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Abstract We studied how host-associations and geogra-

phy shape the genetic structure of sister species of marine

snails Coralliophila radula (A. Adams, 1853) and C. vio-

lacea (Kiener, 1836). These obligate ectoparasites prey

upon corals and are sympatric throughout much of their

ranges in coral reefs of the tropical and subtropical Indo-

Pacific. We tested for population genetic structure of snails

in relation to geography and their host corals using mtDNA

(COI) sequences in minimum spanning trees and AMO-

VAs. We also examined the evolutionary relationships of

their Porites host coral species using maximum likelihood

trees of RAD-seq (restriction site-associated DNA

sequencing) loci mapped to a reference transcriptome. A

maximum likelihood tree of host corals revealed three

distinct clades. Coralliophila radula showed a pronounced

genetic break across the Sunda Shelf (UCT = 0.735) but

exhibited no genetic structure with respect to host. C.

violacea exhibited significant geographic structure

(UCT = 0.427), with divergence among Hawaiian popula-

tions, the Coral Triangle and the Indian Ocean. Notably, C.

violacea showed evidence of ecological divergence; two

lineages were associated with different groups of host coral

species, one widespread found at all sites, and the other

restricted to the Coral Triangle. Sympatric populations of

C. violacea found on different suites of coral species were

highly divergent (UCT = 0.561, d = 5.13%), suggesting

that symbiotic relationships may contribute to lineage

diversification in the Coral Triangle.

Keywords Marine gastropod � Parasite � Sister species �
Porites � RAD-seq

Introduction

Our understanding of evolution in marine ecosystems is

framed by theories developed in terrestrial environments

(Miglietta et al. 2011). Historically, researchers have

invoked geographic-based models of speciation without

gene flow (i.e. allopatry) to explain the majority of diver-

sity in terrestrial systems (Barraclough and Vogler 2000).

However, such models are not a natural fit for the marine

realm (Palumbi 1994; Puebla 2009). Most marine organ-

isms have planktonic larvae that increase the potential for

gene flow between geographically separated regions (Rig-

inos and Liggins 2013). Even species with relatively

modest mean dispersal distances can have dispersal kernels

with long tails (Kinlan and Gaines 2003), providing suffi-

cient genetic connectivity to limit population divergence

(Slatkin 1987), even across broad geographic scales.

While uncommon, geographic barriers to gene flow in

the ocean do exist, albeit with varying degrees of perme-

ability. Landmasses are the most obvious, isolating biota in
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different ocean basins (Briggs and Bowen 2013), both

currently (e.g. Isthmus of Panama, see Lessios 2008 for

review) and in the past (e.g. Sunda Shelf, see Ludt and

Rocha 2015 for review). However, vast expanses of open-

ocean can isolate remote archipelagos like Hawai’i (e.g.

Polato et al. 2010; Iacchei et al. 2016; Waldrop et al. 2016)

or populations spanning the Eastern Pacific Barrier (e.g.

Baums et al. 2012). Additionally, large freshwater outflows

like the Amazon can form barriers to gene flow for shal-

low-water marine species (Rocha 2003).

Dispersal barriers are critical to the evolution and dis-

tribution of marine biodiversity, including in the world’s

most diverse marine ecosystem, the Coral Triangle (Barber

et al. 2011; Carpenter et al. 2011; Gaither et al. 2011;

Gaither and Rocha 2013). Low sea levels during the Plio-

cene and Pleistocene (Williams and Benzie 1998), and

more recent phenomena such as the Halmahera Eddy (Kool

et al. 2011), create potent dispersal barriers for various reef

organisms (see Barber et al. 2011 and Carpenter et al. 2011

for reviews). Still, allopatric divergence alone may be

insufficient to explain the Coral Triangle’s exceptional

species diversity. Processes such as ecological divergence

and assortative mating could promote divergence with gene

flow, but remain relatively unexplored in marine systems

(Krug 2011; Miglietta et al. 2011).

Ecological divergence is the evolution of reproductive

isolation among populations driven by opposing selection in

ecological niches or environments (Schluter and Conte

2009). While widely documented in terrestrial ecosystems,

ecological barriers to gene flow in the ocean have only

recently been reported (Krug 2011; Bird et al. 2012). In

terrestrial and freshwater systems, ecological divergence

often takes place in sympatry via assortative mating in dif-

ferent microhabitats or on different hosts in species with

strong symbioses (Hatfield and Schluter 1999; Matsubayashi

et al. 2010). Evidence suggests that ecological factors (Jo-

hannesson et al. 2010; Bird et al. 2011; Prada and Hellberg

2013; Moura et al. 2015) including symbiotic relationships

(Munday et al. 2004; Sotka 2005; Faucci et al. 2007; Prada

et al. 2014b; Fritts-Penniman 2016) may similarly drive

ecological divergence in the marine environment.

Marine snails in the genus Coralliophila are symbionts

of anthozoans (Oliverio et al. 2009). The sister species C.

radula and C. violacea (Oliverio et al. 2009) are ectopar-

asites, exhibiting obligate relationships with corals in the

family Poritidae (Fujioka and Yamazato 1983). These

snails are sedentary and feed suctorially on photosynthetic

products sent by corals to regenerate injured sites (Oren

et al. 1998). As adults they live in groups and rarely move

(Soong and Chen 1991; Oren et al. 1998). Dispersal is

achieved via planktonic larvae brooded by protandrous

hermaphroditic females (Soong and Chen 1991). Both

species have extensive geographic ranges, occurring

sympatrically in coral reefs throughout the tropical and

subtropical Indo-Pacific.

The purpose of this study was to enhance our under-

standing of the evolutionary processes generating marine

biodiversity in the Coral Triangle. Specifically, we tested

the hypothesis that co-distributed populations of C. radula

and C. violacea would exhibit concordant patterns of

phylogeographic structure, patterns that resulted from

physical processes shaping the phylogeography of other

marine organisms in the Coral Triangle. However, because

parasitic relationships with poritid host corals create the

possibility of ecological divergence, we first tested for

genetic structure that could result from ecological segre-

gation among sympatric populations of snails utilising

different host corals.

Materials and methods

Field sampling

During 2011–2013, we collected Coralliophila radula and

C. violacea from Indo-Pacific locations (N = 14 andN = 17

respectively, Table 1, Fig. 1). These sites span the Sunda

Shelf Barrier, an area where phylogeographic structure is

commonly observed (Barber et al. 2011), and also include

known areas of isolation (i.e. Hawai’i). At each site, we

collected 1–15 C. radula and 1–16 C. violacea from 1–6

colonies of each host coral species (N = 1–4) (Table 2). In

total, we collected 235 C. radula and 328 C. violacea from

114 coral colonies (Table 2), representing 12 named Porites

species (Fig. 2). Approximately 50–100% of each snail’s

foot tissue was preserved in 95% ethanol and stored at room

temperature for DNA analysis.

Porites corals are notoriously difficult to identify in situ

because of their morphological plasticity and small coral-

lites (Forsman et al. 2015), while genetically similar

colonies can have vastly different morphologies and vice

versa (Forsman et al. 2009, 2015; Prada et al. 2014a).

Therefore, to define coral species both morphologically and

genetically, we collected detailed information about each

snail’s host; tagged photos of coral colonies in situ; took

macrophotos with a transparent ruler to measure corallites;

and sampled tissues for genetic analysis.

DNA extraction and sequencing

We sequenced 1–16 snails from each coral colony. We

extracted DNA using 10% ChelexTM (BioRad, Hercules,

CA, USA) (Walsh et al. 2013) and DNeasy� Blood and

Tissue Kit (Qiagen, Valencia, CA, USA) and then ampli-

fied a 668-bp-length fragment of COI mtDNA using pri-

mers HCO-2198, LCO-1490 (Folmer et al. 1994).
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Following an initial denaturation at 94 �C for 1.5 min, the

thermocycling parameters were as follows: 94 �C for 30

secs, 50 �C for 30 secs and 72 �C for 45 secs for 35 cycles

with a final 10-min extension at 72 �C. All PCR product

clean up and DNA sequencing was done by the University

of California, Berkeley DNA Sequencing Facility.

We extracted coral DNA using DNeasy� Blood and

Tissue Kit (Qiagen, Valencia, CA, USA). Only extractions

with high-quality DNA at high enough concentrations were

chosen (N = 51) for library preparation. We chose to

sequence coral using a restriction site-associated DNA

sequencing (RAD-seq) approach because recent work has

shown that these data have a greater potential of resolving

relationships within Porites than more commonly used

genes such as ITS or COI (Forsman et al. 2017). Coral

Illumina libraries were prepared according to methods

detailed in the BestRAD protocol (Ali et al. 2016) using the

SbfI restriction enzyme, and sequenced using a Next-

Seq 500 (Illumina, Inc.) sequencer on a mid-output 300

cycle with paired-end reads. All library preparation and

sequencing was conducted at the Eagle Fish Genetics

Laboratory.

Table 1 Sampling locations for

Coralliophila radula, C.

violacea. Coordinates are in

decimal degrees. Location

numbers correspond to those in

Fig. 1

Location Region Country Province/State Latitude Longitude

1. Vavvaru Indian Ocean Maldives North Province 5.419 73.358

2. Pulau Weh Indian Ocean Indonesia Aceh 5.887 95.348

3. Pulau Keluang Indian Ocean Indonesia Aceh 5.129 95.294

4. Pulau Pagang Indian Ocean Indonesia Sumatra - 1.157 100.352

5. Hòn Mun Coral Triangle Vietnam Nha Trang 12.170 109.308

6. Pemuteran Coral Triangle Indonesia Bali - 8.140 114.654

7. Nusa Penida Coral Triangle Indonesia Bali - 8.675 115.513

8. Pulau Mengyatan Coral Triangle Indonesia East Nusa Tenggara - 8.557 119.685

9. Wangi–Wangi Coral Triangle Indonesia South Sulawesi - 5.269 123.519

10. Dı́li Coral Triangle Timor-Leste Timor Island - 8.477 125.911

11. Lembeh Coral Triangle Indonesia North Sulawesi 1.479 125.251

12. Bunaken Coral Triangle Indonesia North Sulawesi 1.612 124.783

13. Dumaguete Coral Triangle Philippines Negros Oriental 9.332 123.312

14. Ticao Coral Triangle Philippines Luzon 12.628 123.706

15. Raja Ampat Coral Triangle Indonesia West Papua - 0.559 130.672

16. Manokwari Coral Triangle Indonesia West Papua - 0.888 134.085

17. Ka’a’awa Hawai’i USA O’ahu 21.584 - 157.887

Regions were used for AMOVA analyses

Fig. 1 Population sampling locations across the Indo-West Pacific for ectoparasitic snails (Coralliophila radula, C. violacea) and on a suite of

host corals (Porites spp.). Location names and coordinates are shown in Table 1
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RAD-seq data processing

Coral reads were processed using the iPyrad v0.7.17

pipeline (http://ipyrad.readthedocs.io/) (see Appendix S2

for parameter input file). Sequence data were demulti-

plexed, low-quality base calls were filtered out, and adapter

sequences removed and dereplicated. To focus on coral

genes and exclude any DNA from symbiotic micro-or-

ganisms, we then mapped reads to a reference transcrip-

tome (Porites lobata available at reefgenomics.org,

Bhattacharya et al. 2016) using the programme BWA

v0.7.16 (Li and Durbin 2009). From there, highly similar

reads were clustered together and aligned. Then, the joint

estimate of heterozygosity and sequencing error rates were

Table 2 Number of

mitochondrial cytochrome

oxidase I (COI) sequences from

Coralliophila radula and C.

violacea at each location

collected from available host

corals

Location Collection host (N) C. radula C. violacea

1. Vavvaru P. lobata 21 13

P. rus 5 –

P. attenuata 17 –

2. Pulau Weh P. annae – 1

P. lobata 4 22

P. rus 4 3

3. Pulau Keluang P. lobata – 3

4. Pulau Pagang P. lobata – 2

P. lutea – 3

5. Hòn Mun P. lobata – 33

6. Pemuteran P. attenuata 15 –

P. cylindrica 5 17

P. lobata 10 15

P. negrosensis 3 5

7. Nusa Penida P. cylindrica – 5

P. lobata 7 9

8. Pulau Mengyatan P. cylindrica – 8

P. lobata 12 8

P. nigrescens – 2

9. Wangi–Wangi P. attenuata 16 –

P. cylindrica – 1

10. Dı́li P. lobata 3 2

11. Lembeh P. cylindrica – 12

P. lobata 4 9

P. tuberculosus – 14

12. Bunaken P. cylindrica – 18

P. lobata 6 23

13. Dumaguete P. cylindrica 18 22

P. lobata 15 32

14. Ticao P. lobata 26 8

15. Raja Ampat P. attenuata 20 7

P. lobata 6 4

P. lutea – 1

P. rus 6 –

16. Manokwari P. lobata 1 –

P. lutea 5 12

17. Ka’a’awa, Hawai’i P. compressa – 12

P. evermanni 5 4

P. lutea 1 1

P. solida – 2

Example photo vouchers of host coral species are shown in Fig. 2

358 Coral Reefs (2018) 37:355–371

123

http://ipyrad.readthedocs.io/


calculated and used in consensus base calling. Any samples

that did not sequence well were removed from further

analyses (N = 11). Only loci with less than 20% missing

data across taxa were kept, and reads were thinned to one

single-nucleotide polymorphism (SNP) per locus to

removed linked loci.

Data analysis

Determining host coral identities and evolutionary

relationships

To identify coral species, test for cryptic diversity and

determine phylogenetic relationships among corals, we

aligned our sequences (see Table S1 in Appendix S1) using

the iPyrad pipeline and exported alignments in PHYLIP

format to Geneious v11 (Kearse et al. 2012). Maximum

likelihood analyses were performed using RAxML v8.2.11

with 1000 rapid bootstraps.

Ecological and geographic analyses of genetic structure

of Coralliophila

For the snails, we aligned and edited complementary

sequences, and confirmed translations in Geneious (Kearse

et al. 2012). Sequences were aligned using the MAFFT

plugin in Geneious. We trimmed final sequence alignments

to 576 bp for C. radula and 617 bp for C. violacea and

then reduced all sequences to unique haplotypes using

FaBox v1.41 (Villesen 2007). We calculated standard

diversity statistics (haplotype and nucleotide diversity) in

Arlequin v3.5 (Excoffier and Lischer 2011).

Since genetic structure in the two Coralliophila could be

partitioned by host coral or geography, we tested for

divergence associated with corals in sympatry. As a first

pass to visually examine for genetic structure, we built

phylogenetic trees for each snail species using the RAxML

plugin in Geneious and labelled each tip with the associ-

ated host coral and location. After inspecting these trees, C.

violacea showed clear partitioning based on groups of host

coral species. These two groupings corresponded to the

major clades (clade 1, clade 2/3) present in the Porites

RAD-seq tree (Fig. 3). Given the well-documented taxo-

nomic challenges in Porites (Forsman et al. 2009, 2015;

Prada et al. 2014a) and possible cryptic species, we opted

to group host coral supported clades (Fig. 3) that were seen

in both the Porites tree and the C. violacea tree, using these

groupings (Gold = clade 1, Green = clade 2/3) for all

tests of genetic structure in relation to host coral. We

created minimum spanning trees (MSTs) using Gephi v

0.8.2 (Bastian et al. 2009) based on pairwise differences

calculated in Arlequin, only including haplotypes from

populations where C. radula and C. violacea were found

on different host coral clades (Gold = clade 1, Green = -

clade 2/3) at the same location. To formally, test for

structure based on host we plotted coral groups onto MSTs

and analysed molecular variance (AMOVA) in Arlequin,

partitioning the genetic data by coral group. To estimate

the relative contributions of geographic divergence versus

divergence in sympatry, we calculated pairwise UST values

among locations within host-associated lineages, and then

calculated pairwise UST between host-associated popula-

tions within individual sampling locations.

To test for phylogeographic partitions, we constructed

MSTs and then plotted the resulting haplogroups onto a map

of the study area. We then ran AMOVAs with and without a

priori geographic partitions to test for genetic structure related

to divergence related to isolation across the Sunda Shelf with

significance determined by 100,000 random replicates.

Results

Of the snail species, C. radula was less abundant (235 vs.

328), found at fewer locations (14 vs. 17; Table 2) and

found on fewer coral species (8 vs. 12; Table 2). The sister

species of Coralliophila exhibited ecological niche overlap

in the coral species they inhabited, sharing at least seven

named host coral species (Table 2). In addition, looking at

the hosts that they shared, Coralliophila spp. were found in

syntopy on about half of all the sampled coral colonies.

Sequences and genetic diversity

We successfully sequenced the DNA of 11 named species

of Porites from 40 colonies using RAD-seq and the dataset

was deposited in the Dryad Data Repository (https://doi.

org/10.5061/dryad.jv853v1) (Appendix S1). We obtained

235 COI sequences from C. radula (567 bp) and 328 from

C. violacea (617 bp), yielding totals of 192 and 296 unique

haplotypes, respectively. All sequences were deposited in

GenBank (Accession numbers: MG917096–MG917657).

Both snail species had high haplotype diversity (C.

radula: h = 0.966–1.00 and C. violacea: h = 0.900–1.00,

Table 3) in all populations except one: C. violacea (Pulau

Keluang; h = 0.667, Table 3). Nucleotide diversity was

low in both species (C. radula: p = 0.011–0.024 and C.

violacea: p = 0.011–0.040), although across all locations

C. violacea had a higher average number of polymorphic

sites (N = 67/617 bp) than C. radula (N = 41/567 bp).

Phylogenetics of host coral species

The RAxML tree of 40 Porites coral RAD sequences

(Table S1 in Appendix S1, Fig. 3) resolved some of the

named species as reciprocally monophyletic (i.e. P. rus, P.

Coral Reefs (2018) 37:355–371 359
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annae, P. evermanni). At a deeper level, three well-sup-

ported clades were apparent. Clade 1 included three species

with branching morphologies P. cylindrica, P. negrosensis

and P. nigrescens. These colonies were not reciprocally

monophyletic to the named species level, but this could be

due to cryptic diversity. Clade 2 was composed of three

species with nodular growth forms of varying sizes: P.

annae, P. evermanni and P. rus. All three species were well

supported. Clade 3 contained named species of various

morphologies including massive types P. lobata, P. lutea

and P. solida, as well as two named branching species P.

attenuata and P. compressa. While colonies from the same

species clustered together, they did not have high support

values.

Analysis of ecological divergence in Coralliophila

To investigate the genetics of snails for structure in relation

to host coral, we first built MSTs of haplotypes from

locations where snails from Porites groups (Gold = clade

1, Green = clade 2/3) were sampled. There was no evi-

dence of genetic structure in relation to host in C. radula

(Fig. 4a), which we confirmed with AMOVA analyses

(UCT = –0.018, p = 1.000, Table 4).

In contrast, the MST of C. violacea on sympatric hosts

showed two lineages (A and B) largely concordant with

host groups (Gold = clade 1, Green = clade 2/3; Figs. 2,

3). Lineage A of C. violacea (Fig. 4b) was found pre-

dominately on nine named species of Porites (P. annae, P.

bFig. 2 Photo vouchers of the host coral species (a–l) of m C.

violacea (Kiener, 1836) and n C. radula (A. Adams, 1855). Photos

and tissue samples of each coral colony were taken. a Porites lobata

(Dana, 1846), Bali, Indonesia. b Porites solida (Forskål, 1775),

Hawai’i, USA. c P. annae (Crossland, 1952), Aceh, Indonesia. d P.

evermanni (Vaughan, 1907), Hawai’i, USA. e P. attenuata (Ne-

menzo, 1955), Bali, Indonesia. f P. compressa (Dana, 1846), Hawai’i,

USA. g P. rus (Forskål, 1775), North Sulawesi, Indonesia. h P. lutea

(Milne Edwards and Haime, 1851) Sumatra, Indonesia. i P. cylindrica
(Dana, 1846), East Nusa Tenggara, Indonesia. j P. nigrescens (Dana,
1848), Sumatra, Indonesia. k P. negrosensis (Veron, 1990) Bali,

Indonesia. l P. tuberculosis (Veron, 2000) North Sulawesi, Indonesia.

Coral species were identified using Veron (2000) and for P.

evermanni Forsman et al. (2015)

Clade 3

Clade 2

Clade 1

*

*

*

*

P. a�enuata

P. compressa

P. solida

P. lobata

P. lutea

P. rus

P. evermanni

P. annae

P. nigrescens

P. negrosensis

P. cylindrica

*

*

**

*

*
**

*

*
*

Fig. 3 RAxML phylogenetic tree of 40 RAD sequences (10,882 bps)

mapped to the transcriptome of P. lobata, from 11 named Porites

species. Tip labels are the sample code followed by the species name.

* = nodes with[ 80% bootstrap support. Green and Gold groups are

those observed to be used by divergent lineages of C. violacea
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attenuata, P. compressa, P. evermanni, P. lobata, P. lutea,

P. rus, P. solida) belonging to the Green group of Porites

(clade 2/3, Fig. 3). Lineage B of C. violacea (Fig. 4b) was

found on three different named Porites species (P. cylin-

drica, P. negrosensis and P. nigrescens), from the Gold

group of Porites (clade 1, Fig. 3) as well as P. tuberculo-

sus. AMOVA also showed marked genetic differentiation

between hosts in sympatry (UCT = 0.561, p = 0.003,

d = 5.13%, Table 4), but no geographic structure among

populations within host (USC = 0.003, p = 0.328,

Table 4). Despite these distinctions, we found occasional

mismatches between C. violacea mtDNA background and

their host (Fig. 4b). Some C. violacea collected from

Porites clade 1 species fell in MST lineage A

(mean = 11.7%, Fig. 4b). However, we identified only one

mismatch the other way, when host corals were sympatric

(Fig. 4b).

Phylogeographic analyses of Coralliophila

Because there was no ecological divergence observed in C.

radula, we tested for phylogeographic structure using all

haplotypes. The MST revealed three deeply divergent

haplogroups separated by 18 or more steps that were

concordant with geography (Fig. 5). The red group was

restricted to the Indian Ocean. The blue group was the most

common, present at all sites in the Pacific Ocean. The

yellow group was rarest and found only within the Coral

Triangle.

Due to the strong genetic associations by host coral

group in C. violacea, we tested for phylogeographic

structure separately within samples collected from each

coral group. The MST of C. violacea collected from Por-

ites clade 2/3 distinguished six haplogroups (Fig. 6). The

blue group was most common, present at all sites, and

dominated Coral Triangle sites. The red group dominated

sites in the Indian Ocean ([ 75%). The yellow group was

found almost exclusively within the Coral Triangle with

the exception of Pulau Weh and was concordant with snails

found on hosts of the mismatched genetic group. The

purple group was restricted to Hawai’i. There were also

two rare, but divergent, haplogroups (turquoise, pink) only

seen at sites within the Coral Triangle (Hòn Mun, Ticao,

Dı́li and Bunaken).

Non-hierarchical AMOVAs of all haplotypes showed

significant genetic structure in C. radula (UST = 0.531,

P = 0.000; Table 4) and C. violacea (UST = 0.213,

P = 0.000; Table 4). The per cent variation in C. radula

was almost equal among (53%) and within (47%) popu-

lations. However, in C. violacea more variation was pre-

sent within (79%) than among (21%) populations

(Table 4).

Hierarchical AMOVA analyses comparing C. radula

populations from the Indian Ocean, and the Coral Trian-

gle ? Hawai’i, spanning the Sunda Shelf, revealed a

prominent genetic break (UCT = 0.735, P = 0.011, 5%

sequence divergence), with the most variation (74%)

between ocean basins (Table 4). However, only 0.5% of

Table 3 Coralliophila radula

and C. violacea
Location C. radula C. violacea

N h p (%) hs N h p (%) hs

1. Vavvaru 43 0.996 0.011 15.716 13 0.987 0.013 4.573

2. Pulau Weh 10 0.978 0.013 10.251 26 0.988 0.015 16.510

3. Pulau Keluang 3 0.667 0.021 12.667

4. Pulau Pagang 5 0.900 0.032 21.600

5. Hòn Mun 33 0.987 0.011 16.509

6. Pemuteran 33 0.966 0.014 17.248 37 1.000 0.035 21.598

7. Nusa Penida 6 1.000 0.017 11.825 14 1.000 0.035 25.156

8. Pulau Mengyatan 12 0.970 0.012 9.272 18 1.000 0.037 21.805

9. Wangi–Wangi 17 0.993 0.017 16.860 2 1.000 0.040 24.000

10. Dı́li 3 1.000 0.013 7.333 35 0.998 0.029 23.797

11. Lembeh 4 1.000 0.012 7.636 41 0.999 0.036 26.645

12. Bunaken 6 1.000 0.024 15.766 54 0.999 0.034 7.346

13. Dumaguete 33 0.998 0.013 15.030 8 1.000 0.021 0.000

14. Ticao 25 0.993 0.016 14.036 7 0.952 0.029 21.633

15. Raja Ampat 32 0.990 0.017 17.630 12 1.000 0.022 19.537

16. Manokwari 6 1.000 0.023 14.891 19 1.000 0.020 7.550

17. Ka’a’awa 5 1.000 0.016 8.640 13 0.987 0.013 4.573

Population level summary statistics and neutrality test statistics
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the variation was among populations within oceans

(USC = 0.018, p = 0.039, Table 4). More isolated popu-

lations like Hawai’i were significantly different from a few

populations in the Coral Triangle (Dumaguete, Pemuteran,

Pulau Mengyatan) but only marginally so (pairwise

UST = 0.120–0.140, Table 5).

A Coralliophila radula 

18

14

Green group = clade 2/3

Gold group = clade 1

Host coral group

B Coralliophila violacea  

Lineage A

Lineage B

Fig. 4 Sympatric host coral groups (colours same as in Fig. 3)

plotted onto minimum spanning trees of a 57 COI haplotypes from 65

Coralliophila radula. Haplogroups separated by more than 13 steps

are indicated with numbers. b 188 COI haplotypes from 200 C.

violacea. Circles sizes are proportional to the frequency of haplo-

types. Haplogroups separated by more than 20 steps are indicated

with numbers. Line thickness scales with the number of mutational

steps between haplogroups

Table 4 Coralliophila

AMOVA results testing

hypotheses about (a) non-

hierarchical, (b) host: sympatric

populations of C. radula and C.

violacea with snails from each

host coral group, and

(c) geography: C. radula (Indian

Ocean, Coral

Triangle ? Hawai’i); C.

violacea from Porites species in

the Green group (clade 2/3)

(Indian Ocean, Coral Triangle,

Hawai’i)

Source of variation C. radula C. violacea

Fixation indices P values % var. Fixation indices P values % var.

(a) Non-hierarchical

Among populations UST 0.531 0.000 53.10 UST 0.213 0.000 78.72

Within populations 46.90 21.28

(b) Host

Between hosts UCT - 0.018 1.000 - 1.08 UCT 0.561 0.003 56.14

Among populations USC 0.022 0.055 2.22 USC 0.003 0.328 0.13

Within populations UST 0.004 0.165 99.58 UST 0.563 0.000 43.73

(c) Geography C. violacea

Porites Green group (clade 2/3)

Between regions UCT 0.735 0.011 73.49 UCT 0.427 0.002 42.65

Among population USC 0.018 0.039 0.46 USC 0.056 0.000 3.19

Within population UST 0.740 0.000 26.04 UST 0.458 0.000 54.16

Significant values are in bold type
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Where sample sizes were sufficient, a non-hierarchical

AMOVA of C. violacea from Porites clade 1 in the Coral

Triangle showed no significant genetic structure among

populations (2% var.; UST = 0.020, P = 0.091). However,

a couple of pairwise UST distances were significant:

populations in Lembeh were different from Komodo

(UST = 0.048), and South Bali (UST = 0.109).

Because Hawaiian populations of C. violacea from

Porites species in the Green group (clade 2/3) were distinct

in the MST (Fig. 6), we defined three partitions: (1) Indian

Ocean, (2) Coral Triangle and (3) Hawai’i for AMOVAs.

Fig. 5 Coralliophila radula. a Minimum spanning tree of COI

haplotypes. Circle size corresponds to haplotype frequency. Hap-

logroups with 18 or more mutational steps between them are

coloured. Line thickness scales with the number of mutational steps

between haplogroups. b Map showing the geographic distribution of

haplogroups. Circle size corresponds to the number of individuals

sampled at each location
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Fig. 6 Coralliophila violacea collected from Porites species in the

Green group (clades 2/3) only. a Minimum spanning tree of 204 COI

haplotypes from 234 snails. Circle size corresponds to the number of

individuals with that haplotype. Haplotypes are coloured by groups

with 21 or more mutational steps between them, or groups of

haplotypes dominating a geographic area. b Map showing the

geographic distribution of haplogroups. Circle size corresponds to

the number of individuals sampled at each location
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Genetic structure was strong (UCT = 0.427, P = 0.002,

Table 6) with 43% of the variation among regions

(Table 6). Snails from Hawai’i were the most genetically

distinct, resulting in the highest pairwise UST values

(UST = 0.475–0.689, Table 6). Populations from Hòn Mun

in Vietnam were also genetically distinct from all other

populations except Dı́li in Timor-Leste

(UST = 0.081–0.447, Table 6).

Discussion

Although phylogeographic studies in the Coral Triangle

typically focus on allopatric divergence, results from the

corallivorous snail C. violacea showed evidence for eco-

logical divergence via host-shifting. Two lineages of C.

violacea were strongly concordant with the groups of

Porites species from which these snails were collected.

Even within locations, there was genetic divergence among

snails collected from different groups of host coral species.

Given the high prevalence of symbioses in coral reef

ecosystems, the recovery of ecological divergence in C.

violacea suggests that ecology could be an important driver

of lineage diversification in the epicentre of marine bio-

diversity, the Coral Triangle (e.g. Hoeksema 2007; Gaither

and Rocha 2013).

Both C. radula and C. violacea showed evidence of

phylogeographic structure across the Sunda Shelf, as pre-

dicted for ecologically similar, sympatrically distributed

sister taxa. This classic phylogeographic pattern is

observed in a wide diversity of Indo-Pacific marine taxa

(Carpenter et al. 2011; Barber et al. 2011; Bowen et al.

2013) and is typically attributed to eustatic sea level fluc-

tuations. In addition to divergence across the Sunda Shelf,

C. violacea populations in Hawai’i were also highly

divergent from all other locations, indicating divergence at

both the centre and in more isolated areas of this species’

geographic range (see Bowen et al. 2013).

Ecological barriers

Within the Coral Triangle, two sympatric haplogroups of

C. violacea were concordant with host coral groups.

Ecological divergence among populations inhabiting

sympatric host taxa is commonly reported for terrestrial

species, particularly phytophagous insects such as fruit

flies (Bush 1969), pea aphids (Peccoud et al. 2009),

butterflies (Fordyce 2010) and stick insects (Nosil et al.

2012). However, marine studies have not typically found

evidence for genetic structure among populations on

different, sympatrically distributed hosts (e.g. Sotka et al.

2003; Johnston et al. 2012; Li and O’Foighil 2012), with

the exception of sponge-dwelling snapping shrimp (Duffy

1996), and Phestilla nudibranchs that are also parasites of

Porites (Fritts-Penniman 2016). However, ecological

barriers have been reported at the species level in Sym-

biodinium and their anthozoan hosts (LaJeunesse 2005;

Bongaerts et al. 2011).

Table 5 Coralliophila radula. Pairwise population UST comparisons

Location Indian Ocean Coral Triangle ? Hawai’i

1 2 6 7 8 9 10 11 12 13 14 15 16 17

1. Vavvaru 0

2. Pulau Weh 0.017 0

6. Pemuteran 0.773 0.741 0

7. Nusa Penida 0.778 0.721 - 0.021 0

8. Pulau

Mengyatan

0.790 0.760 - 0.012 - 0.010 0

9. Wangi–

Wangi

0.762 0.709 - 0.011 - 0.050 - 0.012 0

10. Dı́li 0.792 0.748 - 0.061 - 0.117 - 0.116 - 0.089 0

11. Lembeh 0.802 0.763 0.090 0.033 0.117 0.039 0.106 0

12. Bunaken 0.749 0.666 0.017 - 0.032 0.015 0.000 - 0.099 0.061 0

13. Dumaguete 0.788 0.762 0.006 0.004 0.002 0.009 - 0.032 0.094 0.036 0

14. Ticao 0.761 0.715 0.033 - 0.029 0.024 0.006 - 0.068 0.042 0.017 0.026 0

15. Raja

Ampat

0.757 0.711 0.018 - 0.017 0.022 0.007 - 0.048 0.012 0.000 0.001 - 0.001 0

16. Manokwari 0.746 0.662 0.026 - 0.031 0.014 0.012 - 0.121 0.093 - 0.092 0.073 0.031 0.041 0

17. Ka’a’awa,

Hawai’i

0.775 0.719 0.119 0.023 0.122 0.069 - 0.028 0.114 0.043 0.140 0.005 0.071 0.013 0

Significant values are in bold type

366 Coral Reefs (2018) 37:355–371

123



T
a
b
le

6
C
o
ra
ll
io
p
h
il
a
vi
o
la
ce
a
co
ll
ec
te
d
fr
o
m

P
o
ri
te
s
sp
ec
ie
s
in

th
e
G
re
en

g
ro
u
p
(c
la
d
es

2
/3
)
o
n
ly
.
P
ai
rw

is
e
p
o
p
u
la
ti
o
n
U
S
T
co
m
p
ar
is
o
n
s

L
o
ca
ti
o
n

In
d
ia
n
O
ce
an

C
o
ra
l
T
ri
an
g
le

H
aw

ai
’i

1
2

3
4

5
6

7
8

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
.
V
av
v
ar
u

0

2
.
P
u
la
u
W
eh

-
0
.0
2
1

0

3
.
P
u
la
u
K
el
u
an
g

-
0
.0
4
0

-
0
.0
1
6

0

4
.
P
u
la
u
P
ag
an
g

0
.0
8
5

0
.0
8
2

-
0
.1
0
3

0

5
.
H
ò
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While sympatric populations of parasites from different

hosts can be genetically distinct, frequently they can still

exchange genes (Dres and Mallet 2002). Indeed, the small

number of mismatched mtDNA haplotypes on the C. vio-

lacea host MST could be the result of either incomplete

lineage sorting, or current/historical gene flow. However,

even reduced gene flow resulting from segregation by the

host can, over time, result in speciation (Matsubayashi

et al. 2010). Phylogenetic studies of symbiotic marine taxa

have discovered host-specific cryptic species in anemone

dwelling snapping shrimp (Hurt et al. 2013) and antho-

zoan-associated barnacles (Tsang et al. 2009), snails (Git-

tenberger and Gittenberger 2011), nudibranchs (Faucci

et al. 2007; Fritts-Penniman 2016) and fishes (Munday

et al. 2004; Litsios et al. 2012; Tornabene et al. 2013).

The significant genetic patterns we report in C. violacea

could be the result of different host-associated haplogroups

having distinct host preferences and experiencing differ-

ential selection. Previous studies have hinted at host pref-

erences in C. violacea (Fujioka and Yamazato 1983), as

well as differential selection on different host morpholo-

gies (Chen et al. 2004). However, those studies did not

characterise the genetics of the host corals, making their

results difficult to interpret in the context of this work. It

also emphasises the importance of collecting both host and

symbiont data for DNA testing, especially given the chal-

lenges of coral taxonomy and possibility of cryptic species.

It is not clear what mechanisms are driving the strong

association between the divergent C. violacea haplogroups

and their assemblages of host corals. However, possibilities

may include: (1) larval settlement cues as found with

corallivorous Phestilla nudibranchs (Ritson-Williams et al.

2009), (2) differences in nutritional quality (Yamashiro

et al. 1999; Baums et al. 2003), or (3) potential secondary

metabolites/pigments development (Wang et al. 2008) due

to reduced physical defences (Connell 1973). Whether the

mechanism is secondary metabolites, settlement cues, or

nutrients, interactions between parasites and hosts are most

likely chemically mediated, representing a fruitful avenue

of research for understanding the ecological and evolu-

tionary dynamics of host-parasite associations.

Geographic barriers

Co-distributed species with equivalent ecologies and life

histories should be impacted in similar ways by broadly

acting physical processes (Avise 2000; Marko and Hart

2011). Both C. radula and C. violacea exhibited strong

genetic divergence between Indian and Pacific Ocean

populations spanning the Sunda Shelf. During the Pleis-

tocene, sea levels repeatedly dropped by 100–140 m,

cyclically exposing the Sunda Shelf, and creating a partial

barrier between the two oceans that lasted

for * 15,000–30,000 years (Voris 2000). Genetic struc-

ture among marine organism populations spanning the

Sunda Shelf is typically attributed to these sea level

changes (Gaither and Rocha 2013), and numerous marine

molluscs show phylogeographic structure across this region

(Crandall et al. 2008; DeBoer et al. 2008; Kochzius et al.

2008; Nuryanto and Kochzius 2009).

The 5% COI sequence divergence we observed in C.

radula suggests that separation across the Sunda Shelf

began at the latest in the Pliocene/Pleistocene (* 2.5 Ma)

assuming a heuristic molecular clock with a conservative

divergence rate of 1%/myr for molluscan COI (Marko

2002; 0.7–1.2%/myr). Therefore, time dependency of

substitution rates in other marine invertebrates from this

region yield estimates of 2.3–6.7%/myr (Crandall et al.

2011), suggesting that divergence could have occurred less

than 1 Ma. Either way, these values place divergence

within periods of modern glacial cycles and resulting sea

level fluctuations.

The genetic isolation of Hawaiian populations of C.

violacea is seen in many other Indo-Pacific species (sum-

marised in Gaither et al. 2011), and the levels of population

structure we saw were also similar to other findings (COI,

UST = 0.08–0.89; Skillings et al. 2011). Yet surprisingly,

there was only weak genetic structure between populations

of the sister species C. radula in Hawai’i and a few Coral

Triangle populations. It remains unclear why species with

nearly identical ecological niches and life history strate-

gies, and which inhabit the same hosts and overlap in the

majority of their geographic ranges, would have concor-

dant patterns in one part of their range, but discordant

patterns in the other. It is unlikely that they differ drasti-

cally in planktonic larval duration, so possible explanations

include different population demographics, and/or the

timing of colonisation or expansion into different parts of

their ranges. For example, as evidenced by star polytomies

in MSTs and relative abundances, C. radula may have

experienced recent population expansions in the Coral

Triangle, whereas C. violacea may have expanded in the

Indian Ocean. Similarly, subtle ecological differences

might structure populations in ways we cannot untangle

without information about individuals (e.g. microhabitat)

for each specimen collected. For instance, while both

species were found on the host coral colonies, they may

specialise on different microhabitats (Fernández-González

et al. 2015) or nutrients within a host.

A tale of two species

As with the discordant phylogeographic structure between

C. radula and C. violacea, it is puzzling why C. violacea

has diverged on different host corals, while C. radula has

not. There are two possible explanations. First, the two

368 Coral Reefs (2018) 37:355–371
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snail species may be responding differently to the same

selective pressures because of different evolutionary his-

tories affecting the genetic background upon which selec-

tion acts (Prunier et al. 2012). Second, C. radula may in

fact be diverging on different hosts and selection is

occurring in the face of gene flow at certain loci, but this

process began too recently or is too weak to be evident in

neutral loci. Previous studies reported adaptations to dif-

ferent hosts by herbivorous marine invertebrates, and

genetically mediated differences in fitness on hosts (e.g.

Sotka et al. 2003), yet could not find any genetic structure

in mtDNA. Finally, differences in fitness and selection

between host-associated populations could be maintained

under on-going gene flow, a process demonstrated in

numerous other systems (e.g. Mullen and Hoekstra 2008).

To help settle this question, whole-genome or reduced

representation sequencing of C. violacea is needed to look

for candidate loci under selection and estimate gene flow

among populations.

Allopatric speciation was such a dominant model of

speciation, that early terrestrial studies reporting sympatric

speciation mediated by ecological differences (ecological

speciation) were met with scepticism (Bird et al. 2011).

Today, however, a growing body of the literature indicates

ecological speciation is more common than previously

thought. While studies of ecological divergence in the

ocean are still in their infancy, the pervasiveness of obli-

gate host relationships in the marine environment suggests

that ecologically mediated divergence and speciation could

be important in the evolution of marine biodiversity, par-

ticularly in hyper-diverse regions like the Coral Triangle.
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