and chlorophytes dominant on

coral reefs (Vogel et al. 2015a, 2015b; Peach et al.

2016, 2017a; Dutra et al. 2016; Comeau et al. 2017, 2018;

Cornwall et al. 2017). Some rhodophytes may be more

structurally vulnerable to lower pH due to the relatively

high solubility of their high-magnesium calcite skeletal

CaCO3 polymorph at low pH, and the close proximity of

calcification sites to bulk seawater (Adey 1998; Morse

et al. 2006; Jokiel et al. 2008; Smith et al. 2012). However,

some species appear to be able to resist OA conditions due

to strong organismal control of pH and carbonate chemistry

at the thalli surface and calcification site (Cornwall et al.

2017; Comeau et al. 2018; McNicholl et al. 2019).

Chlorophytes build their skeletons of the metastable arag-

onite CaCO3 polymorph within semi-isolated calcification

spaces (e.g. fused utricles or sheaths) that may minimize

exposure to bulk seawater (Borowitzka and Larkum 1987;

Peach et al. 2017a, 2017b). Nevertheless, some chloro-

phytes have less biological control of their thalli pH

(McNicholl et al. 2019) and CaCO3 crystal isolation may

be weak in some species (Price et al. 2011; Peach et al.

2017b). In addition to morphology and the CaCO3 poly-

morph affecting macroalgal calcification responses to

lower pH, photophysiology may also be instrumental to

sustain calcification rates (Hurd et al. 2011; Cornwall et al.

2012; Zweng et al. 2018; Comeau et al. 2017; McNicholl

et al. 2019).

Photosynthesis is known to stimulate calcification

(Borowitzka and Larkum 1976b, 1987; Gao et al. 1993),

buffer the effects of OA through the formation of a high pH

micro-boundary at the thalli surface, and provide energy

for ATP-driven H? pumps (De Beer and Larkum 2001;

Cornwall et al. 2013; Hofmann et al. 2016; McNicholl

et al. 2019). Thus, the effects of OA on calcification and

dissolution of calcifying autotrophs, such as reef

macroalgae, are likely to have distinct responses in the

light compared to the dark. Net calcification in the dark

occurs at slower rates, potentially due to reduced ability to

precipitate CaCO3 without photosynthesis or dissolution

overcoming biomineralization or recrystallization pro-

cesses (Borowitzka and Larkum 1976a, 1976b, 1987;

Chisholm 2000; Comeau et al. 2012). Enhanced dissolution

at low bulk seawater pH may in part be explained by a

lower capacity of the thalli surface to buffer H? and a

build-up of respiratory CO2 and H?, thereby reducing pH

in the calcifying space (Borowitzka 1976b; Comeau et al.

2012). Consequently, calcifying autotrophs may be more

vulnerable to night-time dissolution with higher external

pCO2 and [H?] in seawater (Martin and Gattuso 2009;

Comeau et al. 2012; Kamenos et al. 2013; Vogel et al.

2015a, 2015b; Chou et al. 2020).

Ocean acidification research on coral reefs, including

macroalgae, has largely focused on calcification (reviewed

in, Fabry et al. 2008; Pandolfi et al. 2011; Hofmann and

Bischof 2014); however, there is growing interest in dis-

solution effects on low net calcification rates found near

CO2 seeps (Rodolfo-Metalpa et al. 2011; Vogel et al.

2015a, 2015b) and in elevated pCO2 experiments (Pickett

and Andersson 2015; Chou et al. 2020). Recent field

studies (Andersson and Gledhill 2013; Eyre et al. 2014)

and mesocosm experiments (Andersson et al. 2009;

Anthony et al. 2013; Dove et al. 2013) highlight the

importance of carbonate sediment dissolution, particularly

at low porewater pH (Cyronak et al. 2013), in driving net

reef dissolution. While sediment dissolution is now well

recognized, there have been fewer studies examining

individual reef organisms’ potential contribution to disso-

lution (Rodolfo-Metalpa et al. 2011; Vogel et al.

2015a, 2015b). In coral reef macroalgae, as well as other

calcifiers, the role of carbonate dissolution in reducing net

calcification is an important mechanistic question that

remains. The question is whether reduced net calcification
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rates under OA are a result of an organism’s diminished

capacity to precipitate CaCO3, or if dissolution is enhanced

(Jokiel 2011; Roleda et al. 2012; Cyronak et al. 2016).

The effects of OA on calcification have primarily been

determined by buoyant weight, total alkalinity anomaly,

imaging, or staining, that quantify net calcification rates

without the ability to distinguish between gross versus net

calcification and identify the role of dissolution (Jokiel

et al. 1978; Chisholm and Gattuso 1991; Holcomb et al.

2013; Schoepf et al. 2017). As net calcification is defined

by gross calcification minus gross dissolution (Smith and

Key 1975), understanding both of these processes is critical

to elucidate the mechanisms influencing low net calcifi-

cation rates under OA conditions. The fact that they can

occur simultaneously complicate the disentanglement of

calcification and dissolution processes. For example, res-

piratory CO2 can disrupt CaCO3 precipitation by lowering

pH at the calcification site in the dark and lead to disso-

lution of crystals (Borowitzka and Larkum 1976b). Under

OA conditions, positive net CaCO3 production will be

dependent on an organism’s ability to sustain gross calci-

fication to counter dissolution (Findlay et al. 2009, 2011).

Negative net calcification rates, or net dissolution,

observed in OA studies (Anthony et al. 2008; Jokiel et al.

2008; Martin and Gattuso 2009; Diaz-Pulido et al. 2012;

Vogel et al. 2015a, 2015b) may be misinterpreted as a

reduced capacity to calcify, while the principal effect may

be enhanced dissolution. In contrast to methods that only

measure net calcification, gross calcification can be esti-

mated using 45Ca radioisotopes or measuring Ca2? uptake

(Borowitzka and Larkum 1976a; Böhm 1978; Tambutté

et al. 1995; Findlay et al. 2011; Gazeau et al. 2015). While

limitations of these techniques also exist, such as overes-

timation with isotopic exchange (Borowitzka and Larkum

1976a), these constraints have been partially resolved by

employing a lower total activity and increasing rinse times

to ensure measurements are only based on radioisotopes

incorporated into the skeleton (Böhm 1978; Tambutté et al.

1995). Using techniques that measure net and gross calci-

fication in tandem may provide the best opportunity to

separate the effects of OA on calcification versus dissolu-

tion (Gómez-Batista et al. 2020) to gain a more robust

mechanistic understanding of OA effects on net calcifica-

tion (Rodolfo-Metalpa et al. 2011; Cohen and Fine 2012;

Cohen et al. 2017). Understanding these mechanisms could

also assist in explaining some of the current discrepancies

in the literature that show positive, negative, and neutral

responses of net calcification to OA in reef macroalgae,

even within the same species (Ries et al. 2009; Sinutok

et al. 2011; Vogel et al. 2015b; Peach et al. 2016, 2017a;

Cornwall et al. 2017; Comeau et al. 2018).

The objective of this study was to distinguish the effects

of elevated pCO2 and lower pH predicted for the year 2100

(IPCC 2013) on gross and net calcification in the light and

dark, as well as dark dissolution, in dominant calcifying

macroalgae from the Florida Reef Tract. Further, the role

of irradiance in raising the calcification to dissolution ratio

at low pH was examined. We hypothesized gross calcifi-

cation rates would increase at lower pH and greater pCO2

in the light to accommodate higher dissolution rates and

sustain net calcification rates. We further predicted that

species with lower net calcification rates under OA, par-

ticularly in the dark, would exhibit higher dissolution rates,

rather than lower gross calcification rates. All species are

likely to have reduced gross and net calcification rates in

the dark under OA conditions, as calcification becomes

more reliant on light-triggered processes (Comeau et al.

2012; Vogel et al. 2015a; Hofmann et al. 2016; McNicholl

et al. 2019; Chou et al. 2020).

Materials and methods

Macroalgal collection and maintenance

Four dominant Florida Reef Tract calcifying macroalgal

species (Neogoniolithon strictum, Jania adhaerens, Hal-

imeda scabra, and Udotea luna; hereafter referred to by

genus) were collected (August–September 2018) at *3 m

depth via scuba from a patch reef off Looe Key Reef

(24.62055� N, 81.37078� W). Irradiance measured at

midday just above the benthos was *800 lmol photons

m-2 s-1 (4p spherical PAR quantum sensor; LI-193, LI-

COR Inc.) Samples were transported in aerated coolers

within 4 h to Florida Atlantic University’s (FAU) marine

laboratory in Boca Raton, FL. Species were identified and

placed in a flow-through seawater system (coastal Atlantic

seawater) under full-spectrum LED lights set for *500

lmol photons m-2 s-1 (Build My LED�). Irradiance was

set to *500 lmol photons m-2 s-1 for maintaining

macroalgae before the experiments and during the experi-

ment to correspond to a saturating light level previously

determined for these species (Zweng et al. 2018), and

achievable with the full-spectrum lights employed. The

incoming seawater had a salinity of 35.5 and 29 �C tem-

perature. After 24 h, samples were shipped to the Inter-

national Atomic Energy Agency’s (IAEA) Environment

Laboratories in the Principality of Monaco and acclimated

for 2 weeks to laboratory conditions before experiments

commenced. Macroalgae were maintained in two open-

circuit 40 L aquaria with natural UV-sterilized filtered

(1 lm) seawater renewed 50% h-1 (salinity: 38; T�: 29 �C)
under full-spectrum LED lights (Kessil, A360W E-Series

Tuna Sun) set to 550 lmol photons m-2 s-1 on a 12:12 h

photoperiod.
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Experimental design and analytical techniques

Two experiments were conducted: (1) a calcification

experiment to assess net and gross calcification rates in the

light and dark at low and ambient pH and (2) a dissolution

experiment to determine dark dissolution (loss of 45CaCO3)

and net calcification (TAA) rates at low and ambient pH for

each species. Treatment and control pH values, and

resulting carbonate parameters, achieved in each experi-

ment (average ± SD) are presented in Table 1. The tar-

geted pH was a 0.3–0.4 pH reduction forecasted for the

year 2100 (7.7) from present-day values (*8.1).

Net and gross calcification experiment

Experiment setup Net and gross calcification rates were

determined by conducting short-term incubations on indi-

vidual algal thalli in a closed system (200 or 500 mL

polyethylene beakers). The length of incubation was

established by the change in seawater total alkalinity (TA)

necessary to estimate net calcification rate using the total

alkalinity anomaly (TAA) method, while limiting meta-

bolic-induced changes in seawater pH (i.e. photosynthesis

or respiration) based on OA experimental protocols

(Langdon et al. 2010). Incubation periods were adjusted for

Table 1 Seawater pH and carbonate chemistry during light and dark incubations for the calcification and dissolution (dark only) experiments by

species for ambient (top) and low (bottom) pH treatments

Calcification Experiment

(i) Light pHT pCO2

(latm)

HCO3
-

(lmol kg-1)

CO3
2-

(lmol kg-1)

TA

(lmol kg-1)

XCa XArag

Neogoniolithon 8.04 ± 0.03 411 ± 39 1784 ± 51 263 ± 11 2435 ± 21 6.2 ± 0.3 4.2 ± 0.2

7.72 ± 0.02 1061 ± 56 2086 ± 31 147 ± 4 2447 ± 23 3.5 ± 0.1 2.3 ± 0.1

Jania 8.03 ± 0.01 435 ± 16 1841 ± 12 264 ± 6 2491 ± 5 6.2 ± 0.1 4.2 ± 0.1

7.67 ± 0.02 1181 ± 72 2160 ± 14 136 ± 7 2493 ± 4 3.2 ± 0.2 2.2 ± 0.1

Halimeda 8.05 ± 0.02 417 ± 26 1834 ± 25 274 ± 12 2508 ± 25 6.5 ± 0.3 4.3 ± 0.2

7.68 ± 0.07 1190 ± 176 2176 ± 53 140 ± 22 2519 ± 7 3.3 ± 0.5 2.2 ± 0.3

Udotea 8.04 ± 0.05 422 ± 52 1810 ± 87 267 ± 16 2471 ± 53 6.3 ± 0.4 4.2 ± 0.3

7.69 ± 0.03 1148 ± 57 2161 ± 36 143 ± 7 2512 ± 28 3.4 ± 0.2 2.3 ± 0.1

Control 8.01 ± 0.02 473 ± 27 1906 ± 17 260 ± 10 2543 ± 9 6.1 ± 0.2 4.1 ± 0.2

7.64 ± 0.03 1311 ± 92 2230 ± 15 129 ± 8 2545 ± 9 3.0 ± 0.2 2.0 ± 0.1

(ii) Dark

Neogoniolithon 7.94 ± 0.04 577 ± 58 1926 ± 10 225 ± 15 2479 ± 27 5.3 ± 0.4 3.6 ± 0.2

7.59 ± 0.02 1441 ± 65 2231 ± 19 117 ± 4 2516 ± 19 2.7 ± 0.1 1.8 ± 0.1

Jania 7.98 ± 0.01 510 ± 18 1916 ± 12 244 ± 5 2515 ± 1 5.8 ± 0.1 3.9 ± 0.1

7.60 ± 0.04 1424 ± 144 2237 ± 20 120 ± 9 2529 ± 5 2.8 ± 0.2 1.9 ± 0.1

Halimeda 7.98 ± 0.01 506 ± 12 1924 ± 11 248 ± 3 2531 ± 4 5.8 ± 0.1 3.9 ± 0.1

7.63 ± 0.05 1354 ± 158 2242 ± 38 127 ± 12 2553 ± 15 3.0 ± 0.3 2.0 ± 0.2

Udotea 8.00 ± 0.02 475 ± 34 1883 ± 32 253 ± 9 2504 ± 9 6.0 ± 0.2 4.0 ± 0.1

7.70 ± 0.07 1162 ± 184 2186 ± 58 151 ± 20 2554 ± 25 3.6 ± 0.5 2.4 ± 0.3

Control 8.03 ± 0.02 446 ± 22 1878 ± 20 269 ± 9 2537 ± 6 6.3 ± 0.2 4.3 ± 0.1

7.67 ± 0.04 1224 ± 106 2200 ± 37 139 ± 13 2539 ± 9 3.3 ± 0.3 2.2 ± 0.2

Dissolution experiment

Neogoniolithon 7.99 ± 0.03 496 ± 49 1919 ± 32 253 ± 14 2540 ± 5 6.0 ± 0.3 4.0 ± 0.2

7.62 ± 0.01 1363 ± 39 2255 ± 14 126 ± 2 2563 ± 8 3.0 ± 0.1 2.0 ± 0.1

Jania 7.97 ± 0.01 523 ± 18 1923 ± 10 242 ± 5 2517 ± 4 5.7 ± 0.1 3.8 ± 0.1

7.57 ± 0.01 1524 ± 19 2264 ± 2 114 ± 1 2542 ± 3 2.7 ± 0.1 1.8 ± 0.1

Halimeda 7.97 ± 0.02 531 ± 29 1949 ± 17 244 ± 7 2546 ± 1 5.8 ± 0.2 3.9 ± 0.1

7.59 ± 0.01 1478 ± 45 2281 ± 10 119 ± 2 2571 ± 1 2.8 ± 0.1 1.9 ± 0.1

Udotea 7.96 ± 0.03 554 ± 57 1955 ± 22 238 ± 14 2538 ± 1 5.6 ± 0.3 3.8 ± 0.2

7.66 ± 0.05 1266 ± 159 2255 ± 49 140 ± 13 2594 ± 4 3.3 ± 0.3 2.2 ± 0.2

Values are the average initial and final measurements in order to represent conditions during exposure. Carbonate chemistry parameters and

carbonate saturation states of calcite (XCa) and aragonite (XArag) were calculated using CO2SYS (Pierrot et al. 2006) applying experimental

seawater temperature (29 �C), salinity (38), pHT (total scale), and total alkalinity (TA). Means ± SD (n = 3–4)
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time and volume of seawater (200 mL Udotea; 500 mL all

other species) so the dTA was 3–10 times the control

(seawater only containers; dTA -5.0 ± 9.1 lmol kg-1),

but did not exceed 10% of overall dTA (Langdon et al.

2010). The TAA technique assumes a 2:1 molar ratio of TA

change (- / ?) and CaCO3 precipitation/dissolution,

respectively (Smith and Key 1975; Chisholm and Gattuso

1991).

To determine pH effects on calcification rates during the

day, incubations were conducted for 4 h in the light

(*550 lmol photons m-2 s-1) between 0800 and 1500.

Calcification rates in the dark were determined for 13 h

from 1800 to 0700. Ambient and low pH experiments

(n = 3–4) were conducted simultaneously for all species

with one individual per beaker and blank controls with only

seawater. Seawater pH was determined with calibrated pH-

loggers (Metrohm 826; pHNBS) and corrected to total pHT

scale based on a standard TRIS buffer (Andrew Dickson

Lab, Scripps Institute of Oceanography; Batch # T33).

Experimental seawater was prepared in batches for each

experiment by filtering (0.45 lm), and adjusting to treat-

ment pH (ambient or bubbled with pure CO2) and tem-

perature (29 �C). Macroalgae were randomly selected and

conditioned to non-labelled batch seawater under experi-

mental conditions (as above) for 30 min. To achieve a total

experimental activity of 50 Bq mL-1 45Ca, 11 lL of
45CaCl2 source activity (13,895 kBq mL-1; PerkinElmer)

was added to 3 L of the experimental seawater devoid of

macroalgae, or 150 kBq of total activity. Homogenized

subsamples (1 mL) were collected before each experiment

to assess the initial 45Ca activity, total alkalinity (TA;

150 mL), pHT, salinity, dissolved O2, and temperature.

Experimental beakers were weighed (Balance Sartorius BP

3100 S; 0.01 g) before and after being filled with the 45Ca-

labelled seawater (200–500 mL) to determine initial sea-

water volume based on mass and density. Macroalgal

samples were then transferred to assigned beakers with

labelled seawater and sealed with clear plastic wrap (Az-

packTM Wrap film) in contact with seawater surface to

minimize headspace and water–air gas exchange. All

beakers were then placed in a water bath to keep temper-

ature constant (29 ± 0.2 �C) during the incubation.

Seawater was continuously mixed in each beaker via a stir-

bar (30 mm; 180 rpm) below the algae separated by a

perforated plastic disc. Two stir plates (Thermo Scientific

Variomag) operating six stirrers each were used to ensure

similar flow rates between treatments and replicates.

At the end of each incubation, alga was removed from

the beaker and prepared for 45Ca analysis. Seawater pHT,

dissolved O2 and temperature were immediately measured

in the beakers, and subsamples taken for TA (150 mL). A

subsample (1 mL) was also obtained from each beaker for

final seawater 45Ca determination. Seawater inorganic

nitrogen (NH4
?, NO3

-, NO2
-) concentration (1 mL) was

determined at the beginning and end of the first experi-

mental runs (Spectroquant method; Merck Spectroquant

Pharo 100) to ensure nutrients were low and not influenc-

ing TA measurements (Gazeau et al. 2015).

Net calcification determination Replicate seawater sam-

ples (n = 3) for TA were collected at the beginning and end

of each incubation, poisoned with mercuric chloride

(0.02%), sealed in sample tubes (Falcon 50 mL), and

stored in the dark at 4 �C for subsequent analysis. Total

alkalinity was measured by open-cell titration (Metrohm

Titrando 888) with 0.1 N HCl and verified using an alka-

linity reference (CRM Batch #174; Andrew Dickson Lab,

Scripps Institute of Oceanography). TA measurements

were taken in triplicate unless the initial two measurements

were within ± 5 lmol kg-1 of each other. Net calcifica-

tion rate was calculated from dTA as follows:

Gnet ¼ �0:5qw
dTA � v
Wa � t

ð1Þ

where the net calcification rate (Gnet) is lmol CaCO3 g

dwt-1 h-1, qw is the seawater density (kg L-1), dTA is the

difference between TAfinal minus TAinitial (lmol kg-1), v is

the volume of seawater (L), Wa is the algal dry weight

(g) and t is the incubation time in hours.

Photosynthesis and respiration rates Photosynthesis (O2

production) and respiration (O2 consumption) rates were

calculated from dissolved O2 concentration (mg L-1)

measurements (YSI ProODO Optical Dissolved Oxygen

Meter) before and after each incubation in the light and

dark, respectively, and normalized to dry weight of the

alga. Gross primary production was calculated by adding

net O2 production to the absolute value of respiration.

Change in dissolved O2 from control, seawater-only bea-

kers was subtracted from photosynthesis and respiration

rates to account for microbial activity and gas exchange.

Gross calcification determination Gross calcification

rates were determined using 45Ca as a tracer based on the

protocol developed for corals by Tambutté et al. (1995) and

Cohen et al. (2017) and modified by Gómez-Batista et al.

(2020). This technique assumes a 1:1 molar ratio of the rate

of 45Ca2? uptake from seawater to the rate of CaCO3

precipitation. At the end of each incubation period,

macroalgal samples were rinsed with fresh seawater for

30 min in a flow-through aquaria (20 L) to allow dilution

of potential isotopic exchange (Tambutté et al. 1995) and/

or release of 45Ca within inter-utricle spaces (i.e. Hal-

imeda) (Borowitzka and Larkum 1976a; Böhm 1978).

Following the rinse period, samples were dipped in de-

ionized water to remove salt, gently blotted dry, and moved
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to a drying oven (60 �C). Once dried (4–10 d), algal

samples were manually crushed and completely dissolved

in a 1:1 perchloric (70%) and nitric (70%) acid solution

(0.6–1.5 mL). From each dissolved algal sample, 2–4 ali-

quots (0.2 mL) were separately transferred to scintillation

vials and then each filled with 10 mL scintillation liquid

Ultima GoldTM XR, homogenized, and kept in the dark for

24 h before radio analyses. On average, the difference of

activity between aliquots was 7.5%. If the difference

was[ 15%, two additional aliquots were counted. For the

determination of specific activity in the radiolabelled sea-

water, a 1 mL subsample was collected from each beaker

at the end of the experiment, transferred to a 20 mL glass

scintillation vial, mixed in proportion 1:10 (v:v) with

scintillation liquid, and kept in the dark for 24 h before

radio analyses.

The radioactivity of 45Ca was counted using a Tri-Carb

2900 Liquid Scintillation Counter for a total of 275 sam-

ples. Counting time was adjusted to achieve\ 5% count-

ing error. Average 45Ca activity of aliquots was used to

calculate total 45Ca activity in the algal skeleton based on

known standards and corrected for counting efficiency,

radioactive decay, and quenching effect. Gross calcifica-

tion (Ggross) rates (lmol CaCO3 g dwt-1 h-1) were cal-

culated from algal skeletal activity and seawater activity

using the following formula:

Ggross ¼
45Ca activitysp � 11:44

d45Caactivitysw

Wa � t
ð2Þ

where 45Ca activitysp is equal to the total 45Ca activity in

counts per minute (CPM) based on average of replicate

aliquots (n = 2–4) of dissolved algal sample, 11.44 is the

concentration of Ca2? in 1 mL of seawater (lmol), d45Ca
activitysw is the total activity of 45Ca in 1 mL of seawater

(CPM) calculated from average initial and final seawater

activity, Wa is the algal dry weight (g), and t is the incu-

bation time in hours.

Calculating dissolution rates from calcification esti-

mates To calculate the dissolution rate from the net and

gross calcification experiments, the calcification data using

the 45Ca uptake and TAA techniques would have to be

quantitatively combined. However, this was not possible

due to net calcification rates being higher in some cases

than gross calcification, particularly in the light. This issue

has been found in experiments on corals, bivalves, and

macroalgae using the TAA and 45Ca and changes in sea-

water [Ca2?] (Tambutté et al. 1995; Rodolfo-Metalpa et al.

2011; Gazeau et al. 2015; Cohen and Fine 2012; Cohen

et al. 2017; this study). A detailed discussion of factors

potentially causing higher net than gross calcification rates

is presented in the supplemental section (Supplemental

Notes on Methodology). While calculating dissolution

from net and gross calcification rates were constrained by

methodology, comparisons of calcification rates using the

TAA and 45Ca uptake techniques across treatments

revealed similar trends (Fig. S1), and identified the

importance of dissolution in calcifying macroalgae. Our

approach of labelling of 45CaCO3 in the thalli and exam-

ining dissolution directly (method described below)

allowed us to quantify the dissolution response to OA in

the dark.

Dissolution experiment

As an estimate of dissolution, 45Ca loss from pre-labelled

thalli was determined in the dark. To allow 45Ca incorpo-

ration into the algal CaCO3 framework, macroalgae were

grown in two 20-L tanks of radiolabelled seawater for 72 h

(12 h photoperiod). Activity was added to the experimental

seawater before the addition of macroalgae. To achieve an

experimental activity of 35 Bq mL-1 45Ca, 11 lL of
45CaCl2 source activity (61,870 kBq mL-1; PerkinElmer)

was added to 20 L of experimental seawater, or *700 kBq

of total activity. At the end of the 72 h 45Ca exposure, all

thalli samples were rinsed in flow-through seawater for

30 min to control for potential isotopic exchange (Tam-

butté et al. 1995). The dissolution experiment was con-

ducted similarly to the calcification experiment, except

incubations were in unlabelled seawater. Algal samples

were randomly assigned to beakers (n = 3) with unlabelled

seawater at ambient or low pH treatments (Table 1). The

dissolution experiments were conducted in the dark for

13 h at night (between 1800 and 0700). Initial and final

pHT, O2, temperature, and TA (150 mL) for each beaker

were measured. Seawater samples (2 mL; n = 2) were

obtained from each beaker at the end of the incubation and

total 45Ca activity released from the thalli measured as an

estimate of 45CaCO3 dissolution. Replicate seawater sam-

ples (n = 3) for TA were collected at the beginning and end

of each dark incubation, poisoned, and kept in the dark at

4 �C until subsequent analysis, as described above.

Statistical analysis

To compare calcification rates across light/dark and

ambient/low pH, we used a 2-way ANOVA (SigmaPlot

v13.0, Systat Software Inc.). A post hoc Tukey’s test was

employed to discern significance within ANOVA factors.

A t test was used to compare gross and net calcification

rates within treatment pH in the light and dark. The

assumptions of normality and homogeneity of variances

were tested using the Shapiro–Wilk and Levene tests,

respectively. Significance levels are p\ 0.05 unless

otherwise stated.
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Results

Net calcification rates under low and ambient pH

Net calcification rates in the light were similar at ambient

and low pH for most of the calcifying macroalgae based on

the TAA technique (Fig. 1). Neogoniolithon and Halimeda

had less than a 5% difference in net calcification rate

between pH treatments in the light. Udotea was the only

species with a significantly lower net calcification rate

(-44%) in the light at low pH compared to controls. Net

calcification rates for all species (Fig. 1) were significantly

lower in the dark compared to the light, regardless of low

(-78 to -108%) or ambient pH (-78 to -94%) treatment.

Neogoniolithon and Jania maintained positive net calcifi-

cation rates in the dark at both ambient and low pH,

although net calcification rates were significantly lower

(*50%) at low compared to ambient pH (Fig. 1a, b).

Halimeda and Udotea exhibited net dissolution in the dark

at low pH, while at ambient pH in the dark, net calcifica-

tion rates remained positive (Fig. 1c, d). All species had

significantly (p\ 0.05; Neogoniolithon, p = 0.06) lower

net calcification rates in the dark under low pH compared

to ambient controls. Udotea was the only species with

significantly lower daily net calcification rates (-52%)

integrating light and dark calcification rates over 24 h, a

consequence of the combined effect of lower net calcifi-

cation in the light and dark at low pH.

Gross calcification rates under low and ambient pH

Similar to results for net calcification, gross calcification

rates were highest in the light with no significant effect of

low pH on gross calcification rates in the light (Fig. 2).

Gross calcification rates in the dark were lower than in the

light for both ambient (-41 to -83%) and low (-46

to -91%) pH treatments for all species. In the dark, the

rhodophytes sustained gross calcification rates at low pH

(Fig. 2a, b), while the chlorophytes had significantly lower

gross calcification rates (-50%) at low compared to

ambient pH (Fig. 2c, d). In contrast to net calcification,

gross calcification remained positive for chlorophytes at

low pH in the dark (Fig. 2c, d). The relatively high gross

calcification rates in the light at ambient and low pH

resulted in similar daily gross calcification rates for all

species (Fig. 2).

Dissolution and net calcification in the dark

The activity of 45Ca in seawater from pre-labelled 45CaCO3

thalli was highest at low compared to ambient pH in the

dark (Table 2). Udotea had relatively high seawater 45Ca

activity in both ambient and low pH, suggesting high dark

dissolution rates regardless of pH. This apparent high dis-

solution rate for Udotea is supported by the negative net

calcification rates (Fig. 1d, Table 2) and high TA increase

under low pH (Table 2) in the dark. At low pH in the dark,

the dTA was positive and net calcification rates negative

for each species, indicating dissolution. The dissolution of

Fig. 1 Net calcification rates (TAA) of a Neogoniolithon, b Jania, c
Halimeda, d Udotea at ambient and low pH in the light for 4 h

(between 0800 and 1500 h) or 13 h in the dark (1800 to 0700 h).

Daily net calcification rates were calculated by combining light and

dark calcification rates normalized to 24 h for each pH treatment.

Asterisk indicates a significant difference (p\ 0.05) between pH

treatments within light and dark experiments. Means ± standard error
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45CaCO3 explained 82% of the variance of seawater dTA
under low pH conditions (Fig. 3a), while there was no

significant relationship at ambient pH (Fig. 3b). The

change in 45CaCO3 dissolution from ambient to low pH

was lower in the rhodophytes (7–21%) compared to the

chlorophytes (29–32%), consistent with dark net calcifi-

cation results (Fig. 1, Table 2).

Photosynthesis and respiration

The O2 flux in the light (photosynthesis) and dark (respi-

ration) was not significantly different between ambient and

low pH treatments for any species in the two experiments

(Table S1).

Discussion

The present study demonstrates that dissolution under

elevated pCO2 and lower pH predicted for the year 2100

(IPCC 2013) can explain lower net calcification rates of

calcified macroalgae, particularly in the dark, even when

the ability to precipitate new CaCO3 in the light or on a

daily basis was not constrained. This effect may explain the

diminished net calcification rates frequently measured in

tropical reef macroalgae at lower pH (Nelson 2009; Pan-

dolfi et al. 2011; Koch et al. 2013; Hofmann and Bischof

2014; Hoegh-Guldberg et al. 2017). The major effects of

acidification on reef macroalgae dissolution occur in

darkness when calcification rates are *5 to 10 times lower

than during the day. The conclusion that lower net calci-

fication rates under OA conditions in the dark are associ-

ated with dissolution was supported by the close

relationship (R2 = 0.82) between increasing TA and loss of
45Ca from pre-labelled 45CaCO3 thalli only in the low pH

treatment. Although calcification experiments on reef

organisms examining OA effects infrequently examine

light and dark conditions separately, those that have been

conducted typically find lower net calcification rates at low

pH in the dark (Martin and Gattuso 2009; Kamenos et al.

2013; Vogel et al. 2015a, 2015b; Chou et al. 2020). At the

Milne Bay Province, Papua New Guinea (PNG) cold CO2

seep site, Halimeda opuntia and H. digitate had higher net

calcification rates at low pH (7.7) seeps during the day

compared to controls (8.1). At night, however, a significant

decline (-167%) in net calcification was observed for H.

opuntia, and minimal calcification at both seep and control

sites for H. digitate (Vogel et al. 2015b). Venn et al. (2019)

found in some species of coral (e.g. Stylophora pistillata)

calcification rates were more sensitive to low pH in dark-

ness. They also observed no net calcification at pH 7.4 and

dissolution at pH 7.2 for the coral species Acropora hya-

cinthus in the dark. Similarly, a major dark effect was

found at pH 7.7 in Acropora millepora with reduced

(-155%) net calcification rates at seep sites in PNG (Vogel

et al. 2015a). Although it is presumptive to compare across

reef organisms with a diversity of calcification mecha-

nisms, our results on macroalgae contribute to the growing

awareness that dissolution occurs in many calcifying reef

organisms (Andersson et al. 2009; Cyronak et al. 2013;

Silbiger and Donahue 2015), and may be enhanced at low

Fig. 2 Gross calcification rates (45Ca uptake) of a Neogoniolithon, b
Jania, c Halimeda, d Udotea at ambient and low pH in the light for

4 h (between 0800 and 1500 h) or 13 h in the dark (1800–0700 h).

Daily gross calcification rates were calculated by combining light and

dark calcification rates normalized to 24 h for each pH treatment.

Asterisk indicates a significant difference (p\ 0.05) between pH

treatments within light and dark experiments. Means ± standard error
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pH in the dark for autotrophic calcifiers (Martin and Gat-

tuso 2009; Vogel et al. 2015a, 2015b; Chou et al. 2020).

Since dark dissolution appears to be an important mecha-

nism influencing the effect of OA on net calcification rate in

reef calcifiers, the ability to calcify in the dark or maintain net

positive calcification may be an indicator of OA resistance.

This supposition is supported by the divergent responses of

the rhodophyte and chlorophyte macroalgal species to OA

conditions examined herein. Dark dissolution of 45CaCO3

labelled thalli was on average 18% higher in chlorophytes

compared to rhodophytes even at ambient pH. The

chlorophytes also had approximately twofold higher 45CaCO3

dissolution rates relative to the rhodophytes at low seawater

pH compared to ambient. In the dark, dissolution or lack of

CaCO3 re-precipitation of labelled thalli
45CaCO3was greater

(124%) in chlorophytes than rhodophytes at low pH. The

observed resistance to dark dissolution in rhodophytes is in

contrast to what was expected based on the higher potential

solubility of the rhodophyte’s high-Mg calcite polymorph,

compared to the lower solubility of aragonite found in

chlorophytes (Borowitzka and Larkum 1987; Ries et al. 2009;

Ries 2011a; Wizemann et al. 2015). Thus, polymorph

chemistry may not be a good indicator of macroalgal species’

susceptibility to OA, particularly in species with the ability to

modify or control polymorph chemistry to enhance resistance

to OA (Ries 2009, 2011b; Egilsdottir et al. 2013; Kamenos

et al. 2016; Nash et al. 2016). Instead, processes such as H?

control, morphology, and mechanisms of calcification are

likely more important in constraining OA impacts on thalli

CaCO3 dissolution (Jokiel 2011; Price et al. 2011; Ries

2011b; Hofmann et al. 2016;McNicholl et al. 2019). It is well

documented that rhodophytes have strong biotic control over

internal calcification–dissolution processes (Cornwall et al.

2017; Comeau et al. 2018), as many continuously shed and

reconstitute epithallial cells to remove epiphytes (Wegeberg

and Pueschel 2002; Pueschel et al. 2005) and decalcify and

recalcify in specific regions of the thalli to form reproductive

structures (Adey et al. 2013). Further, rhodophytes typically

form highly structured calcite crystals associated with the

production of organic matrices (Nash et al. 2019) that may

contribute to active biotic control of dissolution, as found in

corals that show less dissolution with tissue present, even in

undersaturated seawater (Rodolfo-Metalpa et al. 2011). Cal-

cification in rhodophytes also occurs within cell walls that

may semi-isolate CaCO3 from night-time dissolution, or

perhaps more readily allow the efflux of respiratory CO2 to

seawater. Based on stable isotope d13C signatures of tropical

macroalgal thalli, Lee and Carpenter (2001) propose both

Halimeda andUdotea calcification is dependent onmetabolic

effects with a relatively large component of DIC calcification

Table 2 Dark dissolution

experiment 45Ca activity

(Bq 9 10-1) and dTA (lmol

kg-1) of seawater (SW) and

calculated net calcification rates

(lmol CaCO3 gwt
-1 h-1)

following a 13 h incubation in

ambient or low pH of 45Ca pre-

labelled (72 h) thalli

Species pH SW-45Ca SW-dTA Net Calcification

Neogoniolithon Ambient 5.71 ± 0.36* -6.54 ± 5.81* 0.05 ± 0.05*

Low 6.90 ± 0.23 42.89 ± 8.97 -0.29 ± 0.05

Jania Ambient 4.98 ± 0.04* -52.93 ± 4.63* 2.69 ± 0.22*

Low 5.34 ± 0.20 0.46 ± 3.28 -0.01 ± 0.19

Halimeda Ambient 4.72 ± 0.17* 2.85 ± 3.21* -0.33 ± 0.38*

Low 6.22 ± 0.08 57.50 ± 5.18 -3.03 ± 0.48

Udotea Ambient 8.29 ± 0.91 ns -13.04 ± 13.66* 0.47 ± 0.54*

Low 10.67 ± 0.74 103.53 ± 19.54 -4.84 ± 0.95

Significant differences for each parameter between ambient and low pH are depicted with an asterisk.

ns = not significant (p\ 0.05)

Fig. 3 Relationship between the loss of 45CaCO3 from radiolabelled

(45Ca) macroalgae (Neogoniolithon, Jania, Halimeda, Udotea) to

seawater and total alkalinity change in seawater during the same

experiment run at a low and b ambient pH in the dark (13 h)
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arising from respiratory CO2 in the light, albeit more research

is needed in this regard. This light-dependent calcification

process may increase the exposure of aragonite crystals to

respiratory CO2 at night when respiratory DIC is not being

sequestered. This would correspond to negative net calcifi-

cation and greater dissolution at night for this group with

greater CO2 exposure from external seawater that may be

additive to respiratory CO2, as no difference in respiration

rates in low pH treatments was found in the present study or

others (Semesi et al. 2009; Kamenos et al. 2013; Comeau

et al. 2017). At night, CO2 released into the semi-enclosed

inter-utricular calcifying space (IUS) of Halimeda spp. par-

tially dissolves some CaCO3 to be recrystallized for different

skeletal structures in the utricle or cellular-IUS interface

(Borowitzka and Larkum 1976b; Wizemann et al. 2014). The

IUS may become further undersaturated causing more dis-

solution (Wizemann et al. 2015), but aragonite crystal

deformation is not obvious in all species at lower pH (Peach

et al. 2017a). In contrast, the rhodophyte Neogoniolithon

showed d13C carbonate isotopic fractionation that was posi-

tively correlated to d18O, more in-line with carbonate-se-

creting organisms (Lee and Carpenter 2001), thusmay be less

dependent on bulk seawater chemistry, and respiratory CO2

exposure at night. Comparisons between rhodophytes and

chlorophytes in our study show that the ability to precipitate

new CaCO3 in the dark at low pH may affect the extent to

which low pH exposure impacts net dissolution, although this

link is not well understood and requires further mechanistic

studies and an examination of more species.

While enhanced dark dissolution appears to be common

in calcifying autotrophs in response to OA conditions

(Martin and Gattuso 2009; Kamenos et al. 2013; Vogel

et al. 2015a, 2015b; Venn et al. 2019; Chou et al. 2020; this

study), some species may be able to offset these negative

impacts with light-enhanced calcification (LEC) during the

day, resulting in no net effect on daily calcification rates

(Kamenos et al. 2013; Vogel et al. 2015b). In some sce-

narios, dissolution may explain compromised structural

integrity (Ragazzola et al. 2012), or altered crystal content

in macroalgae, even when net calcification remains unaf-

fected at low pH (Hofmann et al. 2012, 2014). Differences

in the daily net calcification rates were primarily driven by

light calcification rates that were *5 to 10 times higher

than dark calcification rates in the macroalgae examined; a

similar response was shown by others (Gao et al. 1993;

Chisholm 2000). This LEC effect may be attributed to

enhanced biotic calcification (biomineralization) and/or

abiotic precipitation or cementation due to carbonate

oversaturation. The present study illustrates the relatively

close relationship between gross and net calcification rates,

and the importance of light-driven calcification in over-

coming low pH conditions predicted for the year 2100.

LEC has been observed across macroalgal calcifiers

(Borowitzka and Larkum 1987) and some zooxanthellae

coral (Jokiel 2011; Venn et al. 2019). We found all four

macroalgal calcifiers maintained gross calcification in the

light at low pH similar to ambient pH controls. These data

highlight the importance of irradiance for some autotrophic

calcifiers to sustain their maximum calcification rates to

overcome enhanced dissolution.

Dissolution in the dark appears to be the major driver of

OA effects on net calcification rates in tropical macroalgae;

however, our results also indicate that dissolution under

low pH can depress net calcification rates in the light in

some species. However, if tropical macroalgae can main-

tain high calcification rates in the light, lower net calcifi-

cation rates in the dark from dissolution may not

compromise daily calcification rates. Effects of lower pH in

the light on net calcification rates driven by enhanced

dissolution may be more prevalent in chlorophytes than

rhodophytes; however, more species need to be examined

to validate this supposition. Dissolution at the organismal

scale may be amplified under OA conditions when con-

sidering the whole reef added to sedimentary carbonate

losses with implications for carbonate platform growth,

stability, and formation in the long term. This would be

crucial for the Florida Reef Tract where some reefs are

already eroding at -1.1 ± 0.4 kg CaCO3 m-2 year-1

(Muehllehner et al. 2016), and across reefs globally

showing enhanced dissolution of sediments and organismal

skeletons under global change (Andersson et al. 2009;

Silbiger and Donahue 2015; Eyre et al. 2018).
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