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Abstract Iron (Fe) is essential to the physiology and

growth of marine phytoplankton. It remains unclear how

important iron is to the functional ecology of symbiotic

dinoflagellates in the family Symbiodiniaceae, and whether

limitations in iron ultimately affect the health and pro-

ductivity of coral hosts, especially during episodes of ocean

warming. Five Symbiodiniaceae species (spanning three

genera) were used to investigate the effects of reduced iron

availability on cell growth and the acquisition of other

trace metals. When grown under iron replete conditions,

intracellular iron quotas (content) reflected a large bio-

chemical demand and ranged from 7.8 to 23.1 mmol Fe

mol Phosphorus-1. Symbiodinium necroappetens was the

only species that acclimated and maintained high growth

rates while subjected to the lowest iron treatment (250 pM

Fe0). Cultures surviving under low iron concentrations

experienced changes in cellular concentrations (and pre-

sumably their use as cofactors) of other trace metals (e.g.,

zinc, copper, cobalt, manganese, nickel, molybdenum,

vanadium), in ways that were species-specific, and possibly

related to the natural ecology of each species. These

changes in trace metal contents may have cascading effects

on vital biochemical functions such as metalloenzyme

activities, photosynthetic performance, and macronutrient

assimilation. Furthermore, these species-specific responses

to iron limitation provide a basis for investigations on how

iron availability effects cellular processes among species

and genera of Symbiodiniaceae, and ultimately how metal

shortages modulate the response of coral–algal mutualisms

to physiological stressors.

Keywords Iron limitation � Micronutrients � Mutualistic

symbioses � Physiology � Trace metal quotas

Introduction

Iron and other trace metals are required for the growth of

macro- and microalgae. As an essential trace metal, iron is

needed for many biochemical pathways and cellular pro-

cesses, especially in photosynthetic organisms (Fig. 1;

Martin et al. 1991; Raven et al. 1999; Merchant 2007).

Numerous culture and field studies have demonstrated that

iron’s relatively low availability and supply limit phyto-

plankton growth and abundance (Brand et al. 1983); and

why iron availability directly influences primary produc-

tivity in the food webs of various marine ecosystems

(Martin et al. 1991; Behrenfeld and Milligan 2013).

Many biochemical pathways and cellular processes

require trace metals, especially iron, for normal functioning

(Fig. 1). As a cofactor for photosynthesis, iron is bound to
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proteins needed in photosystem I, photosystem II, the

electron transport chain (plastoquinone, cytochromes), and

ferredoxin activity (Raven et al. 1999; Crichton and Pierre

2001). Its use by scavenging enzymes helps prevent cel-

lular damage by neutralizing reactive oxygen species

(Wolfe-Simon et al. 2005). Furthermore, iron is utilized by

enzymes important for macronutrient assimilation such as

nitrate and nitrite reductase (Raven 1988; Morel et al.

1991). Thus, iron is especially important to the healthy

functioning of all photosynthetic organisms (Behrenfeld

and Milligan 2013).

Increasing evidence supports the importance of iron and

other trace metals for the stability of the mutualisms

between reef-building corals and their endosymbiotic

dinoflagellates (Shick et al. 2011; Ferrier-Pagès et al.

2018). The emergence of Symbiodiniaceae in the Mesozoic

coincides with major transitions in oceanic trace metal

availability and biogeochemistry (Falkowski et al. 2004;

Katz et al. 2004; LaJeunesse et al. 2018). While iron is

often deficient in coral reef ecosystems (Entsch et al.

1983), adequate iron availability, including other trace

metals, has been deemed imperative to the physiology and

health of reef-building corals (Biscéré et al. 2018; Ferrier-

Pagès et al. 2018). Low iron availability increases a col-

ony’s sensitivity to thermal stress, which can cause a

breakdown of the mutualism (i.e., ‘‘coral bleaching’’; Shick

et al. 2011). Further, trace metals are required by most

enzymes used for antioxidant protection and are therefore

important to boosting thermal stress tolerance (Lesser

1996; McGinty et al. 2012; Krueger et al. 2015; Levin et al.

2016). Collectively, these observations highlight the

potential importance of iron and other trace metals in the

physiological response of reef corals to climate change-

induced stressors.

Despite the apparent importance of iron and other trace

metals to the physiology of symbiotic dinoflagellates in the

family Symbiodiniaceae, our understanding of how much

is required to meet the metabolic needs of various species
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remains limited. The free-living Fugacium kawagutii is the

only species of Symbiodiniaceae for which iron require-

ments are known in detail (Rodriguez et al. 2016; Rodri-

guez and Ho 2017, 2018). As with many other

dinoflagellates, the high iron requirement of F. kawagutii

suggests that large quantities of iron are also necessary for

the maintenance of mutualistic symbiosis involving

dinoflagellates (Ho et al. 2003; Rodriguez et al. 2016;

Rodriguez and Ho 2017, 2018).

To assess this possibility, a comparative study was

endeavored to measure the physiology and cell prolifera-

tion of various Symbiodiniaceae growing at different iron

concentrations. Here, we examined how exposure to dif-

ferent iron concentrations altered growth kinetics of five

species of Symbiodiniaceae representative of three genera.

By comparing strains with free-living, necrotrophic, and

symbiotic lifestyles, we assessed how ecologically differ-

entiated species responded to iron stress through changes in

cell proliferation and adjustments to internal concentrations

of other trace metals. The influence of low iron availability

on the concentrations of other trace metals can have cas-

cading effects on numerous vital biochemical pathways. By

assessing the range of iron requirements among different

species, we begin to consider the relative importance of

iron availability and acquisition for the health and growth

of coral colonies depending on the symbiont species they

harbor.

Methods

Culture conditions

Five species of Symbiodiniaceae (Symbiodinium microad-

riaticum, Symbiodinium necroappetens, Breviolum minu-

tum, Breviolum psygmophilum, and Effrenium voratum)

were acclimatized to a modified L1 medium in 250-mL

acid-washed polycarbonate bottles (Table 1; Guillard and

Hargraves 1993). Cultures had been maintained in the

LaJeunesse Lab culture collection since 2004. Strain

identity was confirmed by Sanger sequencing of the ribo-

somal ITS2 marker at the Penn State Genomics Core

Facility. All culture preparation work occurred in a class-

100 trace metal clean laboratory at Academia Sinica, and

all plastic ware was prepared with the appropriate protocols

(Rodriguez et al. 2016; Rodriguez and Ho 2017, 2018).

Symbiodiniaceae were grown in the surface seawater col-

lected from the South China Sea and initially filtered using

Whatman Polycap filters. To remove background trace

metals, seawater was passed through a Chelex� 100 resin

at a rate of 2.5 mL min-1. Subsequently, the purified

seawater was filter-sterilized using 0.22-lm Millipore fil-

ters and transferred into sterilized 1-L polycarbonate bot-

tles. Background trace metal concentrations were routinely

measured at Academia Sinica, and background iron con-

centrations were around 0.10 nM (Ho et al. 2010; Ho 2013;

Wang et al. 2014).

Culture conditions were derived from previous work

with Fugacium kawagutii (Rodriguez et al. 2016; Rodri-

guez and Ho 2017, 2018). Concentrated standards of trace

metal grade purified major nutrients, trace metals, and

vitamins were added to the culture medium to reach the

initial concentrations of nitrate (800 lM), phosphate

(50 lM), trace metals (Mn, Zn, Co, Cu, Ni, and Mo, 10 nM

each), cyanocobalamin (0.40 nM), biotin (2.1 nM), and

thiamine (300 nM). For experimentation, the five species

were exposed to four different iron concentrations,

including iron starvation (0 nM total dissolved Fe), low

iron (50 nM), intermediate iron (100 nM), and iron replete

(250 nM) treatments. This led to 20 total treatments and 60

culture bottles (n = 3). Iron enrichment was done using

FeCl3�6H2O (Fe3?) following Morel et al. (1979) and

further described in the studies (Morel et al. 1979; Ho et al.

2003; Rodriguez et al. 2016). To regulate metal bioavail-

ability, trace metal grade ethylenediaminetetraacetic acid

(EDTA) was added to each bottle to reach a final EDTA

concentration of 20 lM. Based on the Le Chatelier prin-

ciple, EDTA serves as a buffer to keep the inorganic or

bioavailable fraction (Fe0) relatively constant. The EDTA

ligand-chelated fraction (organic fraction) is not bioavail-

able to microalgae (Anderson and Morel 1982). With the

addition of EDTA, estimated inorganic concentrations of 0,

250, 500, and 1250 pM Fe0 represented the bioavailable

fractions, corresponding to the total dissolved iron con-

centrations 0, 50, 100, and 250 nM Fe, respectively (Ro-

driguez et al. 2016; Rodriguez and Ho 2017, 2018).

Hereafter, the iron treatments will be referred to as

Table 1 Species, strain, and

(former) clade identification of

Symbiodiniaceae used for

experimentation

Species Strain Former clade

Symbiodinium microadriaticum CCMP 2464/rt362(1) A

Symbiodinium necroappetens MAC-225 A

Breviolum minutum CCMP 2460/rt002(1) B

Breviolum psygmophilum PurPFlex B

Effrenium voratum rt 383(2) E
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starvation (0 pM Fe0), low iron (250 pM Fe0), intermediate

iron (500 pM Fe0), and replete iron (1250 pM Fe0).
Prior to and during experimentation, cultures were

maintained on a 12:12-h light:dark cycle with light inten-

sity at 650 ± 50 lmol photons m-2 s-1 and at ambient

temperature (26 �C). Symbiodiniaceae cultures were

maintained at saturating light levels to prevent low-light

acclimation and to enable comparison with other bodies of

work (Ragni et al. 2010; Rodriguez et al. 2016; Rodriguez

and Ho 2017, 2018). For low, intermediate, and replete iron

treatments, Symbiodiniaceae were acclimatized to experi-

mental iron concentrations for 1 month prior to experi-

mentation. Iron starvation treatments were inoculated from

Symbiodiniaceae reared at the low iron treatment. All

treatments were started from stock Symbiodiniaceae (at the

appropriate iron concentrations) cultures at maximum cell

density. All treatments were run with triplicate replicates

with starting cell densities between 1000 and

2000 cells mL-1. After inoculation, Symbiodiniaceae

growth was measured every other day using a Beckman

Coulter Counter Multisizer 3 with a 100-lm aperture tube

until cultures reached stationary phase. All growth moni-

toring occurred during the light phase of the light:dark

cycle.

Determination of intracellular metal quotas

(content)

During mid-exponential phase, ten million cells of Sym-

biodiniaceae were harvested for determination of intracel-

lular elemental quota (iron, zinc, manganese, copper,

nickel, cobalt, molybdenum, vanadium, and phosphorus)

using high-resolution inductively coupled plasma mass

spectrometry (HR-ICPMS, Element XR, Thermo Scien-

tific). For each triplicate replicate, the appropriate volume

of cells was harvested onto acid-washed 25-mm (2 lm
pore size) Millipore TTTP polycarbonate filters during the

light phase of the light:dark cycle. Harvested cells were

washed with ultrapure Milli-Q water and digested in 50%

nitric acid in preparation for HR-ICPMS. The details of the

analytical precision, accuracy, and detection limits of the

ICPMS method for microalgae are described in the studies

(Ho et al. 2003; Ho 2013). Trace metal content was nor-

malized to mol phosphorus (P) following Redfield ratios

and because P is analyzed simultaneously with trace metals

by HR-ICPMS (Redfield 1934).

Statistical analyses

Specific growth rate was calculated as
D lnðcell densityÞ
Dtime ðdaysÞ .

Metal uptake rates were calculated by multiplying specific

growth rate and intracellular iron quota. Metal net use

efficiency was calculated by dividing specific growth rate

with intracellular iron quota. All statistical analyses were

run in R v3.3.2 (R Core Team 2016). Since data did not

meet the assumptions of parametric statistics, a Kruskal–

Wallis (KW) test was used to determine differences in

mean cell density, intracellular metal quotas, uptake rates,

and net use efficiencies using the PMCMR package (Poh-

lert 2014). Subsequently, a pairwise test for multiple

comparisons of mean rank sums (Dunn’s test) was used as

a post hoc test to determine differences between treatment

groups using a Benjamini–Hochberg p adjustment to

account for false discovery rate (Benjamini and Hochberg

1995). Data were visualized using ggplot2 v2.2.1, ggpubr

v0.1.6, and cowplot v0.8.0 (Wickham 2009; Wilke 2016).

A principal component analysis (PCA) was used to

determine multivariate clustering of Symbiodiniaceae trace

metal content. Trace metal content data were log-trans-

formed, and individuals with missing values were omitted.

The FactoMineR package was used to generate and visu-

alize PCA statistics (contribution and correlation of vari-

ables in the principal components). A PCA biplot was

generated using the FactoMineR fviz_pca_biplot function

with points overlaid using the ggplot2 geom_point function

so multiple factor levels (iron concentration and species)

could be visualized by shape/color. The ggplot2 stat_el-

lipse function was used to display a confidence (0.95)

ellipse for each species. All data and code are available on

GitHub https://github.com/hgreich/Symbiodiniaceae_Pump_

Iron.

Results

Symbiodiniaceae growth increases with iron

concentration

Low iron concentrations resulted in decreased specific

growth rates and maximum cell density (Figs. 2, 3). Both

Symbiodiniaceae species (F = 5.1, p\ 0.01) and iron

treatment (F = 45.3, p\ 0.01) had statistically significant

effects on cell densities (Fig. 2). However, the interaction

between species and iron concentrations was only mar-

ginally significant (F = 2.2, p = 0.07). Under iron starva-

tion conditions, all Symbiodiniaceae exhibited diminished

growth curves similar to one another and were unable to

reach exponential growth phase (Fig. 2). However, growth

under low, intermediate, and replete iron concentrations

reached exponential growth phase and was statistically

similar across all isolates (Figs. 2, 3). Despite the similarity

of growth curves, the individual treatments reached expo-

nential growth phases at different time points and exhibited

nominal increases in specific growth with increased iron

concentration above 250 pM Fe0 (Figs. 2, 3).
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Symbiodiniaceae iron content (quota) increases

with iron concentration

Growth under decreased iron concentrations corresponded

to reduced intracellular iron content for all species

(Fig. 4a). Because iron starvation prohibited exponential

growth, there was not enough cell biomass in the iron

starvation treatment to obtain HR-ICPMS data. Thus, all

trace metal content comparisons were made between the

low, intermediate, and replete iron treatments. The output

of all pairwise statistical comparisons is available on

GitHub, and several comparisons are highlighted below.

There was a significant decrease in intracellular iron con-

tent with decreases in iron supply when normalized to

phosphorus (P) content (mmol Fe mol P-1; KW chi-

squared = 81.2, df = 14, p value = 1.7e-11) and cell

volume (lm3 mL-1; KW chi-squared = 65.85, df = 12,

p value = 1.9e-09, Fig. 4a, S1). Cellular phosphorus

concentrations varied by species but were consistent for all

within-species comparisons at the different iron concen-

trations (p\ 0.05 for each within-species comparison;

Fig. S1).

The extent of iron content decline between different

treatments was species-specific. Symbiodinium microadri-

aticum, B. psygmophilum, and E. voratum displayed sig-

nificant decreases in iron content when exposed to low and

replete iron concentrations (p = 0.02, p\ 0.01, and

p = 0.01 respectively; Fig. 4a). Their iron content at

intermediate iron concentrations displayed nominal

decreases when compared to those grown at low and

replete conditions. However, the iron content of S.

necroappetens and B. minutum at iron replete conditions

was significantly larger than counterparts at low (p\ 0.01)

and intermediate iron treatments (p = 0.01 and p = 0.03,

respectively; Fig. 4a). At all treatments, E. voratum and B.

psygmophilum iron contents were more than double the

size of the iron content of S. microadriaticum, B. minutum,

and S. necroappetens (Fig. 4a).
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Iron uptake rates were significantly higher at elevated

iron concentrations for all five species (KW chi-

squared = 81.32, df = 14, p value = 1.61e-11, Fig. 4b).

Conversely, iron use efficiency decreased inversely with

iron concentration (KW chi-squared = 79.87, df = 14,

p value = 2.99e-11, Fig. 4c). Iron net use efficiency was

significantly higher at low iron concentration treatments

relative to iron replete counterparts for S. necroappetens, B.

psygmophilum, and B. minutum (p = 0.01, p = 0.03, and

p = 0.03, respectively; Fig. 4c).

Variation of Symbiodiniaceae trace metal content

(quotas)

In addition to iron, intracellular zinc, manganese, copper,

nickel, cobalt, molybdenum, and vanadium were detected

in the five Symbiodiniaceae species (Fig. 4). Symbiodini-

aceae demonstrate substantial variation in compensation

for low iron exposure with each species displaying a

unique set of iron–metal interactions. Here, an iron–metal

interaction occurs when a given Symbiodiniaceae species’

trace metal quota, uptake rate, or net use efficiency changes

significantly between different iron treatments (Fig. 6a).

Briefly, substantial between- and within-genus variation

was found and changes in trace metal use strategies in

response to low iron exposure did not follow phylogenetic

patterns (Figs. 5, 6, S2, S3).

Within the genus Symbiodinium, iron had little effect on

other trace metal usage for S. necroappetens, but clear

interactions between iron–zinc, iron–nickel, iron–copper,

iron–cobalt, iron–molybdenum, and iron–vanadium were

measured for S. microadriaticum (Figs. 5, 6a, S2, S3).

Under intermediate iron concentrations, S. microadri-

aticum nickel content was significantly higher than at low

iron concentrations (p\ 0.01) and replete conditions

(p = 0.03, Fig. 5). Additionally, nickel uptake rate was

significantly faster at intermediate iron conditions relative

to low iron (p\ 0.01) and replete (p = 0.02, Fig. S2)

concentrations. Conversely, nickel net use efficiency was

significantly lower at intermediate iron concentrations

relative to low (p\ 0.01) and replete (p = 0.01) treatments

(Fig. S3). Symbiodinium microadriaticum zinc content was

significantly higher at iron replete conditions relative to

intermediate (p = 0.03) and low (p = 0.02) treatments,

whereas replete S. microadriaticum zinc uptake rate was

only significantly higher than the low iron treatment

(p\ 0.01; Figs. 5, S2). Cobalt and molybdenum uptake

rates were significantly faster at intermediate iron treat-

ments relative to low iron concentrations (p = 0.01 and

p = 0.03, respectively; Fig. S2). Copper net use efficiency

was significantly larger at iron replete conditions relative to

low iron conditions (p = 0.03, Fig. S3). Lastly, S.

microadriaticum vanadium uptake rate was significantly

faster at replete iron concentrations relative to low iron

conditions (p = 0.01; Fig. S2).

Similarly, within the genus Breviolum, no iron–metal

interactions were detected in B. minutum, whereas B.

psygmophilum demonstrated iron–manganese, iron–cobalt,

and iron–vanadium interactions (Figs. 5, 6a, S2, S3). Bre-

violum psygmophilum manganese content was significantly

larger at intermediate iron conditions than at replete con-

ditions (p = 0.04), whereas manganese net use efficiency

was significantly larger at iron replete conditions relative to

intermediate iron (p = 0.02) and low iron (p = 0.03)

treatments (Figs. 5, S3). Additionally, at iron replete con-

centrations, cobalt net use efficiency was larger than at low

and intermediate iron treatments (p = 0.04 and p = 0.05,

respectively; Fig. S3). Breviolum psygmophilum vanadium

uptake rate significantly increased between low iron and

replete iron treatments (p\ 0.01, Fig. S2).

Effrenium voratum displayed iron–nickel, iron–molyb-

denum, and iron–vanadium interactions (Figs. 5, 6a, S2,

S3). Nickel content and uptake rate were significantly

lowest at low iron treatments relative to intermediate

(p\ 0.01 for both comparisons) and replete treatments

(p = 0.02 for both comparisons; Figs. 5, S2). Conversely,

nickel net use efficiency was significantly larger at the low

iron treatment relative to the intermediate treatment

(p\ 0.01, Fig. S3). Molybdenum content (p\ 0.01) and

uptake rate (p\ 0.01) were significantly smaller at the low
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iron concentration treatment relative to intermediate

counterparts (Figs. 5, S2). Additionally, molybdenum

uptake rate also significantly decreased between the replete

and low iron treatments (p = 0.03, Fig. 5). Contrastingly,

molybdenum net use efficiency decreased significantly

between the intermediate and low iron treatments

(p = 0.03, Fig. S3). Like molybdenum, vanadium uptake

rate significantly decreased between the replete and low

iron treatments (p\ 0.01, Fig. S2).

The PCA of Symbiodiniaceae trace metal content yiel-

ded three main clustering domains by species: B. psyg-

mophilum and E. voratum, B. minutum and S.

microadriaticum, and S. necroappetens only (Fig. 6b).

Further clustering by iron concentration can be observed

within some species clusters (Fig. 6b). The first two

dimensions/principal components (PCs) of the PCA

explained 65.9% of the variance (PC1—45.2% variance,

and PC2—20.8% variance; Fig. 6b). Cobalt (20.7%), zinc

(18.8%), manganese (18.4%), copper (15.7%), and iron

(11.7%) contributed the most variation to PC1, and all had

positive correlations (Fig. 6b). In PC2, vanadium (38.3%),

nickel (33.6%), and cobalt (10.6%) contributed the most

variation to PC2 (Fig. 6b). In PC2, nickel and vanadium

had positive correlations where cobalt was negative

(Fig. 6b). Since many of the loadings are in the positive

(right) side of PC1, the individuals (primarily B. psyg-

mophilum and E. voratum) further to the right of the biplot

had higher trace metal content (Fig. 6b). Pairs of loadings

(arrows) that are close together (e.g., manganese and

cobalt) had high positive correlation (Fig. 6b).

Discussion

The relatively high quantities of iron required for cell

division and growth underscore the importance of mi-

cronutrient (i.e., trace metals) availability for species of

Symbiodiniaceae (Figs. 2, 3, 4, S4). These needs appear to

have important physiological consequences, which deserve

further consideration when characterizing the health and

stable functioning of coral–dinoflagellate mutualisms.

Their demand for iron may relate to the maintenance of

numerous biochemical pathways and enzymes needing

metal cofactors (Fig. 1). As dinoflagellates, these demands

may stem from having evolved in environments where

metal concentrations were relatively high (e.g., shelf or

coastal waters) in addition to having the cellular machinery

for carrying out photosynthesis and heterotrophy. Differ-

ences in iron requirements and trace metal profiles be-

tween species appear to correspond with ecological guilds,

which suggest that metal availability might influence the

processes of natural selection and niche diversification

(Figs. 5, 6).
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High iron requirements

Symbiodiniaceae generally required large amounts of iron

to reach maximum growth relative to other microalgae and

dinoflagellates grown in culture (Figs. 2, 3, 4, S4; Sunda

and Huntsman 1995; Rodriguez et al. 2016; Rodriguez and

Ho 2017, 2018). Several explanations as to why Symbio-

diniaceae maintain large iron reserves and require high iron

supply for cell proliferation in culture are discussed below.

The capacity for mixotrophic nutrient acquisition (pho-

tosynthesis and consuming prey) by most dinoflagellates,

including Symbiodiniaceae, may contribute to a greater

iron demand relative to other microalgae (Jeong et al.

2012). When free-living, even temporarily, symbiotic

species of Symbiodiniaceae may possess the ability to feed

on prey to compensate for nutrient limitation and elevate

internal nutrient reserves (Stoecker et al. 1997; Smalley

et al. 2003). Additionally, the iron cofactors required for

prey assimilation cellular machinery (i.e., digestion,

phagocytosis, ion trafficking) may demand increased iron

reserves (Stossel 1974).

There is a tendency for microalgae in coastal environ-

ments to have higher iron requirements relative to oceanic

counterparts (Sunda and Huntsman 1995). Oceanic species

of diatoms and coccolithophores are able to subsist and

continue to proliferate at far lower iron concentrations

relative to coastal diatoms and dinoflagellates (including

the Symbiodiniaceae; Sunda and Huntsman 1995; Rodri-

guez et al. 2016; Fig. S4). The lower iron requirements of

open-water species likely have resulted from selection

pressures that demand economizing the use of iron and

other trace metals. However, because most photosynthetic

dinoflagellates live in coastal surface waters with high iron

concentrations, they are rarely iron-limited and therefore

appear to lack the necessary adaptations for living in low

iron environments (Strzepek and Harrison 2004).
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Fig. 6 Comparison between

phylogenic relationships and

species ecology with changes in

trace metal content resulting

from physiological responses to

iron limitation. While

phylogenetic relationships do

not explain trace metal

requirements, there appears to

be a strong correspondence with

ecological guild. a Phylogeny

showing relationships among

Symbiodiniaceae species used

in this research (highlighted in

color). Additional species were

included to provide an

evolutionary context with

unexamined genera. Elemental

symbols designate species that

exhibited altered use of trace

metals when at different iron

concentrations. b Principal

component analysis (PCA) of

trace metal content among

species grown at different iron

concentrations. Vector length is

correlated with contribution in

the first two principal

components. Ellipses represent

confidence (0.95) intervals for

the multivariate distribution of

each species
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As a necessary cofactor for enzymes involved in many

metabolic pathways (Raven et al. 1999), iron is likely

important to the healthy functioning of coral–dinoflagellate

mutualisms (Fig. 1). Because of their extensive use in the

process of photosynthesis, it is not surprising that trace

metals in reef-building corals are most concentrated in the

symbiont relative to host tissue and skeleton (Mitchelmore

et al. 2003; Reichelt-Brushett and McOrist 2003; Horwitz

et al. 2014; Ferrier-Pagès et al. 2018). In addition to

maintaining iron required for its own photo-physiological

purposes, the symbiont’s ability to effectively store/retain

iron from the host could prevent damage to the host from

the accumulation of reactive oxygen species during stress

events (Lesser 1996; Shick et al. 2011; Parkinson et al.

2015; Levin et al. 2016). Thus, the efficient iron seques-

tration may aid the normal function of symbiont cells when

residing beneath layers of plasma membranes and host cell

cytoplasm.

The consequence of insufficient iron availability

on other trace metals

While iron is vital to most biochemical functions, many

other trace metals are also important to cell physiology and

function (Fig. 1). Changes in trace metal compositions

were different for each species during exposure to low iron

concentrations (e.g., shifts in intracellular zinc, manganese,

copper, nickel, cobalt, molybdenum, vanadium; Fig. 4a).

Certain shifts in metal concentrations among the five spe-

cies presumably compensated for iron starvation (Fig. 1).

The replacement of iron by other trace metal cofactors

constitute an acclimatory process that helps to maintain

enzymatic activities and normal biochemical functions in

microalgae (reviewed in Blaby-Haas and Merchant 2012;

Twining and Baines 2013) and in plants (reviewed in Puig

et al. 2007). Presumably, different shifts in metal contents

observed in the Symbiodiniaceae may compensate for iron

limitation in ways proposed below.

Photo-physiological demand may underlie shifts in trace

metal usage following exposure to low iron supply. The

utility of manganese and copper in photosynthesis can

compensate for insufficient iron access (Wood 1978; Raven

et al. 1999; Maldonado et al. 2006). Each PSII reaction

center requires four manganese atoms (Raven et al. 1999;

Fig. 1). Copper electron donors can assist thylakoid

maintenance when iron supply is sparse (Maldonado et al.

2006; Fig. 1). The ability of E. voratum and B. psyg-

mophilum to increase manganese content during exposure

to lower iron concentration may aid in the maintenance of

PSII (Figs. 1, 5). Similarly, S. microadriaticum’s ability to

alter copper efficiency could assist thylakoid maintenance

via iron–copper replacement during iron limitation (Wood

1978; Maldonado et al. 2006; Figs. 1, 5). Ultimately, the

ability to utilize manganese and copper while iron is lim-

ited may improve photosynthetic efficiency and explain

photo-physiological differences among these species when

subjected to heat stress (Figs. 5, S2, S3; Goyen et al. 2017;

Biscéré et al. 2018; Mansour et al. 2018).

A decrease in micronutrients has important implications

for numerous enzymatic processes important to cell

growth. Several pathways involved in macronutrient

assimilation rely on intracellular metals that can become

depleted during exposure to low iron conditions. Metal-

loenzyme activity including, carbonic anhydrase zinc-

cobalt needs (carbon cycle), alkaline phosphatase zinc

requirements (phosphorus cycle), and nitrate reductase

molybdenum-vanadium cofactors (nitrogen cycle) may be

impaired by changes in trace metal content caused by iron

limitation (Morel et al. 1994; Shaked et al. 2006; Twining

and Baines 2013; Fig. 1). Zinc content decreased signifi-

cantly in Symbiodinium microadriaticum when grown at

low iron, which would further reduce cell proliferation by

compromising the production of photosynthate (via drop in

carbonic anhydrase activity) and its ability to assimilate

phosphate (via decline in alkaline phosphatase activity;

Figs. 1, S2). Similarly, iron-limited E. voratum, B. psyg-

mophilum, and S. microadriaticum all showed decreases in

molybdenum and vanadium, which would slow or halt cell

division in these species by impairing nitrogen assimilation

(observed in Figs. 1, S2). When iron-limited, the com-

pensatory losses of other essential trace metals and dis-

ruption of nutrient assimilation could compromise the

persistence of symbiotic species in hospite.

Additional considerations of factors influencing

trace metal uptake

Ultimately, it remains unknown why some trace metals

increased in cells grown at low iron, and whether changes

in their concentrations were because of active or passive

transport. While typically specific to one element, flexi-

bility for other metals by some membrane transporters may

result in non-specific uptake (Masmoudi et al. 2013). Thus,

low specificity in metal transporters could contribute to the

rise in some trace metals for certain Symbiodiniaceae

under iron limitation (Fig. 1). Moreover, changes in metal

composition resulting from non-specific transportation may

not necessarily fulfill a particular biochemical purpose

(Kosman 2003).

In nature, microalgal assimilation of bacterial side-

rophores can aid in their acclimation to low iron concen-

trations (Soria-Dengg and Horstmann 1995; Wilhelm et al.

1996). When secreted, these compounds allow bacteria to

persist at low iron conditions by scavenging iron (prefer-

entially Fe3?). Genomic studies of Symbiodiniaceae have

found evidence for siderophore genes (Shoguchi et al.
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2013; Aranda et al. 2016; Parkinson et al. 2016), although

their presence probably originated from the genomes of co-

occurring bacteria in these cultures. Putative interspecific

variation in siderophore abundance and activity in cultures

may explain some differences in trace metal compositions

observed (Figs. 4, 5). However, EDTA was included in the

growth medium of these experiments to minimize iron

bioavailability and reduce the influence of background

bacterial communities (and their siderophores) present in

each culture (Hopkinson and Morel 2009).

Differential nitrogen and phosphorus requirements

between dinoflagellate species may contribute to their trace

metal needs (Muggli and Harrison 1996; Wiedenmann

et al. 2013; D’Angelo and Wiedenmann 2014). Changes in

available nitrogen and phosphorus sources can also affect

trace metal contents via active or passive transport.

Moreover, for species capable of living as intracellular

symbionts, access to nutrients changes dramatically when

surrounded by a host plasma membrane. Further experi-

mentation on interactions between macro- and micronu-

trient demands on isolated and in hospite cells may lead to

a better understanding of nutrient exchange dynamics

among coral–dinoflagellate symbioses.

The potential role of trace metals in niche

diversification

Members of the family Symbiodiniaceae embody a broad

range of physiological and ecological diversity, including

free-living, necrotrophic, and symbiotic species with geo-

graphic distributions spanning tropical to temperate zones.

Moreover, symbiotic species associate with many inverte-

brate and protist hosts, which present numerous challenges

of living in different intracellular environments among

these evolutionarily divergent hosts. The availability of

trace metals probably varies considerably across all of

these abiotic and biotic environments. Therefore, it is not

surprising that differently adapted Symbiodiniaceae have

different trace metal quotas and that their physiologies

differ in the presence of different iron concentrations

(Fig. 6).

Slight differences in trace metal requirements may

ultimately explain certain physiological differences

between (and within) species and may regulate to some

extent their geographic and ecological distributions

(Strzepek and Harrison 2004; Aichelman et al. 2019;

Hoadley et al. 2019; Fig. 6). On a global scale, regional

differences in metal chemistries may explain why certain

symbiont genera are more common and ecologically

dominant than others between ocean basins (Baker 2003;

LaJeunesse 2005; Moore et al. 2013). Moreover, long-term,

or persistent, changes in standing metal concentrations may

favor the shift, or rise in dominance, of certain species, or

genera, over others. As discussed earlier, it remains

unknown to what extent intracellular environments also

impose selection pressures related to trace metal avail-

ability and acquisition. In combination with external

environmental pools, it is likely that host species bio-

chemistries further dictate metal availability to resident

symbionts.

For example, the genus Breviolum appears to have

undergone an adaptive radiation mostly in the Caribbean

(LaJeunesse 2005). The separation between the Atlantic

Ocean and Pacific Ocean coincides with a period of global

cooling and increased input of iron dust to the Caribbean

Sea (Martı́nez-Garcia et al. 2011). Breviolum minutum

probably evolved as a species during a Pleistocene radia-

tion in the western tropical Atlantic, whereas B. psyg-

mophilum appears to have emerged during a Pliocene

adaptive radiation (LaJeunesse 2005; LaJeunesse et al.

2012; Lewis et al. 2019). It is conceivable that the

increased iron input from the desertification of North

Africa during these independent radiations contributed to

the regional ecological dominance of this genus (LaJe-

unesse 2005; Martı́nez-Garcia et al. 2011; Lewis et al.

2019). Ultimately, determining whether major shifts in

trace metal availability influences diversification among

and competitive dynamics between Symbiodiniaceae must

be further explored through additional comparative

research.

While preliminary, multivariate analysis of trace metal

profiles from the species examined in this study corre-

sponded to their geographic distributions and/or ecological

guilds. Three distinctive clusters were characterized when

trace metal contents for all five species were analyzed

together (Fig. 6). One of these groupings corresponded to

temperate species (i.e., B. psygmophilum and E. voratum),

a second grouping related to tropical species found in

mutualisms with cnidarian hosts (Breviolum minutum and

Symbiodinium microadriaticum), while the third corre-

sponded to an opportunistic and potentially necrotrophic

species (S. necroappetens; Fig. 6). The temperate, ‘‘cold-

water’’ species possessed relatively high trace metal con-

centrations, and the multivariate analysis separated them

from the others (Jeong et al. 2014; Thornhill et al. 2008;

Fig. 6). Their high metal content may relate to their exis-

tence in temperate and coastal environments where iron

and other trace metals are in greater supply (Moore et al.

2001; Fig. 5). The relationships between cellular contents

and requirements of trace metals, and whether these values

correspond consistently to ecological attributes and geo-

graphic distributions should be considered as more species

are analyzed in this manner.

Symbiodinium necroappetens grew well under low iron

concentrations and exhibited a unique trace metal compo-

sition (Figs. 3, 6). This species is sometimes detected in
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bleached or diseased coral colonies in the Caribbean Sea

(LaJeunesse et al. 2015). The bioavailability of iron

decreases in warmer waters (Liu and Millero 2002). Epi-

sodes of warming anomalies associated with mass coral

bleaching could exacerbate the effects of thermal stress on

normal symbionts, by limiting access to iron important for

acclimation (Ferrier-Pagès et al. 2018). Because of its low

iron requirements, S. necroappetens may simply better

endure severe warming events, while the normal symbionts

found in various hosts often decline precipitously (Hoff-

mann et al. 2012). Therefore, distinct metal profiles, like

those of S. necroappetens, hint at how micronutrient con-

centrations may influence niche partitioning among species

of Symbiodiniaceae.

Toward a better understanding of trace metals

on the biology of Symbiodiniaceae

To what extent iron availability influences physiological

differences among Symbiodiniaceae, and their associations

with particular cnidarian and protistan hosts requires con-

siderably more investigation. The differences in iron

requirements described for the small number of Symbio-

diniaceae species investigated here indicate a potentially

large breadth in specific nutrient requirements within and

between species across this dinoflagellate family and its

genera. Furthermore, there may be an unrealized role of

trace metals in the response of these mutualisms to con-

tinued climate change.
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