
REPORT

Coral calcification, mucus, and the origin of skeletal organic
molecules

Sönke Hohn1 • Claire E. Reymond1

Received: 27 February 2019 / Accepted: 30 May 2019 / Published online: 10 June 2019

� Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract Biocalcification encompasses the kinetic and

structural, abiotic and biologically mediated processes

involved in the formation of calcium carbonate skeletons

by marine organisms and represents a key process in the

global carbon cycle. Throughout the geological record, this

process has evolved repetitively and has altered global

biogeochemical cycles. Besides the structural variability of

calcium carbonate polymorphs laid down by different

organisms, biogenic carbonate skeletons are characterized

by the presence of organic molecules that are incorporated

into the growing skeleton. Major advances have identified

the macromolecules associated to the organic matrix within

marine calcifiers, however, it has yet to be established the

actual role these organic molecules play in the calcification

process. In this study, we isolated the effect of skeletal

organic molecules (SOM) on the precipitation of calcium

carbonate on coral skeleton fragments by adding extracted

SOM or coral mucus (CM) to oversaturated calcium car-

bonate solutions. We found that the precipitation rate did

not change regardless if organic molecules were present or

not. However, the primary polymorph did change between

the treatments, suggesting that organic molecules influence

the surface processes that lead to the formation of the

crystal lattice but not the kinetic processes that transport

ions to the crystal surface. Since SOM and CM both altered

the crystal polymorph but not the crystallization rate, we

argue that SOM may not represent a specialized biomin-

eralization toolkit, but that SOM originate from CM and

the requirement of the polyp to adhere to the substratum.

Keywords Coral � Calcification � Skeletal organic matrix �
Biomineralization

Introduction

Corals (Anthozoa) evolved 570 million years before pre-

sent (Oliver 1996) as simple, soft-bodied metazoans con-

sisting of only two cell layers and a connecting collagenous

mesoglea (Galloway et al. 2007). Modern, reef-building,

corals (Scleractinia) appeared in the Mid Triassic, ca. 240

mybp (Romano and Palumbi 1996; Stanley 2003; Stolarski

et al. 2011). Corals are colonial organisms of individual

polyps that share a common gastrovascular system to dis-

tribute nutrients within the coral colony (Gateño et al.

1998). The polyps are suspension feeders and perform

muco-ciliary feeding (Goldberg 2002; Brown and Bythell

2005; Wijgerde et al. 2011) to capture small plankton

(Anthony 1999). Stinging cells, nematocysts, in the oral

ectoderm paralyze larger mobile prey (Abe 1938) and

enable corals to also feed on zooplankton (Carpenter 1910;

Houlbrèque and Ferrier-Pagès 2009). The possession of

nematocysts classifies corals into the phylum Cnidaria

(Goffredo and Dubinsky 2016). However, the secretion of a

calcium carbonate skeleton distinguishes corals from the

rest of the Cnidaria.
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Marine biocalcification is a key process in the global

carbon cycle because it removes carbon from the ocean–

atmosphere system and stores it in a geologic reservoir

(Lippmann 1973) on a time scale of hundreds of thousands

of years (Kump et al. 2000). On the short-term scale,

however, calcification consumes alkalinity and increases

the pCO2 of seawater, causing CO2 to degas from the ocean

into the atmosphere (Ridgwell et al. 2003; Menviel and

Joos 2012; Abrams et al. 2018; Lønborg et al. 2019).

Rising atmospheric CO2 concentration due to fossil fuel

emissions (Ipcc 2000) is causing rapid CO2 sequestration

by the ocean (Sarmiento and Sundquist 1992; Sabine 2004)

and consequently leads to ocean acidification (Caldeira and

Wickett 2003). Increasing ocean acidity impairs the ability

of corals to calcify (Hoegh-Guldberg et al. 2007) and

global coral reef cover has been projected to decline

drastically until the year 2100 (Freeman et al. 2013).

However, not all corals will be affected equally by rising

pCO2 (Fabricius et al. 2011). Some coral species can still

calcify in undersaturated waters (Venn et al. 2013),

whereas others suggest that calcification may not even be

prerequisite to coral survival as they can also survive as

decalcified solitary polyps (Fine and Tchernov 2007).

Given these extreme examples of possible responses to

ocean acidification, it is of major importance to understand

how corals biologically control their calcification process

in order to evaluate the future of coral reef ecosystems as a

fundamental economic and nutritional basis of millions of

livelihoods worldwide (Nystrom et al. 2000).

Corals calcify in an enclosed or semi-enclosed extra-

cellular medium below their tissue (Allemand et al. 2004;

Tambutté et al. 2011). Active transport of calcium ions and

protons increases the calcium concentrations (Al-Horani

et al. 2003a, b; DeCarlo et al. 2018; Sevilgen et al. 2019)

and pH (Ries 2011; McCulloch et al. 2012; Venn et al.

2013; Georgiou et al. 2015; Cai et al. 2016; Sevilgen et al.

2019) in the calcifying medium, leading to favorable

conditions for the inorganic precipitation of calcium car-

bonate (Lippmann 1973; Zeebe and Wolf-Gladrow 2001;

Hohn and Merico 2012, 2015; Lasaga 2014). However,

coral skeletons are characterized by the incorporation of

organic molecules (Cuif and Dauphin 2005; Wall and

Nehrke 2012). The presence of these molecules in the

crystal lattice (Williams 1984; Mann 2001; Watanabe et al.

2003) could imply that they are intrinsically important for

the formation of bio-minerals (Cuif and Dauphin 2005;

Drake et al. 2013; Mass et al. 2013), yet the exact role of

organic molecules in the biomineralization process remains

unclear (Falini et al. 2015).

The strong binding potential of calcium ions with

organic molecules (Kretsinger 1976; Carafoli 1987) sug-

gests that the molecules could act as a template to facilitate

or induce crystallization (Allemand et al. 1998; Watanabe

et al. 2003; Cuif and Dauphin 2005; Helman et al. 2008;

Mass et al. 2013). However, the presence of skeletal

organic molecules (SOM) or coral mucus (CM) in over-

saturated solutions was shown to delay the onset of calci-

fication (Marin et al. 1996), suggesting an inhibiting effect

at least on the nucleation of calcium carbonate. It is well

known that organic molecules influence the calcium car-

bonate polymorph that precipitates from an oversaturated

solution (Westbroek and Marin 1998; Mass et al. 2013),

but it has never been quantified if the composition of

organic molecules as they naturally appear in corals

accelerates or decelerates the rate of calcification. This

information is critical for the development of mathematical

models of coral calcification (Hohn and Merico

2012, 2015; Nakamura et al. 2013; Jones et al. 2015a) that

are used to predict the uncertain future of coral reefs in an

acidifying ocean (Kleypas et al. 2001, 2006; Hoegh-

Guldberg et al. 2007; Freeman et al. 2013). In this study,

we investigate if the presence of isolated skeletal organic

molecules alters the precipitation rate of calcium carbonate

in oversaturated solutions. Additionally, we investigate if

the molecular homology of CM and SOM (Ramos-Silva

et al. 2014) indicates a functional analogy that allows

identifying the origin and function of SOM.

Methods

Preparation of skeletal organic molecules and coral

mucus

We isolated skeletal organic molecules (SOM) of Sty-

lophora pistillata skeletons by grinding skeleton fragments

to a powder and dissolving the skeletal powder with

hydrochloric acid (HCl). This procedure leads to a solution

of calcium chloride (CaCl2) in water because the skeletal

carbonate (CO3
2-) reacts with the acid to bicarbonate

(HCO3
-) and carbonic acid (H2CO3), which, at a very low

pH (\ 2), leaves the solution as CO2. The organic carbon

that was incorporated into the coral skeleton as SOM

remains in the CaCl2 solution. We used a highly concen-

trated hydrochloric acid (37%) in order not to dilute the

SOM to very low concentrations of dissolved organic

carbon (DOC) and to be able to adjust the final DOC

concentrations in the experiment solutions as required.

We additionally collected mucus from ten Fungia spp.

corals growing in the aquarium facility at the Leibniz

Centre for Tropical Marine Research (ZMT), in Bremen,

by taking individual corals out of the water and placing

them for maximum 5 min upside down into zip-loc bags.

This procedure stressed the corals and initiated the secre-

tion of substantial amounts of mucus. Corals were left for

2 d to recover from this stress before repeating the mucus
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collection. Collected mucus was stored at - 40 �C until

sufficient material for the experiment was collected. The

mucus was then autoclaved and homogenized. DOC con-

centrations of the isolated SOM solution and coral mucus

were measured with a Shimadzu TOC-VCPH instrument

calibrated after German standard DIN 38402/ISO 8466-1.

Both organic molecule treatments (SOM and CM) were set

up to reach 50 lM DOC in the incubation chambers to

exclude a potential concentration dependence on the

impact on calcification.

Preparation of stock solutions

All experiment stock solutions were prepared with Milli-

pore water, which was initially boiled to drive out dis-

solved CO2 and then kept in a constant N2 atmosphere to

prevent recurrent CO2 in gassing. CaCl2 solutions were

prepared with 15.58 g CaCl2 in 5 L preboiled (CO2-free)

Millipore water, set to a final salinity of 36 g kg-1 by

adding 164.42 g NaCl. SOM or CM was added to the

CaCl2 solutions to reach a DOC concentration of 50 lM,

and pH was adjusted to 7.0 by adding NaOH. The amount

of added CaCl2 was corrected in the SOM treatment for the

mass of dissolved skeleton and the resulting amount of

CaCl2 present in the SOM stock solution. MgCl2 was added

for the experiment containing Mg to a final concentration

of 53 mM, yielding a molar Mg/Ca ratio of 2.5. The

amount of NaCl was then adjusted to maintain a salinity of

36 g kg-1.

Solutions of NaHCO3 included 1.26 g NaHCO3 per 5 L.

Total alkalinity was adjusted by adding NaOH to the stock

solution to reach a pH of 9.37, measured with a WTW-

Multi 3430 Set K pH sensor at 25 �C. The final setup of the
carbonate solution corresponds to a DIC of 3000 lM and

TA of 5310 lM, which will be diluted by half when mixing

with the calcium solution (DIC = 0 lM, TA = 0 lM) to

reach realistic target conditions in the incubation chambers

representative of the coral calcifying fluid, i.e., DIC =

1500 lM (Cai et al. 2016), TA = 2655 lM, pH = 9.3 (Al-

Horani et al. 2003a), and Ca = 10.6 mM (Al-Horani et al.

2003a). Note, however, that these conditions are chosen to

reflect conditions as measured in the CF of Galaxea fas-

cicularis and may not be representative for other coral

species that differ in chemical conditions and calcification

rates (Raybaud et al. 2017; Sevilgen et al. 2019). Stock

solutions were transferred into gas-tight 1-L Tedlar gas

sampling bags (Nehrke et al. 2007) and put into the climate

cabinet at constant 25 �C (± 0.5 �C).

Preparation of seeding crystals

The seeding material for all experiments was obtained from

aquarium grown S. pistillata (ZMT, Bremen) and cleaned

with hydrogen peroxide (H2O2 30%) for 48 h to remove

any soluble components and organic tissue on the surface.

After being ground in a miller for 1 min and separated into

the 1–200 lm size fraction, individual fragments were

handpicked under a light microscope. All fragments were

washed in ethanol in an ultrasonic bath for 5 min to remove

residual powder and then rinsed in Millipore water and

dried in a 40 �C oven. Each fragment was weighed before

and after the incubations on a Mettler Toledo scale with a

1-lg precision (room humidity 30% and temperature

22 �C).

Experimental setup

Twelve custom-built incubation chambers made of Teflon

(Nehrke et al. 2007) were used to investigate the combined

effect of organic molecules and Mg2? on calcification.

Each chamber was attached with Tygon and Marprene

tubing to two Tedlar bags filled with either a calcium

(CaCl2) or carbonate (NaHCO3) stock solution at a salinity

of 36 g kg-1. A constant flow rate of the solutions was

maintained at 10 lL min-1 via an Ismatec 24 channel

peristaltic pump. To prevent spontaneous crystallization

inside the tubing, separate inflow tubing of the CaCl2 and

NaHCO3 solutions was connected to the chambers. The

incubation chambers contain a volume of approximately

0.25 ml, and the continuous flow from the peristaltic pump

causes a mixed solution in the chambers without stirring.

Seeding crystals were placed in the incubation chambers,

and each experiment was run for at least 1 month (32 and

35 days, without and with Mg2?, respectively) in a Rumed

climate cabinet maintained at a constant 25 �C (± 0.5 �C).
We conducted three cross-factor experiments with two

Mg2? concentrations (0 mmol kg-1 and 26.5 mmol kg-1,

or Mg/Ca ratios of 0 and 2.5, respectively) in parallel with

three organic (control, mucus, or SOM) scenarios. The

aragonite saturation state, Xara, in all incubations was 16.3,

with a saturation index, SIara = log(Xara), of 2.8, which

should induce aragonite precipitation. Four replicates were

run for each scenario.

After 1-month incubation time, the seeding crystals

were removed from the chambers by flushing with ethanol

to stop precipitation. Crystals were dried and weighed to

determine crystal growth rate. Crystal structures of indi-

vidual CaCO3 polymorphs were analyzed under the Raman

microscope at Alfred Wegener Institute for Polar and

Marine Research (AWI) in Bremerhaven, Germany, with

the help of Dr. Gernot Nehrke. Due to the uneven surface

of the incubated crystals, we did not perform a mapping of

the whole crystal but focused on individual crystal struc-

tures to identify the polymorphs qualitatively with the

Raman spectrum (Supplementary material 1). The seeding

material was then gold-sputtered for 30 s and analyzed
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using the back-scattered electron detector (SEM-BSE) at

10 keV with a TESCAN Vega3 XMU SEM.

Results

Calcification rates

We performed six incubation experiments with four repli-

cates using flow through incubation chambers that were

fabricated following the design of Nehrke et al. (2007).

Reservoirs with CaCl2 and NaHCO3 solutions were con-

nected via tubing to the incubation chambers, and a peri-

staltic pump maintained a constant flow and hence constant

calcium and carbonate concentrations in the chambers over

a duration of at least 1 month. Precipitation of new CaCO3

on the seeding crystals of fragmented coral skeleton was

not enhanced by the presence of organic molecules (CM or

SOM). Instead, precipitation rates were generally lower in

the incubations containing SOM or CM than in the control,

but the difference was not significant (Fig. 1). Precipitation

rates in the incubations including Mg2? were significantly

reduced. Average calcification rates without Mg2? were

between 1.5 and 4.9 lg d-1, and average calcification rates

in the experiment that included Mg2? were between 0.014

and 0.86 lg d-1.

Crystal morphology

Despite no significant difference in the precipitation rates

between the treatments and the control, we found changes

in crystal morphologies (Fig. 2). All seeding crystals in the

Mg-free and organic-free incubations were coated with

freshly precipitated vaterite (Fig. 2a–c). Vaterite has a

higher solubility than aragonite and calcite (Plummer and

Busenberg 1982) and is thermodynamically not

stable (Kralj et al. 1990). The fact that vaterite did not

transform to calcite or aragonite in our experiments (Kralj

et al. 1997) indicates very stable growth conditions

throughout the incubations (Ogino et al. 1987) and is in

line with the observation that the least stable phases of a

mineral precipitate first, despite their high solubility

favoring the thermodynamically more stable polymorph in

the long run (Ostwald 1897).

The addition of mucus to the Mg-free solutions yielded

three different polymorphs of calcium carbonate on the

same seeding crystals (Fig. 2d–f). Aragonite dominated the

newly formed material, vaterite was rare, and a few iso-

lated blocks of calcite grew on the original coral skeleton

fragments. The addition of isolated SOM to the incubations

resulted in precipitation of aragonite only (Fig. 2g–i) even

though calcite and not aragonite would have been expected

to be the dominant polymorph at a Mg/Ca ratio equal to

zero (Morse et al. 1997). The presence of SOM apparently

inhibited the transformation to the more thermodynami-

cally calcite (Gebauer et al. 2008). In all incubations

containing Mg2?, hardly any new crystals were formed

(Fig. 3). However, all crystals that did form were arago-

nite, which fits with the preferential polymorph associated

to the Mg/Ca ratio of 2.5 in our experiments (Morse et al.

1997).

Discussion

Organic molecules and calcification rate

It has been suggested that organic molecules could help to

overcome the kinetic barriers for CaCO3 precipitation

imposed by the presence of Mg2?, PO4
3- or SO4

2-

(Pytkowicz 1973; Cohen 2003; Falini et al. 2015). How-

ever, in our experiments, hardly any new material formed

Fig. 1 Precipitation rates of

calcium carbonate on seeding

crystals incubated in

supersaturated CaCO3 solution

under presence or absence of

26.5 mM Mg. The control

contained no organic molecules,

whereas the treatments

contained 50 lmol L-1

dissolved organic carbon (DOC)

obtained from isolated skeletal

organic molecules (SOM) or

freshly collected coral mucus
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under the presence of Mg2? and the addition of organic

molecules did not enhance precipitation (Fig. 1). In the

Mg-free solutions of calcium and carbonate ions, the

addition of SOM or CM did also not increase the precipi-

tation rate (see Fig. 1). The nonsignificant trend of reduced

calcification rates with the presence of organic molecules

rather supports the opposing view that organic molecules

act as an inhibitor to calcification (Marin et al. 1996). This

is supported by recent findings from sea urchin spines

where the presence of SOM limited the supersaturation of

the calcifying fluid and inhibited precipitation (Sancho-

Tomás et al. 2014). The hypothesis that organic molecules

induce or facilitate calcification (Allemand et al. 1998;

Watanabe et al. 2003; Cuif and Dauphin 2005; Helman

et al. 2008; Mass et al. 2013), therefore, cannot be

supported.

Calcium binding proteins, like calmodulin, are com-

plexing free calcium ions at the intracellular side of the

plasma membrane (Carafoli 2002) and thus help to main-

tain calcium homeostasis at very low intracellular con-

centrations (Carafoli 1987; Case et al. 2007) because high

intracellular calcium concentrations can be toxic (Simkiss

1977; Kaźmierczak et al. 1985; Müller et al. 2015). The

fact that calcifying tissues are associated to a variety of

mucoid substances (Kazmierczak et al. 2013) may there-

fore indicate a corresponding detoxicating role of glyco-

proteins also at the extracellular cell surface.

A clear example of OM resource reallocation for

architectural purposes can be seen among foraminifera,

which modulate calcification within intracellular vacuoles

followed by exocytosis within the organic templates along

the test wall (Erez 2003; Reymond et al. 2013). This bio-

logically meditated process directs the precipitation of

Fig. 2 Scanning electron microscope (SEM) images showing the

morphology of calcium carbonate crystals precipitated in the absence

of Mg2?. a–c Different magnifications of vaterite spherulite and

platelet forms in the control solution. d–f Images of different

magnifications of vaterite platelet and bundles from the solution with

mucus from Fungia spp. g–i Aragonite needles of various magnifi-

cation from the solution with isolated skeletal organic matrix

molecules from Stylophora pistillata. These images are representative

of the replicates from the entire experiment
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calcite to form structures that benefit the harvesting of UV

toward its photosymbiont population (Hottinger 2000).

Therefore, SOM could be instrumental in the phenotypic

plasticity process among corals and be triggered by envi-

ronmental factors (e.g., wave energy and light). From our

study, however, there is no evidence that the presence or

absence of SOM influences the impact of changing ocean

chemistry on the rate of calcification or dissolution.

It is possible, however, that the interaction with the

crystallization rate depends on the concentration of organic

molecules and that higher or lower concentrations than

applied here could alter the precipitation rate. Unfortu-

nately, the concentration of organic molecules in the coral

calcifying fluid is not known. But irrespective the con-

centrations of organic molecules in the experiments, the

observed differences in the crystal polymorphs (Figs. 2, 3)

prove that the molecules did interact with the

crystallization process, yet this interaction with the crystal

morphology did not enhance the net precipitation rate

(Fig. 1). It is also worth noting that the chemo-physical

conditions within the zone of biomineralization are known

to vary among coral species (e.g., Al-Horani et al. 2003a;

Cai et al. 2016; Raybaud et al. 2017; Sevilgen et al. 2019)

due to life stages and external environmental conditions.

The chemical conditions chosen in our experiments are

representative for G. fascicularis (Al-Horani et al. 2003a),

and the hypothesized effect of organic molecules on cal-

cification could potentially also vary with the level of

oversaturation in the coral calcifying fluid.

Furthermore, density bands in coral skeletons suggest a

layered growth (Cuif et al. 2012) that could be controlled

by the exudation of organic molecules into the calcifying

space (Cuif and Dauphin 2005). However, SOM are con-

tinually incorporated into the growing skeleton and the

Fig. 3 Scanning electron microscope (SEM) images showing the

morphology of calcium carbonate crystals precipitated in the presence

of 26.5 mM Mg2?. a–c Low relief forms with inter dispersed quasi-

cylindrical forms and dissolution pits and magnification of smoothed

aragonite bundles from the control solution. d–f Images of different

magnifications of aragonite needles from the solution with mucus

from Fungia spp. g–i Various magnification from the solution with

isolated skeletal organic matrix molecules from S. pistillata which

include dissolution pits and smooth flaky surfaces. These images are

representative of the replicates from the entire experiment
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early mineralization centers in coral skeletons contain only

1 weight percent of SOM, whereas the whole skeleton

contains on average 3 weight percent (Falini et al. 2015).

This suggests that the concentration of organic molecules is

lower in the calcifying fluid during the ‘‘initiation’’ of coral

calcification and that enhanced ion transport rather than

organic matter release induces mineralization in corals.

The neglect of a potential effect of organic molecules on

the calcification rate in mathematical models of coral cal-

cification (Hohn and Merico 2012, 2015; Nakamura et al.

2013; Galli and Solidoro 2018), therefore, seems to be

justified because the calcification rate is apparently much

more dependent on the ion composition of the calcifying

fluid. But if SOM do not facilitate calcification (Marin et al.

1996; Sancho-Tomás et al. 2014) then why are these

molecules released into the subcalicoblastic space?

Coral mucus and SOM

Organic molecules are released by specific gland cells,

called mucocytes, that are present in all layers of the coral

tissue (Marshall and Wright 1993). In the calicoblastic

ectoderm of hermatypic, i.e., reef-forming, corals, muco-

cytes are not very abundant but cumulate toward the

growing tips of the coral septae (Brown and Bythell 2005).

This correlation may again suggest a connection between

mucus release and calcification; however, in the cali-

coblastic epithelium of the ahermatypic, i.e., non-reef-

forming, coral Tubastrea faulkneri, mucocytes are rela-

tively abundant (Marshall and Wright 1993), yet the cal-

cification rate does not differ from the morphologically

very similar hermatypic coral G. fascicularis (Marshall

1996). The release of organic molecules into the subcali-

coblastic space may, therefore, have other reasons than to

influence calcification although the hypothesis that organic

molecules protect the coral tissue against overcrusting by

calcium carbonate in highly supersaturated waters (Marin

et al. 1996) also remains plausible.

The identification of the molecular composition of SOM

(Watanabe et al. 2003; Puverel et al. 2005; Drake et al.

2013; Ramos-Silva et al. 2014) revealed that the majority

of glycoproteins in SOM are associated to adhesion and

structure (Drake et al. 2013) and a strong resemblance to

coral mucus (Ramos-Silva et al. 2014) suggests a common

origin of CM and SOM (Marin et al. 1996) that agrees well

with the observation that coral planula larvae use mucus to

adhere to the substrate (Harii and Kayanne 2003; Brown

and Bythell 2005) before transforming into the primary

polyp. We therefore tested if the chemical similarity

between CM and SOM depicts a functional similarity with

respect to the crystallization process. As mentioned above,

neither CM nor SOM altered the precipitation rate (Fig. 1).

Nevertheless, the crystal polymorphs differed slightly

between the incubations with CM and those with SOM

(Fig. 2). Small amounts of calcite were present on the

crystals in the CM incubations that were absent in the

presence of SOM (Fig. 2). Despite the resemblance

between CM and SOM, there are still differences in the

chemical composition (Ramos-Silva et al. 2014) that could

explain the observed differences in crystal morphologies.

However, the term mucus is a generic term that comprises

a mixture of various mucoid substances and the composi-

tion of mucus can vary over time and with different envi-

ronmental conditions (Crossland 1987; Brown and Bythell

2005). Depending on its composition, mucus can fulfill a

variety of different functions from desiccation resistance

and sunscreen protection to feeding and chemical defense

(Goldberg 2002; Brown and Bythell 2005; Wijgerde et al.

2011). Extracellular digestion, for example, is a function

not required below the coral tissue, and the absence of

digestive enzymes may already lead to a compositional and

therefore functional difference between CM and SOM in

the crystallization process.

The composition of mucus can also vary between spe-

cies (Meikle et al. 1988), and the mucus used in this study

was obtained from solitary Fungia spp. corals, whereas the

SOM was isolated from skeleton fragments of the

branching coral Stylophora pistillata. The precipitation of

small amounts of calcite could, therefore, be specific for

Fungia but not for Stylophora. However, calcite has not

been found in Fungia skeletons (Dahan et al. 2003). Two

solitary corals from the Mediterranean and several other

tropical corals such as Porites lobata do exhibit small

amounts of calcite in their skeletons (Goffredo et al. 2012).

Newly settled larvae of Pocillopora damicornis precipitate

small amounts of calcite during basal plate formation of the

primary polyp that later disappear with aging (Vander-

meulen and Watabe 1973; Gilis et al. 2014). This suggests

that also the chemical composition of SOM may vary over

time or that SOM directly originate from CM.

Evolutionary origin of SOM

Based on our finding that the potential to influence the

crystal polymorph is already inherent in CM and the fact

that basal plate formation in primary polyps involves pre-

cipitation of calcite besides aragonite (Goffredo et al.

2012), we propose a conceptual model to explain the

evolutionary origin of SOM in coral skeletons by applying

recapitulation theory (Shumway 1932): All metazoans

trace back to the cell lineage of opisthokonta choanoflag-

ellates (Knoll 2003; Read et al. 2013; Arendt et al. 2015).

Choanoflagellates can be solitary or colony-forming, and

both forms can be sessile or free floating (Nielsen 2008).

Cells in colony are held together by a gelatinous extra-

cellular matrix (Nielsen 2008). The adhesiveness of the
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extracellular matrix depends on the calcium concentration

(Deman et al. 1974; Chan 1976; Kretsinger 1976;

Kaźmierczak et al. 1985; Helman et al. 2008), and it is

assumed that rising oceanic calcium concentrations in the

Precambrian ocean due to enhanced weathering

(Kaźmierczak and Kempe 2004) led to the emergence of

metazoans (Kaźmierczak et al. 1985). The first metazoans

were sphere-shaped blasteas that fed via extracellular

digestion and/or endocytosis (Arendt et al. 2015). These

blasteas eventually invaginated and developed a gastric

cavity that improved the efficiency of the extracellular

digestion because food particles could become entrapped in

the gastric pouch from where the nutrients are taken up by

the inner epithelium (Arendt et al. 2015). The coral body

plan, in fact, never developed beyond the simple organi-

zation of a sessile gastrula (Galloway et al. 2007; Tambutté

et al. 2011), and the whole evolutionary development is

optimized and repeated (Fig. 4) during the coral life cycle

(Gleason and Hofmann 2011). The development of meta-

zoans allowed the specialization of cells and the develop-

ment of specific cell types (Arendt et al. 2015), one of

which are the mucus secreting gland cells or mucocytes.

Coral planula as well as adult polyps perform muco-ciliary

feeding (Goldberg 2002) and extracoelenteric digestion

(Wijgerde et al. 2011). The whole planula is therefore

covered by a mucus layer (Fig. 4). When the coral planula

sinks down from the water column to the benthos, it

eventually adheres to a hard substrate and transforms into a

primary polyp (Gleason and Hofmann 2011; Edmunds

et al. 2013). The isolation of a medium below the coral

polyp from the surrounding seawater and continuous cal-

cium excretion into this space (Al-Horani et al. 2003a;

Allemand et al. 2004) due to the cellular requirement to

regulate intracellular calcium concentrations (Carafoli

1987; Case et al. 2007) initiate calcification (Gilis et al.

2014). At this stage, the mucus that was used to adhere the

coral to the substratum becomes incorporated into the

growing skeleton, known as SOM.

However, since these molecules are highly adhesive, the

incorporation into the skeleton increases the stability

(Okumura and De Gennes 2001; Mayer and Sarikaya 2002;

Meyers et al. 2008) and allows corals to withstand greater

physical stress. The adhesive properties of mucus would

therefore become stabilized in evolutionary terms (Kauff-

man 1992). Stronger adhesion would allow coral larvae to

colonize environments with higher flow rates (Harii and

Kayanne 1996) and adult colonies to reach out further into

the currents, which is advantageous for suspension feeders

(Sebens et al. 1996, 1998; Houlbrèque and Ferrier-Pagès

2009) and coral growth (Sebens 1984; Fabricius et al.

1995; Mass et al. 2010).

The role of the SOM for coral calcification remains

enigmatic, presumably because a function is imposed that

cannot be proved. If the primary function of SOM is to

influence the crystal polymorph then this function is

already inherent to CM. If the function of SOM is to act as

Fig. 4 Coral ontogeny: (a) egg cell or zygote, (b) 4 cell cleavage

stadium, (c) 8 cell cleavage stadium, (d) flattened blastula (prawn

chip), (e) gastrula, (f) pelagic planula larvae, (g) sinking planula,

(h) settling planula, (i) primary polyp, (j) juvenile coral, (k) adult

coral (Jones et al. 2015a, b). The yellow coating depicts the mucus

layer on the surface of all stages during the coral life cycle (Brown

and Bythell 2005). The glutinous constituents of mucus cause cell-to-

cell adhesion (Kaźmierczak et al. 1985), and the mucus between the

two developing cell layers becomes the collagenous mesoglea (Young

1973) (drawn in pink). The adhesive properties of mucus (Brown and

Bythell 2005; Drake et al. 2013) also allow the sinking planula to

attach to the substratum (Harii and Kayanne 1996) where it

transforms into a primary polyp (Gleason and Hofmann 2011;

Edmunds et al. 2013). At this stage, i.e., when the primary polyp starts

to lay down its skeleton (Gilis et al. 2014) (gray), the mucus layer

facing the substratum becomes what we call skeletal organic

molecules (drawn in orange)
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a glue to create a more stable composite material, then this

function is fulfilled by adhesive molecules that are not

unique to SOM but are also present in CM and the meso-

glea. Lastly, a facilitating function to overcome kinetic

barriers for skeleton formation cannot be confirmed. The

origin of SOM may therefore be a remnant of early onto-

geny and the role of CM for adhesion.
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Zoccola D, Allemand D (2011) Coral biomineralization: From

the gene to the environment. J Exp Mar Bio Ecol 408:58–78

Vandermeulen JH, Watabe N (1973) Studies on reef corals. I. Skeleton

formation by newly settled planula larva of Pocillopora dami-

cornis. Mar Biol 23:47–57
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